PDF (1.3 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Publishing Language: Chinese

Effects of hippocampal overexpression of LINGO-1 on learning and memory abilities and Spinophilin+ dendritic spines in different hippocampal subregions of mice

Shun WANGLin JIANGQi HEHao YANGYiying WANGYuning ZHOUXin LIANGYi ZHANGFenglei CHAOLei ZHANG()Yong TANG()
Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
Show Author Information

Abstract

Objective

To investigate the effects of adenovirus-associated virus (AAV)-mediated overexpression of LINGO-1 in the hippocampus on spatial learning and memory abilities, as well as the volume and Spinophilin+ dendritic spines of different subregions within the hippocampus in mice.

Methods

Male C57 mice at 7 months of age were randomly divided into a control group and a LINGO-1 overexpression group. The control group received hippocampal stereotaxic injection of AAV carrying green fluorescent protein (GFP), while the LINGO-1 overexpression group received hippocampal stereotaxic injection of AAV carrying both GFP and LINGO-1 overexpression vector. Morris water maze was used to evaluate spatial learning and memory abilities of the mice. Quantitative PCR and immunofluorescence staining were used to detect LINGO-1 mRNA expression and fluorescence intensity in the hippocampus, and 3-dimensional stereology was used to quantify the volume and the total number of Spinophilin+ dendritic spines.

Results

There was no significant difference in body weight between the control group and the LINGO-1 overexpression group before and after virus injection. LINGO-1 overexpression induced an increase in hippocampal LINGO-1 at mRNA level and in fluorescent intensity(P < 0.01). The LINGO-1 overexpression group performed significantly worse in the Morris water maze test compared to the control group(P < 0.05). Moreover, LINGO-1 overexpression led to a significant reduction in the volumes of different hippocampal subregions(P < 0.05, P < 0.01), accompanied by marked decreases in the density(P < 0.01, P < 0.05) and total number of Spinophilin+ dendritic spines(P < 0.05).

Conclusion

Stereotaxic injection of AAV-mediated LINGO-1 overexpression specifically upregulates LINGO-1 in the hippocampus of mice. Abnormally high expression of LINGO-1 in the hippocampus leads to decreased hippocampal volume and loss of Spinophilin+ dendritic spines, as well as impaires spatial learning and memory abilities of mice to a certain extent.

