Low-dimensional iron-based nanomaterials are representative magnetic nanomaterials used in the field of medicine and healthcare. These nanomaterials have attracted recent attention. This review summarized recent research progress on the synthesis, formation mechanism and biomedical applications of high-performance iron-based nanoparticles, and discussed the controllable synthesis as well as themodulation of interface property. In addition, this review also gave some prospects for biomedical applications of typical two-dimensional iron based nanomaterials and composites.
MAO Y, LI Y, GU N. Review: Progress in the preparation of iron based magnetic nanoparticles for biomedical applications[J]. J Harbin Inst Technol (New series), 2019, 26(2): 201293648.
JEON M, HALBERT M V, STEPHEN Z R, et al. Iron oxide nanoparticles as T-1 contrast agents for magnetic resonance imaging: Fundamentals, challenges, applications, and prospectives[J]. Adv Mater, 2021, 33(23): 1906539.
KULIKOV O A, ZHARKOV M N, AGEEV V P, et al. Magnetic hyperthermia nanoarchitectonics via iron oxide nanoparticles stabilised by oleic acid: Anti-tumour efficiency and safety evaluation in animals with transplanted carcinoma[J]. Int J Mol Sci, 2022, 23(8): 4234.
HOOSHMAND S, HAYAT S M G, GHORBANI A, et al. Preparation and applications of superparamagnetic iron oxide nanoparticles in novel drug delivery systems: An overview[J]. Curr Med Chem, 2021, 28(4): 777-799.
CAI X J, GAO W, ZHANG L L, et al. Enabling prussian blue with tunable localized surface plasmon resonances: Simultaneously enhanced dual-mode imaging and tumor photothermal therapy[J]. Acs Nano, 2016, 10(12): 11115-11126.
LI J H, ZHANG F S, HU Z G, et al. Drug “Pent-Up” in hollow magnetic prussian blue nanoparticles for NIR-induced chemo-photothermal tumor therapy with trimodal imaging[J]. Adv Healthc Mater, 2017, 6(14): 1700005.
ZHANG W, HU S L, YIN J J, et al. Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers[J]. J Am Chem Soc, 2016, 138(18): 5860-5865.
ZHANG L, QIN Z G, SUN H, et al. Nanoenzyme engineered neutrophil-derived exosomes attenuate joint injury in advanced rheumatoid arthritis via regulating inflammatory environment[J]. Bioact Mater, 2022, 18(12): 1-14.
XIE W S, GUO Z H, CAO Z B, et al. Manganese-based magnetic layered double hydroxide nanoparticle: A pH-sensitive and concurrently enhanced T-1/T-2-weighted dual-mode magnetic resonance imaging contrast agent[J]. Acs Biomater Sci Eng, 2019, 5(5): 2555-2562.
ZHANG N, WANG Y, ZHANG C C, et al. LDH-stabilized ultrasmall iron oxide nanoparticles as a platform for hyaluronidase-promoted MR imaging and chemotherapy of tumors[J]. Theranostics, 2020, 10(6): 2791-2802.
ZHAO X L, LI Z H, CHEN C, et al. A novel biomimetic hydrogen peroxide biosensor based on Pt flowers-decorated Fe3O4/graphene nanocomposite[J]. Electroanal, 2017, 29(6): 1518-1523.
LI R Q, ZHENG D W, HAN Z Y, et al. mHealth: A smartphonecontrolled, wearable platform for tumour treatment[J]. Mater Today, 2020, 40: 91-100.
AHN T, KIM J H, YANG H M, et al. Formation pathways of magnetite nanoparticles by coprecipitation method[J]. J Phys Chem C, 2012, 116(10): 6069-6076.
SHEN L Z, QIAO Y S, GUO Y, et al. Facile co-precipitation synthesis of shape-controlled magnetite nanoparticles[J]. Ceram Int, 2014, 40(1): 1519-1524.
