Precursor continuous silicon carbide (SiC) fiber has a wide application prospect in the fields of aviation, aerospace and nuclear energy. The oxidation behavior and kinetics data of SiC fiber in a high-temperature oxidation environment are rather important for the research of composites. This review summarized the research work on continuous SiC fiber by a precursor method, oxidation type, performance degradation mechanism, oxidation process and oxidation kinetics of SiC fiber, and put forward the future research directions on oxidation behavior of SiC fiber.
FENG Chunxiang, TAN Zilie. New Carbon Mater (in Chinese), 1991(3): 78‒84.
CHEN Jianjun, PENG Zhiqin, DONG Wenjun, et al. High Technol Fiber Appli (in Chinese), 2010, 35(1): 35‒42.
ZHANG Guoqing, RUAN Shifeng. Information Record Mater (in Chinese), 2019, 20(9): 39‒40.
SHI Nanlin. J Space Sci (in Chinese), 1996, S1: 66‒70.
KATOA Y, SNEAD L, HENAGAR C H, et al. Current status and recent research achievements in SiC/SiC composites[J]. J Nuclear Mater, 2014, 455(1/3): 387‒397.
MURTHY P L, NEMETH N, BREWER D N. et al. Probabilistic analysis of a SiC/SiC ceramic matrix composite turbine vane[J]. Compos Part B-English, 2008, 39(4): 694‒703.
FENG Zude, HE Lizhi, WANG Yanyan, et al. Phys Chem Exam Phys Volume (in Chinese), 2005, 32(8): 59‒62.
YAJIMA S, HAYASHI J, OMORI M. Continuous SiC fiber of high tensile strength[J]. Chem Lett, 1975, 4(9): 931‒934.
YAJIMA S, HAYASHI J, OKAMURA K. Pyrolysis of a poly-borodiphenyl-siloxane[J]. Nature, 1977, 266(5602): 521‒522.
YAJIMA S, OKAMURA K, MATSUZAWA T, et al. Anomalous characteristics of the microcrystalline state of SiC fibers[J]. Nature, 1979, 279(5715): 706‒707.
TAKEDA M, URANO A, SAKAMOTO J I. Microstructure and oxidative degradation behavior of silicon carbide fiber Hi-Nicalon type S[J]. J Nuclear Mater, 1998, (258/263): 1594‒1599.
BUNSELL A R, PLANTA. A review of the development of three generations of small diameter silicon carbide fibers[J]. J Mater Sci, 2006, 41(3): 823‒839.
CLAUSS B, SCHAWALLER D. Modern aspects of ceramic fiber development[J]. Adv Sci Technol, 2006, 50(1): 1‒8.
ZHAO Dafang, WANG Haizhe, LI Xiaodong. J Inorg Mater (in Chinese), 2009, 24(6): 1097‒1107.
ZHANG Weizhong, LU Jiajia. Aviat Manuf Technol (in Chinese), 2012(18): 105‒108.
TIAN Xiumei, MA Xiaomin, ZHANG Bo. Dual Use Technol Prod (in Chinese), 2012(7): 39‒43.
WANG P R, LIU F Q, WANG H, et al. A review of third generation SiC fibers and SiCf/SiC composites[J]. J Mater Sci Technol, 2019(35): 2743‒2750.
ISHIKAWA T. Recent developments of the SiC fiber Nicalon and its composites, including properties of the SiC fiber Hi-Nicalon for ultra-high temperature[J]. Compos Sci Technol, 1994, 51(2): 135‒144.
ICHIKAWA H. Polymer-derived ceramic fibers[J]. Ann Rev Mater Res, 2016(46): 335–56.
SHIMOO T, OKAMURA K, TSUKASA I, et al. Thermal stability of low-oxygen SiC fibers fired under different conditions[J]. J Mater Sci, 1999, 34(22): 5623‒5631.
SUGIMOTO M, SHIMOO T, OKAMURA. K, et al. Reaction mechanisms of silicon carbide fiber synthesis by heat treatment of polycarbosilane fibers cured by radiation: I, Evolved gas analysis[J]. J Am Ceram Soc, 1995, 78(8): 1013‒1017.
TAKI T, OKAMURA K, SATO M, et al. A study on the electron irradiation curing mechanism of polycarbosilane fibers by solid-state 29Si high-resolution nuclear magnetic resonance spectroscopy[J]. J Mater Sci, 1988, 7(3): 209‒211.
MAO X H, SONG Y C, LI W, et al. Mechanism of curing process for polycarbonsilane fiber with cyclohexene vapor[J]. J Appl Polym Sci, 2007, 105(3): 1651‒1657.