CLC number: R338.26;R338.64;R394.3 Document code: A

References

[1]
DECKER M. Cognition models and drug discovery[M]//Animal models of cognitive impairment. CRC Press, 2006: 343-353. DOI: 10.1201/9781420004335.ch16.
[2]
REN R J, QI J L, LIN S H, et al. The China Alzheimer report 2022[J]. Gen Psych, 2022, 35(1): e100751. DOI: 10.1136/gpsych-2022-100751.
[3]
LISMAN J, BUZSÁKI G, EICHENBAUM H, et al. Viewpoints: how the hippocampus contributes to memory, navigation and cognition[J]. Nat Neurosci, 2017, 20(11): 1434-1447. DOI: 10.1038/nn.4661.
[4]
PENG G P, FENG Z, HE F P, et al. Correlation of hippocampal volume and cognitive performances in patients with either mild cognitive impairment or Alzheimer's disease[J]. CNS Neurosci Ther, 2015, 21(1): 15-22. DOI: 10.1111/cns.12317.
[5]
FJELL A M, MCEVOY L, HOLLAND D, et al. What is normal in normal aging? Effects of aging, amyloid and Alzheimer's disease on the cerebral cortex and the hippocampus[J]. Prog Neurobiol, 2014, 117: 20-40. DOI: 10.1016/j.pneurobio.2014.02.004.
[6]
REDWINE J M, KOSOFSKY B, JACOBS R E, et al. Dentate gyrus volume is reduced before onset of plaque formation in PDAPP mice: a magnetic resonance microscopy and stereologic analysis[J]. Proc Natl Acad Sci USA, 2003, 100(3): 1381-1386. DOI: 10.1073/pnas.242746599.
[7]
JOHN A, REDDY P H. Synaptic basis of Alzheimer's disease: focus on synaptic amyloid beta, P-tau and mitochondria[J]. Ageing Res Rev, 2021, 65: 101208. DOI: 10.1016/j.arr.2020.101208.
[8]
SELKOE D J. Alzheimer's disease is a synaptic failure[J]. Science, 2002, 298(5594): 789-791. DOI: 10.1126/science.1074069.
[9]
ZHANG P S, KISHIMOTO Y, GRAMMATIKAKIS I, et al. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer's disease model[J]. Nat Neurosci, 2019, 22(5): 719-728. DOI: 10.1038/s41593-019-0372-9.
[10]
ZHANG Y, CHAO F L, ZHOU C N, et al. Atrophy of lacunosum moleculare layer is important for learning and memory in APP/PS1 transgenic mice[J]. Neuroreport, 2021, 32(7): 596-602. DOI: 10.1097/WNR.0000000000001639.
[11]
MANIKANDAN S, PADMA M K, SRIKUMAR R, et al. Effects of chronic noise stress on spatial memory of rats in relation to neuronal dendritic alteration and free radical-imbalance in hippocampus and medial prefrontal cortex[J]. Neurosci Lett, 2006, 399(1/2): 17-22. DOI: 10.1016/j.neulet.2006.01.037.
[12]
ANDREWS J L, FERNANDEZ-ENRIGHT F. A decade from discovery to therapy: lingo-1, the dark horse in neurological and psychiatric disorders[J]. Neurosci Biobehav Rev, 2015, 56: 97-114. DOI: 10.1016/j.neubiorev.2015.06.009.
[13]
MCINNES L A, NAKAMINE A, PILORGE M, et al. A large-scale survey of the novel 15q24 microdeletion syndrome in autism spectrum disorders identifies an atypical deletion that narrows the critical region[J]. Mol Autism, 2010, 1(1): 5. DOI: 10.1186/2040-2392-1-5.
[14]
VANGUILDER H D, BIXLER G V, SONNTAG W E, et al. Hippocampal expression of myelin-associated inhibitors is induced with age-related cognitive decline and correlates with deficits of spatial learning and memory[J]. J Neurochem, 2012, 121(1): 77-98. DOI: 10.1111/j.1471-4159.2012.07671.x.
[15]
SUN J J, ZHOU H, BAI F, et al. Myelin injury induces axonal transport impairment but not AD-like pathology in the hippocampus of cuprizone-fed mice[J]. Oncotarget, 2016, 7(21): 30003-30017. DOI: 10.18632/oncotarget.8981.
[16]
SUN J J, REN Q G, XU L, et al. LINGO-1 antibody ameliorates myelin impairment and spatial memory deficits in experimental autoimmune encephalomyelitis mice[J]. Sci Rep, 2015, 5: 14235. DOI: 10.1038/srep14235.
[17]
WU D, TANG X, GU L H, et al. LINGO-1 antibody ameliorates myelin impairment and spatial memory deficits in the early stage of 5 XFAD mice[J]. CNS Neurosci Ther, 2018, 24(5): 381-393. DOI: 10.1111/cns.12809.
[18]
HE Q, JIANG L, ZHANG Y, et al. Anti-LINGO-1 antibody ameliorates cognitive impairment, promotes adult hippocampal neurogenesis, and increases the abundance of CB1R-rich CCK-GABAergic interneurons in AD mice[J]. Neurobiol Dis, 2021, 156: 105406. DOI: 10.1016/j.nbd.2021.105406.
[19]
YANG H, JIANG L, ZHANG Y, et al. Anti-LINGO-1 antibody treatment alleviates cognitive deficits and promotes maturation of oligodendrocytes in the hippocampus of APP/PS1 mice[J]. J Comp Neurol, 2022, 530(10): 1606-1621. DOI: 10.1002/cne.25299.
[20]
HAO J D, RAPP P R, LEFFLER A E, et al. Estrogen alters spine number and morphology in prefrontal cortex of aged female rhesus monkeys[J]. J Neurosci, 2006, 26(9): 2571-2578. DOI: 10.1523/JNEUROSCI.3440-05.2006.