ROTH H C, SCHWAMINGER S P, SCHINDLER M, et al. Influencing factors in the CO-precipitation process of superparamagnetic iron oxide nano particles: A model based study[J]. J Magn Magn Mater, 2015, 377: 81-89.
DE FREITAS J C, BRANCO R M, LISBOA I G O, et al. Magnetic nanoparticles obtained by homogeneous coprecipitation sonochemically assisted[J]. Mater Res-Ibero-Am J, 2015, 18(Sl 2): 220-224.
CHEN B, LI Y, ZHANG X Q, et al. An efficient synthesis of ferumoxytol induced by alternating-current magnetic field[J]. Mater Lett, 2016, 170: 93-96.
ZAKARIA M B, CHIKYOW T. Recent advances in Prussian blue and Prussian blue analogues: Synthesis and thermal treatments[J]. Coordin Chem Rev, 2017, 352: 328-345.
CATALA L, MALLAH T. Nanoparticles of Prussian blue analogs and related coordination polymers: From information storage to biomedical applications[J]. Coordin Chem Rev, 2017, 346: 32-61.
WU W, WU Z H, YU T, et al. Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications[J]. Sci Technol Adv Mater, 2015, 16(2): 023501.
SCHECK J, WU B H, DRECHSLER M, et al. The molecular mechanism of Iron(III) oxide nucleation[J]. J Phys Chem Lett, 2016, 7(16): 3123‒3130.
BAUMGARTNER J, DEY A, BOMANS P H H, et al. Nucleation and growth of magnetite from solution[J]. Nat Mater, 2013, 12(4): 310-314.
MAO Y, ZHANG Z H, ZHAN H F, et al. Revealing the crystal phases of primary particles formed during the coprecipitation of iron oxides[J]. Chem Commun, 2022, 58(38): 5749-5752.
ZHU X Y, ZHANG Z H, MAO Y, et al. Applying deep learning in automatic and rapid measurement of lattice spacings in HRTEM images[J]. Sci China Mater, 2020, 63(11): 2365-2370.
MAO Y, LI Y, GUO Z H, et al. The coprecipitation formation study of iron oxide nanoparticles with the assist of a gas/liquid mixed phase fluidic reactor[J]. Colloids Surfaces A: Physicochem Eng Aspects, 2022, 647: 129107.
ZHANG Z H, HE S Y, MAO Y, et al. A force field for molecular dynamics simulations of iron oxide system[J]. Mater Sci Eng: B, 2022, 283: 115803.
ZHANG Zuoheng, ZHOU Leilei, HE Siyuan, et al. J Southeast Univ: Nat Sci Ed (in Chinese), 2022, 52(1): 189-195.
MAO Y, LI Y, ZANG F C, et al. Continuous synthesis of extremely small-sized iron oxide nanoparticles used for T-1-weighted magnetic resonance imaging via a fluidic reactor[J]. Sci China Mater, 2022, 65(6): 1646-1654.
ZENG J, JING L, HOU Y, et al. Anchoring group effects of surface ligands on magnetic properties of Fe3O4 nanoparticles: towards high performance MRI contrast agents[J]. Adv Mater, 2014, 26(17): 2694-2698, 016.
CHEN B, GUO Z, GUO C, et al. Moderate cooling coprecipitation for extremely small iron oxide as a pH dependent T1-MRI contrast agent[J]. Nanoscale, 2020, 12(9): 5521-5532.
YE D W, LI M X, XIE Y Y, et al. Optical imaging and high-accuracy quantification of intracellular iron contents[J]. Small, 2021, 17(2): 2005474.
WANG H Y, GE Y Q, SUN J F, et al. Magnetic sensor based on image processing for dynamically tracking magnetic moment of single magnetic mesenchymal stem cell[J]. Biosens Bioelectron, 2020, 169: 112593.
QIN Z G, LI Y, GU N. Progress in applications of Prussian blue nanoparticles in biomedicine[J]. Adv Healthc Mater, 2018, 7(20): 1800347.