XUE J G, WANG Y D, SONG Y C. Preparation of low oxygen SiC fiber by dry spinning[J]. J Inorg Mater, 2007, 22(4): 681‒684.
TAKEDA M, IMAI Y, ICHIKAWA H, et al. Thermal stability of SiC fiber prepared by an irradiation-curing process[J]. Compos Sci Technol, 1999, 59(6): 793‒799.
GUO C, SHEN Y. Effects of free carbon on microstructure of CVD SiC fiber[J]. Acta Metall Sin, 2007, 43(2): 165‒170.
CAO Shiyi, WANG Jun, WANG Hao, et al. J Inorg Mater (in Chinese), 2016, 5(31): 529‒534.
TAKEDA M, SASKIA A, SAKAMOTO J, et al. Effect of hydrogen atmosphere on pyrolysis of cured polycarbosilane fibers[J]. J Am Ceram Soc, 2000, 83(5): 1063‒1069.
DICARLO J A, YUN H M. Methods for producing silicon carbide architectural preforms[P], US Patent, 7687016.2010‒03‒30.
YUAN M, ZHOU T, HE J, et al. Formation of boron nitride coatings on silicon carbide fibers using trimethyl borate vapor[J]. Appl Surf Sci, 2016, 382(30): 27‒33.
XU X F, XIAO P, XIONG X, et al. Effects of Ni catalyzer on growth velocity and mor-phology of SiC nano-fibers[J]. J China Nonferrous Met Soc, 2009, 19(5): 1146‒1150.
XU Zhaofang, CHEN Yuanlan, LI Xiaohong, et al. J Chin Ceram Soc, 2019, 47(3): 358‒364.
LI Yang, XU Yunshu. J Chin Ceram Soc, 2011, 39(11): 1719‒1723.
MA Xiaomin, FENG Chunxiang, TIAN Xiumei, et al. High Technol Fiber Appl (in Chinese), 2013, 38(5): 47‒50.
CAO Shiyi. Study on the relationship between composition, structure and properties of KD series continuous silicon carbide fibers (in Chinese, dissertation). Changsha: National University of Defense Technology, 2017.
GAN Yuanfeng. Study on microstructure regulation and high temperature creep properties of KD-S fiber (in Chinese, dissertation). Changsha: National University of Defense Technology, 2018.
WANG Pengren. Study on Sintering Densification Mechanism and high temperature properties of SA SiC fiber (in Chinese, dissertation). Changsha: National University of Defense Technology, 2020.
LI Liang. Study on high temperature oxidation behavior of silicon carbide fiber (in Chinese, dissertation). Changsha: National University of Defense Technology, 2016.
SHA J J, HIROKI T, KOYAMA A, et al. Microstructure and mechanical properties of Hi-Nicalon™ Type S fibers annealed and crept in various oxygen partial pressures[J]. Mater Charact, 2009, 60(8): 796‒802.
SHA J J, HIROKI T, KOYAMA A, et al. Thermal and mechanical stabilities of Hi-Nicalon SiC fiber under annealing and creep in various oxygen partial pressures[J]. Corros Sci, 2008(50): 3132‒3138.
SHIMOO T, OKAMURA K, MORINAGA Y. Active-to-passive oxidation transition for polycarbosilane-derived silicon carbide fibers heated in Ar-O2 gas mixtures[J]. J Mater Sci, 2002, 37(9): 1793‒1800.
MATHIEU Q, BISEMOUS G, FRANCIS R. et al. Oxidation of β-SiC at high temperature in Ar/O2, Ar/CO2, Ar/H2O gas mixtures: Active/passive transition[J]. J Eur Ceram Soc, 2018, 38(13): 4320‒4328.
SHIMOO T, TAKEUCHI H, OKAMURA K. Thermal stability of polycarbosilane-derived silicon carbide fibers under reduced pressures[J]. J Am Ceram Soc, 2001, 3(84): 566‒570.
HENLE A. Formation and structure of reaction layers in SiC/glass and SiC/SiC composites[J]. Compos Part A: Appl Sci Manuf, 1996, 27(9): 685‒690.
HAY R S. SiC fiber strength after low pO2 oxidation[J]. J Am Ceram Soc, 2018, 101(2): 831‒844.
CHARPENTIER L, BALAT-P M, ADALBERT F. High temperature oxidation of SiC under helium with low-pressure oxygen Part1: sintered-SiC[J]. J Eur Ceram Soc, 2010, 30(12): 2653‒2660.
