The methods of machine learning based on the data science can deal with the corresponding studies in different disciplines based on the data accumulated in theory and experiments. Machine learning promotes the development of data-intensive scientific discoveries, thus making it a "fourth paradigm" that leads to the related scientific research after "theory, calculation, and experimentation". Among different materials, perovskite material has some unique advantages of rich composition, adjustable band gap, and broad development space, but this material does not reach the practical standards such as environmental friendliness in applications. Therefore, the exploration of perovskite material and its applications based on machine learning can accelerate the discovery of novel perovskite material, and explore the relationship between the physical and chemical characteristics of perovskite material, therefore providing a guidance for the development of environmentally friendly high-performance perovskite devices. This review represented the research process of machine learning for perovskite material, summarized some research work on machine learning in perovskite material properties and device exploration, and discussed the existing difficulties and challenges. In addition, the future development direction and trend were also prospected.
WANG Y, LV Z, ZHOU L, et al. Emerging perovskite materials for high density data storage and artificial synapses[J]. J Mater Chem C, 2018, 6(7): 1600–1617.
TRAVIS W, GLOVER E N K, BRONSTEIN H, et al. On the application of the tolerance factor to inorganic and hybrid halide perovskites: A revised system[J]. Chem Sci, 2016, 7(7): 4548–4556.
ZHAO X G, YANG D W, REN J C. Rational design of halide double perovskites for optoelectronic applications [J]. Joule, 2018, 2(19): 1662–1673.
YIN W J, WENG B, GE J, et al. Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics[J]. Energy Environ Sci, 2019, 12(2): 442–462.
KöRBEL S, MARQUES M A L, BOTTI S. Stability and electronic properties of new inorganic perovskites from high-throughput ab initio calculations[J]. J Mater Chem C, 2016, 4(15): 3157–3167.
SLAVNEY A H, HU T, LINDENBERG A M, et al. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications[J]. J Am Chem Soc, 2016, 138(7): 2138–2141.
FILIP M R, HILLMAN S, HAGHIGHIRAD A A, et al. Band gaps of the lead-free halide double perovskites Cs2BiAgCl6 and Cs2BiAgBr6 from theory and experiment[J]. J Phys Chem Lett, 2016, 7(13): 2579–2585.
SYZGANTSEVA O A, SALIBA M, GRÄTZEL M, et al. Stabilization of the perovskite phase of formamidinium lead triiodide by methylammonium, Cs, and/or Rb doping[J]. J Phys Chem Lett, 2017, 8(6): 1191–1196.
KUBICKI D J, PROCHOWICZ D, HOFSTETTER A, et al. Cation dynamics in mixed-cation (MA)x(FA)1–xPbI3 hybrid perovskites from solid-state NMR[J]. J Am Chem Soc, 2017, 139(29): 10055–10061.
LI C, HAO H, XU B, et al. A progressive learning method for predicting the band gap of ABO3 perovskites using an instrumental variable[J]. J Mater Chem C, 2020, 8(9): 3127–3136.
VELDHUIS S A, BOIX P P, YANTARA N, et al. Perovskite materials for light-emitting diodes and lasers[J]. Adv Mater, 2016, 28(32): 6804–6834.
WANG Y, TANG Y, JIANG J, et al. Mixed-dimensional self-assembly organic–inorganic perovskite microcrystals for stable and efficient photodetectors[J]. J Mater Chem C, 2020, 8(16): 5399–5408.
EKSTRöM E, LE FEBVRIER A, BOURGEOIS F, et al. The effects of microstructure, Nb content and secondary Ruddlesden–Popper phase on thermoelectric properties in perovskite CaMn1-x NbxO3(x=0–0.10) thin films[J]. RSC Adv, 2020, 10(13): 7918–7926.
ORÓ-SOLÉ J, CLARK L, KUMAR N, et al. Synthesis, anion order and magnetic properties of RVO3−xNx perovskites (R=La, Pr, Nd; 0≤x≤1)[J]. J Mater Chem C, 2014, 2(12): 2212–2220.
SHIOGAI J, CHIDA T, HASHIMOTO K, et al. Signature of band inversion in the perovskite thin-film alloys BaSn1–xPbxO3.[J]. Phys Rev B, 2020, 101(12): 125125.
SYDORCHUK V, LUTSYUK I, SHVED V, et al. PrCo1-xFexO3 perovskite powders for possible photocatalytic applications[J]. Res Chem Intermediat, 2020, 46(3): 1909–1930.