QIN Z G, CHEN B, HUANG X, et al. Magnetic internal heating-induced high performance Prussian blue nanoparticle preparation and excellent catalytic activity[J]. Dalton T, 2019, 48(46): 17169-17173.
SHOU P, YU Z, WU Y, et al. Zn(2+) doped ultrasmall Prussian blue nanotheranostic agent for breast cancer photothermal therapy under MR imaging guidance[J]. Adv Healthc Mater, 2020, 9(1): e1900948.
GAUTAM M, POUDEL K, YONG C S, et al. Prussian blue nanoparticles: Synthesis, surface modification, and application in cancer treatment[J]. Int J Pharm, 2018, 549(1/2): 31-49.
QIN Z G, CHEN B, MAO Y, et al. Achieving ultrasmall Prussian blue nanoparticles as high-performance biomedical agents with multifunctions[J]. Acs Appl Mater Inter, 2020, 12(51): 57382-57390.
YE D W, LI M X, FENG K Z, et al. Long-term fate tracking and quantitative analyzing of nanoparticles in stem cells with bright-field microscopy[J]. Nano Today, 2022, 44: 101506.
RISBY T H, SOLGA S F. Current status of clinical breath analysis[J]. Appl Phys B, 2006, 85(2): 421-426.
ZHANG H, YU L, LI Q, et al. Reduced graphene oxide/α-Fe2O3 hybrid nanocomposites for room temperature NO2 sensing[J]. Sens Actuators B Chem, 2017, 241: 109-115.
SHEN Z, WU A, CHEN X. Iron oxide nanoparticle based contrast agents for magnetic resonance imaging[J]. Molcular Pharmacetics, 2017, 14(5): 1352-1364.
CUONG N D, KHIEU D Q, HOA T T, et al. Facile synthesis ofα-Fe2O3 nanoparticles for high-performance CO gas sensor[J]. Mater Res Bull, 2015, 68: 302-307.
BAO J, ZENG S, DAI J, et al. Heterostructures between a tin-based intermetallic compound and a layered semiconductor for gas sensing[J]. Chem Commun, 2021, 57(45): 5590-5593.
WANG J, FATIMA-EZZAHRA E, DAI J, et al. Ligand-assisted deposition of ultra-small Au nanodots on Fe2O3/reduced graphene oxide for flexible gas sensors[J]. Nanoscale Adv, 2022, 4(5): 1345-1350.
ULAG S, KALKANDELEN C, BEDIR T, et al. Fabrication of three-dimensional PCL/BiFeO3 scaffolds for biomedical applications[J]. Mater Sci Eng: B, 2020, 261: 114660.
YI J, LIU L, SHU L, et al. Outstanding ferroelectricity in sol‒gel-derived polycrystalline BiFeO3 films within a wide thickness range[J]. ACS Appl Mater Interfaces, 2022, 14(18): 21696-21704.
LIU C, WANG Y, SUN H, et al. Positive-to-negative subthreshold swing of a MOSFET tuned by the ferroelectric switching dynamics of BiFeO3[J]. NPG Asia Mater, 2021, 13(1): 1-9.
QI J, LIU H, FENG M, et al. Enhanced hydrogen evolution reaction in Sr doped BiFeO3 by achieving the coexistence of ferroelectricity and ferromagnetism at room temperature[J]. J Energy Chem, 2021, 53: 93-98.
ZHANG Y, WU M, ZHU Q, et al. Performance enhancement of flexible piezoelectric nanogenerator via doping and rational 3D structure design for self-powered mechanosensational system[J]. Adv Funct Mater, 2019, 29(42): 1904259.
LI Q, ZHANG W, WANG C, et al. Ag modified bismuth ferrite nanospheres as a chlorine gas sensor[J]. RSC Adv, 2018, 8(58): 33156-33163.
WAGHMARE S D, RAUT S D, GHULE B G, et al. Pristine and palladium-doped perovskite bismuth ferrites and their nitrogen dioxide gas sensor studies[J]. J King Saud Univ-Sci, 2020, 32(7): 3125-3130.