ZHAO Guanghui. In situ study on the oxidation of ZrB2 and SiC under high temperature and low oxygen pressure (in Chinese, dissertation). Hangzhou: Zhejiang University, 2014.
ROY J, CHANDRA S, DAS S. Oxidation behaviors of silicon carbide a review[J]. Rev Adv Mater Sci, 2014, 38(3): 29‒39.
WANG J, ZHANG L, ZENG Q, et al. The rate-limiting step in the thermal oxidation of silicon carbide[J]. Scripta Mater, 2010, 62(9): 654‒657.
NATHAN, S, JACOBSON. Corrosion of silicon-based ceramics in combustion environments[J]. J Am Ceram Soc, 1993, 76(1): 3‒28.
LIU C, XI J Q, IZABELA S. Sensitivity of SiC grain boundaries to oxidation[J]. J Appl Phys Chem C, 2019, 123(18): 11546‒11554.
DEAL B E, GROVE A, SNOW E H, et al. Observation of impurity redistribution during thermal oxidation of silicon using the MOS structure[J]. J Electrochem Soc, 1965, 112(3): 308.
HIMMEL L, MEHUL R F, BIRCHEN C E. Self-diffusion of iron in iron oxides and the wagner theory of oxidation[J]. J Materiomics, 1953, 5(6): 827‒843.
OPILA E J. Oxidation kinetics of chemically vapor-deposited silicon carbide in wet oxygen[J]. J Am Ceram Soc, 1994, 77(3): 730‒736.
NARASIMHA T, GOTO T, IGUCHI Y, et al. High-temperature oxidation of chemically vapor deposited silicon carbide in wet oxygen at 1823 to 1923K[J]. J Am Ceram Soc, 1990, 73(12): 3580‒3584.
OPILA E J. Variation of the oxidation rate of silicon carbide with water-vapor pressure[J]. J Am Ceram Soc, 1999, 82(3): 625‒636.
RAMBERG C E, WORRELL W L. Oxygen transport in silica at high temperature: Implications of oxidation kinetics[J]. J Am Ceram Soc, 2001, 84(11): 2607‒2616.
SHIMOO T, HAYATOU T, TAKEDA M, et al. Mechanism of oxidation of low-oxygen SiC fiber prepared by electron radiation curing method[J]. J Ceram Soc Jpn, 1994, 102(1187): 617‒622.
CHALON G, PAILLARD R, NASRANI R, et al. Thermal stability of a PCS-derived SiC fiber with a low oxygen content (Hi-Nicalon)[J]. J Mater Sci, 1997, 32(2): 327‒347.
SHIMOO T, TOYODA F, OKAMURA K. Effect of oxygen partial pressure on oxidation rate of Si-C-O fiber[J]. J Ceram Soc Jpn, 1998, 106(1233): 447.
NASRANI R, GUETTA A, REBILLED F, et al. Oxidation mechanisms and kinetics of Si C-matrix composites and their constituents[J]. J Mater Sci, 2004, 39(24): 7303‒7316.
CHALON G, CSIERNIK M, PAILLARD R, et al. A model SiC-based fiber with a low oxygen content prepared from a polycarbosilane precursor[J]. J Mater Sci, 1997, 32(4): 893‒911.
WILSON M, OPILA E. A review of SiC fiber oxidation with a new study of Hi-Nicalon SiC fiber oxidation[J]. Adv Eng Mater, 2016, 10(18): 1698‒1709.
SHIMOO T, TOYODA F, OKAMURA K. Oxidation kinetics of low-oxygen silicon carbide fiber[J]. J Mater Sci, 2000, 35(13): 3301‒3306.
HAY R S, CHATER R J. Oxidation kinetics strength of Hi-NicalonTM-S SiC fiber after oxidation in dry and wet air[J]. J Am Ceram Soc, 2017, 100(9): 4110–4130.
HAY R S, FAIR G E, BUFFEX R, et al. Hi-nicalonTM-S SiC fiber oxidation and scale crystallization kinetics[J]. J Am Ceram Soc, 2011, 11(94): 3983‒3991.
SHIMOO T, TAKEUCHI H, TAKEDA M, et al. Oxidation kinetics and mechanical property of stoichiometric SiC fibers (Hi-Nicalon-S)[J]. J Ceram Soc Jpn, 2010, 108(1264): 1096‒1102.
MCFARLAND B, OPILA E J. Silicon carbide fiber oxidation behavior in the presence of boron nitride[J]. J Am Ceram Soc, 2018, 101(12): 5534‒5551.