JI T, NIU T, WANG J, et al. Crystallization regulation of solution-processed two-dimensional perovskite solar cells[J]. J Mater Chem A, 2022, 10(26): 13625–13650.
ZHU T, YANG Y, GONG X. Recent advancements and challenges for low-toxicity perovskite materials[J]. ACS Appl Mater Inter, 2020, 12(24): 26776–26811.
YIN W J, SHI T, YAN Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber[J]. Appl Phys Lett, 2014, 104(6): 063903.
ZHAO D, WANG B, LIANG C, et al. Facile deposition of high-quality Cs2AgBiBr6 films for efficient double perovskite solar cells[J]. Sci China Mater, 2020, 63(8): 1518–1525.
LI L, TIAN G, CHANG W, et al. A novel double-perovskite Li La MgTeO6: Mn4+ far-red phosphor for indoor plant cultivation white LEDs: Crystal and electronic structure, and photoluminescence properties[J]. J Alloy Compd, 2020, 832: 154905.
ALVES G A S, CENTURION H A, SAMBRANO J R, et al. Band gap narrowing of Bi-doped NaTaO3 for photocatalytic hydrogen evolution under simulated sunlight: A pseudocubic phase induced by doping[J]. ACS Applied Energy Materials, 2021, 4(1): 671–679.
GREEN M A, DUNLOP E D, HOHL-EBINGER J, et al. Solar cell efficiency tables(version 58)[J]. Prog Photovolt: Res Appl, 2021, 29(7): 657–667.
MA S, YUAN G, ZHANG Y, et al. Development of encapsulation strategies towards the commercialization of perovskite solar cells[J]. Energy Environ Sci, 2022, 15(1): 13–55.
WANG M, WANG W, MA B, et al. Lead-free perovskite materials for solar cells[J]. Nano-Micro Lett, 2021, 13(1): 62.
SCHMIDT-MENDE L, DYAKONOV V, OLTHOF S, et al. Roadmap on organic–inorganic hybrid perovskite semiconductors and devices[J]. APL Materials, 2021, 9(10): 109202.
WANG R, MUJAHID M, DUAN Y, et al. A review of perovskites solar cell stability[J]. Adv Funct Mater, 2019, 29(47): 1808843.
GRASER J, KAUWE S K, SPARKS T D. Machine learning and energy minimization approaches for crystal structure predictions: A review and new horizons[J]. Chem Mater, 2018, 30(11): 3601–3612.
RAJAN K. Materials informatics[J]. Mater Today, 2005, 8(10): 38–45.
HUSSAIN A, YANG L H, ZOU Y B, et al. Monte Carlo simulation study of electron yields from compound semiconductor materials[J]. J Appl Phys, 2020, 128(1): 015305.
ALDER B J, WAINWRIGHT T E. Studies in molecular dynamics. I. General method[J]. J Chem Phys, 1959, 31(2): 459–466.
HOHENBERG P, KOHN W. Inhomogeneous electron gas[J]. Phys Rev, 1964, 136(3B): B864-B871.
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865–3868.
AGRAWAL A, CHOUDHARY A. Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science[J]. APL Mater, 2016, 4(5): 053208.
JORDAN M I, MITCHELL T M. Machine learning: Trends, perspectives, and prospects[J]. Science, 2015, 349(6245): 255–260.
RUPP M. Machine learning for quantum mechanics in a nutshell[J]. Int J Quantum Chem, 2015, 115(16): 1058-1073.
SUN W, ZHENG Y, YANG K, et al. Machine learning–assisted molecular design and efficiency prediction for high-performance organic photovoltaic materials[J]. Sci Adv, 2019, 5: eaay4275.
STANEV V, OSES C, KUSNE A G, et al. Machine learning modeling of superconducting critical temperature[J]. NPJ Comput Mater, 2018, 4(1): 29.
ZHOU T, SONG Z, SUNDMACHER K. Big data creates new opportunities for materials research: A review on methods and applications of machine learning for materials design[J]. Engineering, 2019, 5(6): 1017–1026.
DAI D, XU T, WEI X, et al. Using machine learning and feature engineering to characterize limited material datasets of high-entropy alloys[J]. Comp Mater Sci, 2020, 175: 109618.
GANTZER P, CRETON B, NIETO DRAGHI C. Inverse-QSPR for de novo design: A review[J]. Molecular Inform, 2020, 39(4): 1900087.
