Hard carbon (HC) materials are considered as promising anode materials for sodium-ion batteries (SIBs) due to their advantages of high capacity, low working potential, and low cost. The most important feature of HC materials is a rich microcrystalline structure that is conducive to the sorption and insertion/extraction of sodium ions, which in turn enables HC materials to exhibit a superior sodium ion storage performance. However, HC materials have some problems such as low initial Coulombic efficiency (ICE), insufficient long-cycle stability, and poor rate performance in the application. A functional design can be an effective strategy to improve these problems of HC. This review mainly summarized recent studies on the modification of HC anode for SIBs, and provided the related information on some typical optimization strategies and the latest research progress in the functional design of HC anodes. The advantages and disadvantages of functional design were also discussed, providing a theoretical basis and technical support for guiding the commercial application of HC anodes for SIBs.
FENG X, BAI Y, LIU M, et al. Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials[J]. Energy Environ Sci, 2021, 14(4): 2036-2089.
ZHANG K, WU F, WANG X, et al. An ion-dipole-reinforced polyether electrolyte with ion-solvation cages enabling high-voltagetolerant and ion-conductive solid-state lithium metal batteries[J]. Adv Func Mater, 2022, 32(7): 2107764.
WANG Z, FENG X, BAI Y, et al. Probing the energy storage mechanism of quasi-metallic Na in hard carbon for sodium‐ ion batteries[J]. Adv Energy Mater, 2021, 11(11): 2003854.
HUANG Yangyang, FANG Chun, HUANG Yunhui, et al. J Chin Ceram Soc, 2021, 49(2): 256-271.
WANG L, LU Y, LIU J, et al. A superior low-cost cathode for a Na-ion battery[J]. Angew Chem Int Ed, 2013, 125(7): 2018-2021.
SONG J, WANG L, LU Y, et al. Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery[J]. J Am Chem Soc, 2015, 137(7): 2658-2664.
PAN Du, QI Xingguo, LIU Lilu, et al. J Chin Ceram Soc, 2018, 46(4): 479–498.
ZHU H, JIA Z, CHEN Y, et al. Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir[J]. Nano Lett, 2013, 13(7): 3093-3100.
HOU H, JING M, YANG Y, et al. Antimony nanoparticles anchored on interconnected carbon nanofibers networks as advanced anode material for sodium-ion batteries[J]. J Power Sources, 2015, 284(15): 227-235.
ZHANG C, WANG X, LIANG Q, et al. Amorphous phosphorus/nitrogen-doped graphene paper for ultrastable sodium-ion batteries[J]. Nano Lett, 2016, 16(3): 2054-2060.
RUBIO S, MAÇA R R, ARAGÓN M J, et al. Superior electrochemical performance of TiO2 sodium-ion battery anodes in diglyme-based electrolyte solution[J]. J Power Sources, 2019, 432(31): 82-91.
NI Q, DONG R, BAI Y, et al. Superior sodium-storage behavior of flexible anatase TiO2 promoted by oxygen vacancies[J]. Energy Storage Mater, 2020, 25(1): 903-911.
WU F, DONG R, BAI Y, et al. Phosphorus-doped hard carbon nanofibers prepared by electrospinning as an anode in sodium-ion batteries[J]. ACS Appl Mater Interfaces, 2018, 10(25): 21335-21342.
XIAO L, LU H, FANG Y, et al. Low-defect and low-porosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode[J]. Adv Energy Mater, 2018, 8(20): 1703238.
LIU M, WU F, BAI Y, et al. Boosting sodium storage performance of hard carbon anodes by pore architecture engineering[J]. ACS Appl Mater Interfaces, 2021, 13(40): 47671-47683.
LI Y, QIAN J, ZHANG M, et al. Co-construction of sulfur vacancies and heterojunctions in tungsten disulfide to induce fast electronic/ionic diffusion kinetics for sodium-ion batteries[J]. Adv Mater, 2020, 32(47): 2005802.
LI Y, XU Y, WANG Z, et al. Stable carbon–selenium bonds for enhanced performance in tremella-like 2D chalcogenide battery anode[J]. Adv Energy Mater, 2018, 8(23): 1800927.
KASKHEDIKAR N A, MAIER J. Lithium storage in carbon nanostructures[J]. Adv Mater, 2009, 21(25/26): 2664-2680.