NARASIMHA T, GOTO T, HIRAI T. High-temperature passive oxidation of chemically vapor deposited silicon carbide[J]. J Am Ceram Soc, 1989, 72(8): 1386‒1390.
COSTELLO J A, TESSLER R E. Oxidation kinetics of silicon carbide crystals and ceramics: I, in dry oxygen[J]. J Am Ceram Soc, 1986, 69(9): 674–681.
CHEN X H, SUN Z G, HAN X, et al. Evolution of microstructure and tensile strength of Cansas-Ⅱ SiC fibers under air oxidizing atmosphere[J]. J Eur Ceram Soc, 2021, 41(15): 7585‒7600.
TAKEDA M, URANUS A, SAKAMOTO J, et al. Microstructure and oxidation behavior of silicon carbide fibers derived from polycarbosilane[J]. J Am Ceram Soc, 2000, 5(83): 1171‒1176.
WEN Q, YU Z, RIEDEL R. The fate and role of in situ formed carbon in polymer-derived ceramics[J]. Prog Mater Sci, 2020, 109: 10063.
ISHIKAWA T, KOTUKU Y, KOMAGATA K, et al. High-strength alkali-resistant sintered SiC fiber stable to 2200℃[J]. Nature, 1998, 391(6669): 773‒775.
GOU Y Z, JIAN K, et al. Fabrication of nearly stoichiometric polycrystalline SiC fibers with excellent high-temperature stability up to 1900℃[J]. J Am Ceram Soc, 2018, 101(5): 15366.
HUGER M, SOUTHARD S, GAULT C. Oxidation of Nicalon SiC fibers[J]. J Mater Sci Lett, 1993, 12(6): 414‒16.
HAY R S, MOGILEVSKY P. Model for SiC fiber strength after oxidation in dry and wet air[J]. J Am Ceram Soc, 2019, 102(1): 397–415.
DEAL B E, GROVE A S. General relationship for the thermal of silicon[J]. J Appl Phys, 1965, 36(12): 3770‒2911.
LI L, MAO X H, JIAN K, et al. J Aeronaut Mater (in Chinese), 2018, 38(3): 26‒30.
YAO R Q, FENG Z D, CHEN L, et al. Oxidation behavior of Hi-Nicalon SiC monofilament fibres in air and O2–H2O–Ar atmospheres[J]. Corros Sci, 2012, 57(4): 182‒191.
MAZDAYASNA S. Fiber Reinforced Ceramic Composites: Materials, Processing, and Technology[M]. Noyes Publications, US, 1990.
ZACHARY T, PETER K, NATHANIEL N, et al. Hi-NicalonTM-type S fiber tow surface desizing and decarburization via heat treatment[J]. Ceram Int, 2021, 47(23): 33709‒33717.
YU Yuxi, CHEN Yong, WU Xiaoyun, et al. J Chin Ceram Soc, 2014, 42(5): 661‒666.
WU Lijuan, SHEN Guozhu, XU Zheng, et al. J Chin Ceram Soc, 2007, 35(7): 904‒908.
Robertson S J, RUGGLES-WRENN M B, HAY R S, et al. Static fatigue of Hi-Nicalon™-S fiber at elevated temperature in air, steam, and silicic acid-saturated steam[J]. J Am Ceram Soc, 2020, 103(2): 1358‒1371.
HAY R S, CORNS R. Passive oxidation kinetics for glass and cristobalite formation on Hi-Nicalon-S SiC fibers in steam[J]. J Am Ceram Soc, 2018, 101(11): 5241‒5256.
BOAKYE E E, MOGILEVSKY P, KEY T S, et al. In situ Y2Si2O7 coatings on Hi-Nicalon-S SiC fibers: Phase formation and fiber strength[J]. J Am Ceram Soc, 2019, 102(10): 5725‒5737.
LI Y, CHEN M N, ZHANG Q Z, et al. Microstructure and corrosion behavior of in-situ grown Y3Si2C2 coated SiC fibers exposed to air and wet-oxygen at 1400℃[J]. J Eur Ceram Soc, 2022, 42(3): 3427‒3436.
AZARNOUSH S, RAJ R. Thin coatings of hafnon abate oxidative recession of SiC fibers[J]. J Am Ceram Soc, 2021, 104(3): 1210–1215.
WU B, NI N, FAN X, et al. Scheelite coatings on SiC fiber: Effect of coating temperature and atmosphere[J]. Ceram Int, 2021, 47(2): 1693‒1703.