RACCUGLIA P, ELBERT K C, ADLER P D F, et al. Machinelearning-assisted materials discovery using failed experiments[J]. Nature, 2016, 533(7601): 73–76.
BALACHANDRAN P V, KOWALSKI B, SEHIRLIOGLU A, et al. Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning[J]. Nat Commun, 2018, 9(1): 1668.
LIU Y, ZHAO T, JU W, et al. Materials discovery and design using machine learning[J]. J Materiomics, 2017, 3(3): 159–177.
SCHMIDT J, MARQUES M R G, BOTTI S, et al. Recent advances and applications of machine learning in solid-state materials science[J]. NPJ Comput Mater, 2019, 5(1): 83.
GOLDSMITH B R, ESTERHUIZEN J, LIU J-X, et al. Machine learning for heterogeneous catalyst design and discovery[J]. AIChE J, 2018, 64(7): 2311–2323.
RAMPRASAD R, BATRA R, PILANIA G, et al. Machine learning in materials informatics: Recent applications and prospects[J]. NPJ Comput Mater, 2017, 3(1): 54.
HAIXIANG G, YIJING L, SHANG J, et al. Learning from class-imbalanced data: Review of methods and applications[J]. Expert Syst Appl, 2017, 73: 220–239.
WOHLRAB L, FüRNKRANZ J. A review and comparison of strategies for handling missing values in separate-and-conquer rule learning[J]. J Intell Inf Syst, 2011, 36(1): 73–98.
XU X, LIU H, YAO M. Recent progress of anomaly detection[J]. Complexity, 2019: 2686378.
WANG Y, PAN Z, PAN Y. A training data set cleaning method by classification ability ranking for the k-nearest neighbor classifier[J]. IEEE Transact Neur Network Learn Syst, 2020, 31(5): 1544–1556.
CHEN C, ZUO Y, YE W, et al. A critical review of machine learning of energy materials[J]. Adv Energy Mater, 2020, 10(8): 1903242.
BRAHAM E J, CHO J, FORLANO K M, et al. Machine learning-directed navigation of synthetic design space: A statistical learning approach to controlling the synthesis of perovskite halide nanoplatelets in the quantum-confined regime[J]. Chem Mater, 2019, 31(9): 3281–3292.
TAO Q, XU P, LI M, et al. Machine learning for perovskite materials design and discovery[J]. npj Comput Mater, 2021, 7(1): 23.
ZHANG Y, LING C. A strategy to apply machine learning to small datasets in materials science[J]. npj Comput Mater, 2018, 4(1): 25.
WEI J, CHU X, SUN X Y, et al. Machine learning in materials science[J]. InfoMat, 2019, 1(3): 338–358.
LIU Y, WU J M, AVDEEV M, et al. Multi-layer feature selection incorporating weighted score-based expert knowledge toward modeling materials with targeted properties[J]. Adv Theor Simul, 2020, 3(2): 1900215.
LIU Yue, ZOU Xinxin, YANG Zhengwei, et al. J Chin Ceram Soc, 2022, 50(03): 863–876.
RESHEF D N, RESHEF Y A, FINUCANE H K, et al. Detecting novel associations in large data sets[J]. Science, 2011, 334(6062): 1518–1524.
MA B, WEI X, LIU C, et al. Data augmentation in microscopic images for material data mining[J]. npj Comput Mater, 2020, 6(1): 125.
MIN K, CHO E. Accelerated discovery of potential ferroelectric perovskite via active learning[J]. J Mater Chem C, 2020, 8(23): 7866–7872.
CHEN D, SUN D, FU J, et al. Semi-supervised learning framework for aluminum alloy metallographic image segmentation[J]. IEEE Access, 2021, 9: 30858–30867.
PRUKSAWAN S, LAMBARD G, SAMITSU S, et al. Prediction and optimization of epoxy adhesive strength from a small dataset through active learning[J]. Sci Technol Adv Mater, 2019, 20(1): 1010–1021.
SHEN S, SADOUGHI M, LI M, et al. Deep convolutional neural networks with ensemble learning and transfer learning for capacity estimation of lithium-ion batteries[J]. Appl Energy, 2020, 260: 114296.
TOGO R, SAITO N, OGAWA T, et al. Estimating regions of deterioration in electron microscope images of rubber materials via a transfer learning-based anomaly detection model[J]. IEEE Access, 2019, 7: 162395–162404.
LU T, LI H, LI M, et al. Inverse design of hybrid organic-inorganic perovskites with suitable bandgaps via proactive searching progress[J]. ACS Omega, 2022, 7(25): 21583–21594.