YU Q, ZHANG Y, XU Y. Hierarchical hollow BiFeO3 microcubes with enhanced acetone gas sensing performance[J]. Dalton Trans, 2021, 50(19): 6702-6709.
LAYEK S, VERMA H C, GARG A. Enhancement in magnetic properties of Ba-doped BiFeO3 ceramics by mechanical activation[J]. J Alloys Compd, 2015, 651: 294-301.
KIM J K, KIM S S, KIM W J. Sol-gel synthesis and properties of multiferroic BiFeO3[J]. Mater Lett, 2005, 59: 4006-4009.
LIU Z, QI Y, LU C. High efficient ultraviolet photocatalytic activity of BiFeO3 nanoparticles synthesized by a chemical coprecipitation process[J]. J Mater Sci: Mater Electron, 2009, 21(4): 380-384.
HAN S H, KIM K S, KIM H G, et al. Synthesis and characterization of multiferroic BiFeO3 powders fabricated by hydrothermal method[J]. Ceram Int, 2010, 36(4): 1365-1372.
CESUR S, CAM M E, SAYIN F S, et al. Electrically controlled drug release of donepezil and BiFeO3 magnetic nanoparticle-loaded PVA microbubbles/nanoparticles for the treatment of Alzheimer՚s disease[J]. J Drug Delivery Sci Technol, 2022, 67: 102977.
LI R Q, ZHENG D W, HAN Z Y, et al. mHealth: A smartphonecontrolled, wearable platform for tumour treatment[J]. Mater Today, 2020, 40: 91-100.
LIU P J, YAO Z J, NG V M H, et al. Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption performance[J]. Compos Part a-Appl S, 2018, 115: 371-382.
ZOU S, GAO J, LIU L M, et al. Enhanced gas sensing properties at low working temperature of iron molybdate/MXene composite[J]. J Alloy Compd, 2020, 817: 152785.
LIU Z, ZHAO M L, LIN H, et al. 2D magnetic titanium carbide MXene for cancer theranostics[J]. J Mater Chem B, 2018, 6(21): 3541-3548.
JANG J, SHAHZAD A, WOO S H, et al. Magnetic Ti3C2Tx (MXene) for diclofenac degradation via the ultraviolet/chlorine advanced oxidation process[J]. Environ Res, 2020, 182: 108990.
LIU Z, LIN H, ZHAO M L, et al. 2D superparamagnetic tantalum carbide composite MXenes for efficient breast-cancer theranostics[J]. Theranostics, 2018, 8(6): 1648-1664.
ZHANG H L, LI M, CAO J L, et al. 2D α-Fe2O3 doped Ti3C2 MXene composite with enhanced visible light photocatalytic activity for degradation of Rhodamine B[J]. Ceram Int, 2018, 44(16): 19958-19962.
MEDETALIBEYOGLU H, KOTAN G, ATAR N, et al. A novel sandwich-type SERS immunosensor for selective and sensitive carcinoembryonic antigen (CEA) detection[J]. Anal Chim Acta, 2020, 1139: 100-110.
DUAN F H, GUO C P, HU M Y, et al. Construction of the 0D/2D heterojunction of Ti3C2Tx MXene nanosheets and iron phthalocyanine quantum dots for the impedimetric aptasensing of microRNA-155[J]. Sens Actuators B Chem, 2020, 310: 127844.
IMANI S, BANDODKAR A J, MOHAN A M V, et al. A wearable chemical-electrophysiological hybrid biosensing system for real-time health and fitness monitoring[J]. Nat Commun, 2016, 7(1): 1-7.
JIA W Z, BANDODKAR A J, VALDES-RAMIREZ G, et al. Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration[J]. Anal Chem, 2013, 85(14): 6553-6560.
LEI Y J, ZHAO E N, ZHANG Y Z, et al. A MXene-based wearable biosensor system for high-performance in vitro perspiration analysis[J]. Small, 2019, 15(19): 1901190.