[21]
TANG Y, JANSSEN W G, HAO J D, et al. Estrogen replacement increases spinophilin-immunoreactive spine number in the prefrontal cortex of female rhesus monkeys[J]. Cereb Cortex, 2004, 14(2): 215-223. DOI: 10.1093/cercor/bhg121.
[22]
ZHANG L, TANG W, CHAO F L, et al. Four-month treadmill exercise prevents the decline in spatial learning and memory abilities and the loss of spinophilin-immunoreactive puncta in the hippocampus of APP/PS1 transgenic mice[J]. Neurobiol Dis, 2020, 136: 104723. DOI: 10.1016/j.nbd.2019.104723.
[23]
ZHU L, FAN J H, CHAO F L, et al. Running exercise protects spinophilin-immunoreactive puncta and neurons in the medial prefrontal cortex of APP/PS1 transgenic mice[J]. J Comp Neurol, 2022, 530(6): 858-870. DOI: 10.1002/cne.25252.
[24]
MOROZOVA A, ZORKINA Y, ABRAMOVA O, et al. Neurobiological highlights of cognitive impairment in psychiatric disorders[J]. Int J Mol Sci, 2022, 23(3): 1217. DOI: 10.3390/ijms23031217.
[25]
XIE Y H, ZHOU C N, LIANG X, et al. Anti-Lingo-1 antibody ameliorates spatial memory and synapse loss induced by chronic stress[J]. J Comp Neurol, 2021, 529(7): 1571-1583. DOI: 10.1002/cne.25038.
[26]
GRUBMAN A, CHEW G, OUYANG J F, et al. A single-cell atlas of entorhinal cortex from individuals with Alzheimer's disease reveals cell-type-specific gene expression regulation[J]. Nat Neurosci, 2019, 22(12): 2087-2097. DOI: 10.1038/s41593-019-0539-4.
[27]
LAAT R D, MEABON J S, WILEY J C, et al. LINGO-1 promotes lysosomal degradation of amyloid-β protein precursor[J]. Pathobiol Aging Age Relat Dis, 2015, 5: 25796. DOI: 10.3402/pba.v5.25796.
[28]
LEE C H, YOO K Y, CHOI J H, et al. Neuronal damage is much delayed and microgliosis is more severe in the aged hippocampus induced by transient cerebral ischemia compared to the adult hippocampus[J]. J Neurol Sci, 2010, 294(1/2): 1-6. DOI: 10.1016/j.jns.2010.04.014.
[29]
CHEN X P, REN G Q, LI Y, et al. Level of LncRNA GAS5 and hippocampal volume are associated with the progression of Alzheimer's disease[J]. Clin Interv Aging, 2022, 17: 745-753. DOI: 10.2147/CIA.S363116.
[30]
DAWE R J, BENNETT D A, SCHNEIDER J A, et al. Neuropathologic correlates of hippocampal atrophy in the elderly: a clinical, pathologic, postmortem MRI study[J]. PLoS One, 2011, 6(10): e26286. DOI: 10.1371/journal.pone.0026286.
[31]
YANG C L, REN J C, LI W, et al. Individual-level morphological hippocampal networks in patients with Alzheimer's disease[J]. Brain Cogn, 2021, 151: 105748. DOI: 10.1016/j.bandc.2021.105748.
[32]
YAMASHITA K, KUWASHIRO T, ISHIKAWA K, et al. Right entorhinal cortical thickness is associated with Mini-Mental State Examination scores from multi-country datasets using MRI[J]. Neuroradiology, 2022, 64(2): 279-288. DOI: 10.1007/s00234-021-02767-y.
[33]
CONRAD C D, ORTIZ J B, JUDD J M. Chronic stress and hippocampal dendritic complexity: methodological and functional considerations[J]. Physiol Behav, 2017, 178: 66-81. DOI: 10.1016/j.physbeh.2016.11.017.
[34]
ROY D S, ARONS A, MITCHELL T I, et al. Memory retrieval by activating engram cells in mouse models of early Alzheimer's disease[J]. Nature, 2016, 531(7595): 508-512. DOI: 10.1038/nature17172.
[35]
XING H Y, MENG E Y, XIA Y P, et al. Effect of retinoic acid on expression of LINGO-1 and neural regeneration after cerebral ischemia[J]. J Huazhong Univ Sci Technol[Med Sci ], 2015, 35(1): 54-57. DOI: 10.1007/s11596-015-1388-3.
[36]
WU H F, CEN J S, ZHONG Q, et al. The promotion of functional recovery and nerve regeneration after spinal cord injury by lentiviral vectors encoding Lingo-1 shRNA delivered by Pluronic F-127[J]. Biomaterials, 2013, 34(6): 1686-1700. DOI: 10.1016/j.biomaterials.2012.11.013.
[37]
WILLS Z, MANDEL-BREHM C, MARDINLY A, et al. The nogo receptor family restricts synapse number in the developing hippocampus[J]. Neuron, 2012, 73(3): 466-481. DOI: 10.1016/j.neuron.2011.11.029.
Journal of Army Medical University
Pages 118-127
Cite this article:
WANG S, JIANG L, HE Q, et al. Effects of hippocampal overexpression of LINGO-1 on learning and memory abilities and Spinophilin+ dendritic spines in different hippocampal subregions of mice. Journal of Army Medical University, 2024, 46(2): 118-127. https://doi.org/10.16016/j.2097-0927.202306100
Metrics & Citations  
Article History
Copyright
Return