CERIOTTI M. Unsupervised machine learning in atomistic simulations, between predictions and understanding[J]. J Chem Phys, 2019, 150(15): 150901.
ORUPATTUR N V, MUSHRIF S H, PRASAD V. Catalytic materials and chemistry development using a synergistic combination of machine learning and ab initio methods[J]. Comp Mater Sci, 2020, 174: 109474.
TOYAO T, MAENO Z, TAKAKUSAGI S, et al. Machine learning for catalysis informatics: Recent applications and prospects[J]. ACS Catal, 2019, 10: 2260–2297.
JING L, TIAN Y. Self-supervised visual feature learning with deep neural networks: A survey[J]. IEEE Transact Pattern Anal, 2021, 43(11): 4037–4058.
KONG J G, LI Q X, LI J, et al. Self-supervised graph neural networks for accurate prediction of néel temperature[J]. Chin Phys Lett, 2022, 39(6): 067503.
DOAN H, AGHARWAL G, QIAN H, et al. Quantum chemistry-informed active learning to accelerate the design and discovery of sustainable energy storage materials[J]. Chem Mater, 2020, 32(15): 6338, 6346.
LOOKMAN T, BALACHANDRAN P V, XUE D, et al. Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design[J]. npj Comput Mater, 2019, 5(1): 21.
RAJAK P, WANG B, NOMURA K I, et al. Autonomous reinforcement learning agent for stretchable kirigami design of 2D materials[J]. NPJ Comput Mater, 2021, 7(1): 102.
XUE D, BALACHANDRAN P V, HOGDEN J, et al. Accelerated search for materials with targeted properties by adaptive design[J]. Nat Commun, 2016, 7(1): 11241.
LIU Y, GUO B R, ZOU X X, et al. Machine learning assisted materials design and discovery for rechargeable batteries[J]. Energy Storage Mater, 2020, 31: 434–450.
WANG Y, WAGNER N, RONDINELLI J M. Symbolic regression in materials science[J]. MRS Communications, 2019, 9(3): 793–805.
WENG B, SONG Z, ZHU R, et al. Simple descriptor derived from symbolic regression accelerating the discovery of new perovskite catalysts[J]. Nat Commun, 2020, 11(1): 3513.
GOLDSCHMIDT V M. Die gesetze der krystallochemie[J]. Naturwissenschaften, 1926, 14(21): 477–485.
LI C, SOH K C K, WU P. Formability of ABO3 perovskites[J]. J Alloy Compd, 2004, 372(1): 40–48.
SUN Q, YIN W J. Thermodynamic stability trend of cubic perovskites[J]. J Am Chem Soc, 2017, 139(42): 14905–14908.
BARTEL C J, SUTTON C, GOLDSMITH B R, et al. New tolerance factor to predict the stability of perovskite oxides and halides[J]. Sci Adv, 2019, 5(2): eaav0693.
TALAPATRA A, UBERUAGA B P, STANEK C R, et al. A machine learning approach for the prediction of formability and thermodynamic stability of single and double perovskite oxides[J]. Chem Mater, 2021, 33(3): 845–858.
LU T, LI H, LI M, et al. Predicting experimental formability of hybrid organic-inorganic perovskites via imbalanced learning[J]. J Phys Chem Lett, 2022, 13(13): 3032-3038.
ZHANG S, LU T, XU P, et al. Predicting the formability of hybrid organic-inorganic perovskites via an interpretable machine learning strategy[J]. J Phys Chem Lett, 2021, 12(31): 7423–7430.
LIU H, CHENG J, DONG H, et al. Screening stable and metastable ABO3 perovskites using machine learning and the materials project[J]. Comp Mater Sci, 2020, 177: 109614.
ARMIENTO R, KOZINSKY B, HAUTIER G, et al. High-throughput screening of perovskite alloys for piezoelectric performance and thermodynamic stability[J]. Phys Rev B, 2014, 89(13): 134103.
LIU M, RONG Z, MALIK R, et al. Spinel compounds as multivalent battery cathodes: A systematic evaluation based on ab initio calculations[J]. Energy Environ Sci, 2015, 8(3): 964–974.
ONG S P, WANG L, KANG B, et al. Li-Fe-P-O2 phase diagram from first principles calculations[J]. Chem Mater, 2008, 20(5): 1798–1807.