DOU X, HASA I, SAUREL D, et al. Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry[J]. Mater Today, 2019, 23: 87-104.
SHINN J H. From coal to single-stage and 2-stage products-a reactive model of coal structure[J]. Fuel, 1984, 63(9): 1187-1196.
FRANKLIN R E. Crystallite growth in graphitizing and nongraphitizing carbons[J]. Proc R Soc A, 1951, 209(1097): 196-218.
BAN L L, CRAWFORD D, MARSH H. Lattice-resolution electron microscopy in structural studies of non-graphitizing carbons from polyvinylidene chloride (PVDC)[J]. J Appl Crystallography, 1975, 8(4): 415-420.
TOWNSEND S J, LENOSKY T J, MULLER D A, et al. Negatively curved graphitic sheet model of amorphous carbon[J]. Phys Rev Lett, 1992, 69(6): 921-924.
HARRIS P J F, TSANG S C. High-resolution electron microscopy studies of non-graphitizing carbons[J]. Philos Mag A, 1997, 76 (3): 667-677.
TERZYK A P, FURMANIAK S, HARRIS P J, et al. How realistic is the pore size distribution calculated from adsorption isotherms if activated carbon is composed of fullerene-like fragments?[J]. Phys Chem Chem Phys, 2007, 9(44): 5919-5927.
STEVENS D A, DAHN J R. High capacity anode materials for rechargeable sodium-ion batteries[J]. J Electrochem Soc, 2000, 147(4): 1271-1273.
NI J, HUANG Y, GAO L. A high-performance hard carbon for Li-ion batteries and supercapacitors application[J]. J Power Sources, 2013, 223(1): 306-311.
PIOTROWSKA A, KIERZEK K, RUTKOWSKI P, et al. Properties and lithium insertion behavior of hard carbons produced by pyrolysis of various polymers at 1000 ℃[J]. J Anal Appl Pyrol, 2013, 102(3): 1-6.
JIAN Z, BOMMIER C, LUO L, et al. Insights on the mechanism of na-ion storage in soft carbon anode[J]. Chem Mater, 2017, 29(5): 2314-2320.
QI Y, LU Y, LIU L, et al. Retarding graphitization of soft carbon precursor: From fusion-state to solid-state carbonization[J]. Energy Storage Mater, 2020, 26(4): 577-584.
MIURA K, NAKAGAWA H, HASHIMOTO K. Examination of the oxidative stabilization reaction of the pitch-based carbon fiber through continuous measurement of oxygen chemisorption and gas formation rate[J]. Carbon, 1995, 33(3): 275-282.
YU K, ZHAO H, WANG X, et al. Hyperaccumulation route to Ca-rich hard carbon materials with cation self-incorporation and interlayer spacing optimization for high-performance sodium-ion batteries[J]. ACS Appl Mater Interfaces, 2020, 12(9): 10544-10553.
WU F, ZHANG M, BAI Y, et al. Lotus seedpod-derived hard carbon with hierarchical porous structure as stable anode for sodium-ion batteries[J]. ACS Appl Mater Interfaces, 2019, 11(13): 12554-12561.
BAI P, HE Y, ZOU X, et al. Elucidation of the sodium-storage mechanism in hard carbons[J]. Adv Energy Mater, 2018, 8(15): 1703217.
CAO Y, XIAO L, SUSHKO M L, et al. Sodium ion insertion in hollow carbon nanowires for battery applications[J]. Nano Lett, 2012, 12(7): 3783-3787.
BOMMIER C, SURTA T W, DOLGOS M, et al. New mechanistic insights on na-ion storage in nongraphitizable carbon[J]. Nano Lett, 2015, 15(9): 5888-5892.
ANJI REDDY M, HELEN M, GRO A, et al. Insight into sodium insertion and the storage mechanism in hard carbon[J]. ACS Energy Letters, 2018, 3(12): 2851-2857.
ZHANG B, GHIMBEU C M, LABERTY C, et al. Correlation between microstructure and Na storage behavior in hard carbon[J]. Adv Energy Mater, 2016, 6(1): 1501588.
KOMABA S, MURATA W, ISHIKAWA T, et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries[J]. Adv Func Mater, 2011, 21(20): 3859-3867.
DING J, WANG H, LI Z, et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes[J]. ACS Nano, 2013, 7(12): 11004-11015.