ASKERKA M, LI Z, LEMPEN M, et al. Learning-in-templates enables accelerated discovery and synthesis of new stable double perovskites[J]. J Am Chem Soc, 2019, 141(8): 3682–3690.
YE W, CHEN C, WANG Z, et al. Deep neural networks for accurate predictions of crystal stability[J]. Nat Commun, 2018, 9(1): 3800.
LI Z, XU Q, SUN Q, et al. Thermodynamic stability landscape of halide double perovskites via high-throughput computing and machine learning[J]. Adv Funct Mater, 2019, 29(9): 1807280.
SCHMIDT J, SHI J, BORLIDO P, et al. Predicting the thermodynamic stability of solids combining density functional theory and machine learning[J]. Chem Mater, 2017, 29(12): 5090–5103.
LI W, JACOBS R, MORGAN D. Predicting the thermodynamic stability of perovskite oxides using machine learning models[J]. Comp Mater Sci, 2018, 150: 454–463.
SOE C M M, STOUMPOS C C, KEPENEKIAN M, et al. New type of 2D perovskites with alternating cations in the interlayer space, (C(NH2)3)(CH3NH3)nPbnI3n+1: Structure, properties, and photovoltaic performance[J]. J Am Chem Soc, 2017, 139(45): 16297–16309.
YIN T, LIU B, YAN J, et al. Pressure-engineered structural and optical properties of two-dimensional (C4H9NH3)2PbI4 perovskite exfoliated nm-thin flakes[J]. J Am Chem Soc, 2019, 141(3): 1235–1241.
PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Lett, 2015, 15(6): 3692–3696.
MYUNG C W, YUN J, LEE G, et al. A new perspective on the role of a-site cations in perovskite solar cells[J]. Adv Energy Mater, 2018, 8(14): 1702898.
YIN W J, YANG J H, KANG J, et al. Halide perovskite materials for solar cells: A theoretical review[J]. J Mater Chem A, 2015, 3(17): 8926–8942.
GUO Z, LIN B. Machine learning stability and band gap of lead-free halide double perovskite materials for perovskite solar cells[J]. Sol Energy, 2021, 228: 689–699.
GAO Z, ZHANG H, MAO G, et al. Screening for lead-free inorganic double perovskites with suitable band gaps and high stability using combined machine learning and DFT calculation[J]. Appl Surf Sci, 2021, 568: 150916.
LIU Y, YANG Z, CUI D, et al. Two-inch-sized perovskite CH3NH3PbX3 (X=Cl, Br, I)crystals: Growth and characterization[J]. Adv Mater, 2015, 27(35): 5176–5183.
WU Y, LU S, JU M G, et al. Accelerated design of promising mixed lead-free double halide organic-inorganic perovskites for photovoltaics using machine learning[J]. Nanoscale, 2021, 13(28): 12250–12259.
CHEN J L, XU W J, ZHNG R Q. Δ-machine learning-driven discovery of double hybrid organic–inorganic perovskites[J]. J Mater Chem A, 2022, 10: 1402–1413.
JU M G, DAI J, MA L, et al. Perovskite chalcogenides with optimal bandgap and desired optical absorption for photovoltaic devices[J]. Adv Energy Mater, 2017, 7(18): 1700216.
JU M G, DAI J, MA L, et al. Lead-free mixed tin and germanium perovskites for photovoltaic application[J]. J Am Chem Soc, 2017, 139(23): 8038–8043.
PUPPIN M, POLISHCHUK S, COLONNA N, et al. Evidence of large polarons in photoemission band mapping of the perovskite semiconductor CsPbBr3[J]. Phys Rev Lett, 2020, 124(20): 206402.
CAI X, LIU F, YU A, et al. Data-driven design of high-performance MaSnxPb1-xI3 perovskite materials by machine learning and experimental realization[J]. Light Sci Appl, 2022, 11(1): 234.
ZHANG L, HE M, SHAO S F. Machine learning for halide perovskite materials[J]. Nano Energy, 2020, 78: 105380.
SRIVASTAVA M, HOWARD J M, GONG T, et al. Machine learning roadmap for perovskite photovoltaics[J]. J Phys Chem Lett, 2021, 12(32): 7866–7877.
ODABAŞı Ç, YıLDıRıM R. Performance analysis of perovskite solar cells in 2013–2018 using machine-learning tools[J]. Nano Energy, 2019, 56: 770–791.
LI J, PRADHAN B, GAUR S, et al. Predictions and strategies learned from machine learning to develop high-performing perovskite solar cells[J]. Adv Energy Mater, 2019, 9(46): 1901891.