WANG S, XIA L, YU L, et al. Free-standing nitrogen-doped carbon nanofiber films: Integrated electrodes for sodium-ion batteries with ultralong cycle life and superior rate capability[J]. Adv Energy Mater, 2016, 6(7): 1502217.
ZHANG X, DONG X, QIU X, et al. Extended low-voltage plateau capacity of hard carbon spheres anode for sodium ion batteries[J]. J Power Sources, 2020, 476(11): 228550.
LUO W, WANG B, HERON C G, et al. Pyrolysis of cellulose under ammonia leads to nitrogen-doped nanoporous carbon generated through methane formation[J]. Nano Lett, 2014, 14(4): 2225-2229.
ZHENG Y, WANG Y, LU Y, et al. A high-performance sodium-ion battery enhanced by macadamia shell derived hard carbon anode[J]. Nano Energy, 2017, 39(9): 489-498.
QIU S, XIAO L, SUSHKO M L, et al. Manipulating adsorption–insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage[J]. Adv Energy Mater, 2017, 7(17): 1700403.
ZHENG Y, LU Y, QI X, et al. Superior electrochemical performance of sodium-ion full-cell using poplar wood derived hard carbon anode[J]. Energy Storage Mater, 2019, 18(3): 269-279.
QI Y, LU Y, DING F, et al. Slope-dominated carbon anode with high specific capacity and superior rate capability for high safety Na-Ion batteries[J]. Angew Chem Int Ed, 2019, 58(13): 4361-4365.
JIN Q, WANG K, LI W, et al. Designing a slope-dominated hybrid nanostructure hard carbon anode for high-safety and high-capacity Na-ion batteries[J]. J Mater Chem A, 2020, 8(43): 22613-22619.
XIAO L, CAO Y, HENDERSON W A, et al. Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries[J]. Nano Energy, 2016, 19(1): 279-288.
YUAN G, LIU D, FENG X, et al. 3D carbon networks: Design and applications in sodium ion batteries[J]. Chempluschem, 2021, 86(8): 1135-1161.
HOU H, BANKS C E, JING M, et al. Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life[J]. Adv Mater, 2015, 27(47): 7861-7866.
FU L, TANG K, SONG K, et al. Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance[J]. Nanoscale, 2014, 6(3): 1384-1389.
WANG Z, WANG X, BAI Y, et al. Developing an interpenetrated porous and ultrasuperior hard-carbon anode via a promising molten-salt evaporation method[J]. ACS Appl Mater Interfaces, 2020, 12(2): 2481-2489.
ZHOU X, ZHU X, LIU X, et al. Ultralong cycle life sodium-ion battery anodes using a graphene-templated carbon hybrid[J]. J Phys Chem C, 2014, 118(39): 22426-22431.
LU P, SUN Y, XIANG H, et al. 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries[J]. Adv Energy Mater, 2018, 8(8): 1702434.
TANG K, FU L, WHITE R J, et al. Hollow carbon nanospheres with superior rate capability for sodium-based batteries[J]. Adv Energy Mater, 2012, 2(7): 873-877.
LUO J M, SUN Y G, GUO S J, et al. Hollow carbon nanospheres: syntheses and applications for post lithium-ion batteries[J]. Mater Chem Front, 2020, 4(8): 2283-2306.
NI D, SUN W, WANG Z, et al. Heteroatom-doped mesoporous hollow carbon spheres for fast sodium storage with an ultralong cycle life[J]. Adv Energy Mater, 2019, 9(19): 1900036.
YUE L, XU W, LI K, et al. 3D nitrogen and sulfur equilibrium co-doping hollow carbon nanosheets as Na-ion battery anode with ultralong cycle life and superior rate capability[J]. Appl Surface Sci, 2021, 546: 149168.
MENG Q, LU Y, DING F, et al. Tuning the closed pore structure of hard carbons with the highest Na storage capacity[J]. ACS Energy Letters, 2019, 4(11): 2608-2612.
YU K, WANG X, YANG H, et al. Insight to defects regulation on sugarcane waste-derived hard carbon anode for sodium-ion batteries[J]. J Energy Chem, 2021, 55(7): 499-508.
YANG J, WANG X, DAI W, et al. From micropores to ultramicropores inside hard carbon: toward enhanced capacity in room-/low-temperature sodium-ion storage[J]. Nanomicro Lett, 2021, 13(1): 1-14.