FENG H J, MA P. Machine learning prediction of 2D perovskite photovoltaics and interaction with energetic ion implantation[J]. Appl Phys Lett, 2021, 119(23): 231902.
CAI X, ZHANG Y, SHI Z, et al. Discovery of lead-free perovskites for high-performance solar cells via machine learning: Ultrabroadband absorption, low radiative combination, and enhanced thermal conductivities[J]. Adv Sci, 2022, 9(4): e2103648.
FAKHARUDDIN A, GANGISHETTY M K, ABDI-JALEBI M, et al. Perovskite light-emitting diodes[J]. Nat Electron, 2022, 5(4): 203–216.
XU L, LIU G, XIANG H, et al. Charge-carrier dynamics and regulation strategies in perovskite light-emitting diodes: From materials to devices[J]. Appl Phys Rev, 2022, 9(2): 021308.
CAO Y, WANG N, TIAN H, et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures[J]. Nature, 2018, 562(7726): 249–253.
MA D, LIN K, DONG Y, et al. Distribution control enables efficient reduced-dimensional perovskite leds[J]. Nature, 2021, 599(7886): 594–598.
LIN K, XING J, QUAN L N, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent[J]. Nature, 2018, 562(7726): 245–248.
CHIBA T, HAYASHI Y, EBE H, et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices[J]. Nat Photon, 2018, 12(11): 681–687.
WANG N, CHENG L, GE R, et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells[J]. Nat Photon, 2016, 10(11): 699-704.
KARLSSON M, YI Z, REICHERT S, et al. Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes[J]. Nat Commun, 2021, 12(1): 361.
LIU G, ZHANG S, XU L, et al. Recent advances of eco-friendly quantum dots light-emitting diodes for display[J]. Prog Quant Electron, 2022: 100415.
ZHAO B, BAI S, KIM V, et al. High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes[J]. Nat Photoni, 2018, 12(12): 783–789.
JIANG J, CHU Z, LI J Z, et al. Red perovskite light-Emitting diodes with efficiency exceeding 25%realized by co-spacer cations[J]. Adv Mater, 2022, 34(36): 2204460.
ZHANG L, LI N, LIU D, et al. Deep learning for additive screening in perovskite light-emitting diodes[J]. Angew Chem Int Ed Engl, 2022, 61(37): e202209337.
KIRMAN J, JOHNSTON A, KUNTZ D A, et al. Machinelearning-accelerated perovskite crystallization[J]. Matter, 2020, 2(4): 938–947.
BRESOLIN B M, PARK Y, BAHNEMANN D. Recent progresses on metal halide perovskite-based material as potential photocatalyst[J]. Catalysts, 2020, 10(6): 709.
KUMAR A, KUMAR A, KRISHNAN V. Perovskite oxide based materials for energy and environment-oriented photocatalysis[J]. ACS Catal, 2020, 10(17): 10253–10315.
ZHAO Y, LI Y, SUN L. Recent advances in photocatalytic decomposition of water and pollutants for sustainable application[J]. Chemosphere, 2021, 276: 130201.
HUYNH K A, NGUYEN D L T, NGUYEN V H, et al. Halide perovskite photocatalysis: Progress and perspectives[J]. J Chem Technol Biot, 2020, 95(10): 2579–2596.
HUANG Y, LIU J, DENG Y, et al. The application of perovskite materials in solar water splitting[J]. J Semicond, 2020, 41(1): 011701.
DUBOSE J T, KAMAT P V. Efficacy of perovskite photocatalysis: Challenges to overcome[J]. ACS Energy Lett, 2022, 7(6): 1994–2011.
NASSAR I M, WU S, LI L, et al. Facile preparation of n-type LaFeO3perovskite film for efficient photoelectrochemical water splitting[J]. Chem Select, 2018, 3(3): 968–972.
SHI L, CHANG D, JI X, et al. Using data mining to search for perovskite materials with higher specific surface area[J]. J Chem Inf Model, 2018, 58(12): 2420–2427.
TAO Q, LU T, SHENG Y, et al. Machine learning aided design of perovskite oxide materials for photocatalytic water splitting[J]. J Energy Chem, 2021, 60: 351–359.
TAO Q, CHANG D, LU T, et al. Multiobjective stepwise design strategy-assisted design of high-performance perovskite oxide photocatalysts[J]. J Phys Chem C, 2021, 125(38): 21141–21150.