WANG Y, NIU P, LI J, et al. Recent progress of phosphorus composite anodes for sodium/potassium ion batteries[J]. Energy Storage Mater, 2021, 34: 436-460.
LI L, ZHENG Y, ZHANG S, et al. Recent progress on sodium ion batteries: potential high-performance anodes[J]. Energy Environ Sci, 2018, 11(9): 2310-2340.
MUÑOZ-MÁRQUEZ M Á, SAUREL D, GÓMEZ-CÁMER J L, et al. Na-ion batteries for large scale applications: a review on anode materials and solid electrolyte interphase formation[J]. Adv Energy Mater, 2017, 7(20): 1700463.
LIU J, ZHANG Y, ZHANG L, et al. Graphitic carbon nitride (g-C3N4)-derived N-rich graphene with tuneable interlayer distance as a high-rate anode for sodium-ion batteries[J]. Adv Mater, 2019, 31(24): 1901261.
FENG X, BAI Y, ZHENG L, et al. Effect of different nitrogen configurations on sodium storage properties of carbon anodes for sodium ion batteries[J]. ACS Appl Mater Interfaces, 2021, 13(47): 56285–56295.
LI Y, YUAN Y, BAI Y, et al. Insights into the Na+ storage mechanism of phosphorus-functionalized hard carbon as ultrahigh capacity anodes[J]. Adv Energy Mater, 2018, 8(18): 1702781.
WU F, LIU L, YUAN Y, et al. Expanding interlayer spacing of hard carbon by natural K+ doping to boost Na-ion storage[J]. ACS Appl Mater Interfaces, 2018, 10(32): 27030-27038.
AGRAWAL A, JANAKIRAMAN S, BISWAS K, et al. Understanding the improved electrochemical performance of nitrogendoped hard carbons as an anode for sodium ion battery[J]. Electroch Acta, 2019, 317(9): 164-172.
JIN H, FENG X, LI J, et al. Heteroatom-doped porous carbon materials with unprecedented high volumetric capacitive performance[J]. Angew Chem Int Ed, 2019, 58(8): 2397-2401.
YANG J, ZHOU X, WU D, et al. S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries[J]. Adv Mater, 2017, 29(6): 1604108.
CHEN C, LI G, ZHU J, et al. In-situ formation of tin-antimony sulfide in nitrogen-sulfur Co-doped carbon nanofibers as high performance anode materials for sodium-ion batteries[J]. Carbon, 2017, 120(8): 380-391.
XU D, CHEN C, XIE J, et al. A hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries[J]. Adv Energy Mater, 2016, 6(6): 1501929.
NIU J, LIANG J, SHAO R, et al. Tremella-like N, O-codoped hierarchically porous carbon nanosheets as high-performance anode materials for high energy and ultrafast Na-ion capacitors[J]. Nano Energy, 2017, 41(11): 285-292.
HAN F, LV T, SUN B, et al. In situ formation of ultrafine CoS2 nanoparticles uniformly encapsulated in N/S-doped carbon polyhedron for advanced sodium-ion batteries[J]. RSC Advances, 2017, 7(49): 30699-30706.
WANG M, YANG Y, YANG Z, et al. Sodium-ion batteries: improving the rate capability of 3D interconnected carbon nanofibers thin film by boron, nitrogen dual-doping[J]. Adv Sci, 2017, 4(4): 1600468.
AN H, LI Y, GAO Y, et al. Free-standing fluorine and nitrogen co-doped graphene paper as a high-performance electrode for flexible sodium-ion batteries[J]. Carbon, 2017, 116(5): 338-346.
ZHAO H, YE J, SONG W, et al. Insights into the surface oxygen functional group-driven fast and stable sodium adsorption on carbon[J]. ACS Appl Mater Interfaces, 2020, 12(6): 6991-7000.
XIA J L, YAN D, GUO L P, et al. Hard carbon nanosheets with uniform ultramicropores and accessible functional groups showing high realistic capacity and superior rate performance for sodium-ion storage[J]. Adv Mater, 2020, 32(21): 2000447.
MATEI GHIMBEU C, GÓRKA J, SIMONE V, et al. Insights on the Na+ ion storage mechanism in hard carbon: Discrimination between the porosity, surface functional groups and defects[J]. Nano Energy, 2018, 44(2): 327-335.
XIE H, WU Z, WANG Z, et al. Solid electrolyte interface stabilization via surface oxygen species functionalization in hard carbon for superior performance sodium-ion batteries[J]. J Mater Chem A, 2020, 8(7): 3606-3612.
SUN D, LUO B, WANG H, et al. Engineering the trap effect of residual oxygen atoms and defects in hard carbon anode towards high initial Coulombic efficiency[J]. Nano Energy, 2019, 64(10): 103937.
SUN F, WANG H, QU Z, et al. Carboxyl–dominant oxygen rich carbon for improved sodium ion storage: Synergistic enhancement of adsorption and intercalation mechanisms[J]. Adv Energy Mater, 2020, 11(1): 2002981.
LU H, CHEN X, JIA Y, et al. Engineering Al2O3 atomic layer deposition: Enhanced hard carbon-electrolyte interface towards practical sodium ion batteries[J]. Nano Energy, 2019, 64(10): 103903.
LUO K, WANG D, CHEN D, et al. Solid electrolyte interphase composition regulation via coating AlF3 for a high-performance hard carbon anode in sodium-ion batteries[J]. ACS Appl Energy Mater, 2021, 4(8): 8242-8251.
LI D, ZHANG J, AHMED S M, et al. Amorphous carbon coated SnO2 nanohseets on hard carbon hollow spheres to boost potassium storage with high surface capacitive contributions[J]. J Colloid Interface Sci, 2020, 574(8): 174-181.
ZHANG S W, LV W, QIU D, et al. An ion-conducting SnS–SnS2 hybrid coating for commercial activated carbons enabling their use as high performance anodes for sodium-ion batteries[J]. J Mater Chem A, 2019, 7(17): 10761-10768.
XIE F, XU Z, JENSEN A C S, et al. Hard–soft carbon composite anodes with synergistic sodium storage performance[J]. Adv Func Mater, 2019, 29(24): 1901072.
LIN Q, ZHANG J, KONG D, et al. Deactivating defects in graphenes with Al2O3 nanoclusters to produce long-life and high-rate sodium-ion batteries[J]. Adv Energy Mater, 2019, 9(1): 1803078.
LI Y, XU S, WU X, et al. Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries[J]. J Mater Chem A, 2015, 3(1): 71-77.
HE X X, ZHAO J H, LAI W H, et al. Soft-carbon-coated, free-standing, low-defect, hard-carbon anode to achieve a 94% initial coulombic efficiency for sodium-ion batteries[J]. ACS Appl Mater Interfaces, 2021, 13(37): 44358-44368.
ZHENG G, LIN Q, MA J, et al. Ultrafast presodiation of graphene anodes for high-efficiency and high-rate s odium-ion storage[J]. InfoMat, 2021, 12(1): 1445-1454.
LI Y, NI Q, ZHANG M, et al. Co-construction of sulfur vacancies and heterojunctions in tungsten disulfide to induce fast electronic/ionic diffusion kinetics for sodium-ion batteries[J]. Adv Mater, 2020, 32(47): 2005802.
WANG Z, YANG H, LIU Y, et al. Analysis of the stable interphase responsible for the excellent electrochemical performance of graphite electrodes in sodium-ion batteries[J]. Small, 2020, 16(51): 2003268.
NATALIA V, SEUNG T. Recent advances in electrode materials with anion redox chemistry for sodium-ion batteries[J]. Energy Mater Adv, 2021, 2021(1): 9819521.
ZHU N, ZHANG K, WU F, et al. Ionic liquid-based electrolytes for aluminum/magnesium/sodium-ion batteries[J]. Energy Mater Adv, 2021, 2021(1): 9204217.
ZHANG R, RAVEENDRAN V, HE Y, et al. A poriferous nanoflake-assembled flower-like Ni5P4 anode for high performance sodium-ion batteries[J]. Energy Mater Adv, 2021, 2021(1): 2124862.
DONG R, ZHENG L, BAI Y, et al. Elucidating the mechanism of fast Na storage kinetics in ether electrolytes for hard carbon anodes[J]. Adv Mater, 2021, 33(36): 2008810.
LI Y, LIU M, FENG X, et al. How can the electrode influence the formation of the solid electrolyte interface?[J]. ACS Energy Lett, 2021, 6(9): 3307-3320.