AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Regular Paper | Open Access

Analytic Formulae for Estimating Motor Proportion of Load Model Under Small Disturbance

Ping Ju1Shiqiu Xia1Yuqing Jin1( )Lu Cao2
School of Electrical and Power Engineering, Hohai University, Nanjing 211100, China
East China Branch of the State Grid Corporation of China, Shanghai 200120, China
Show Author Information

Abstract

In the composite load model (CLM), which is commonly used in China, an equivalent motor and equivalent static load are used to represent all electrical equipment and networks connected to a load bus. Existing research has determined typical values of electrical and mechanical parameters for load models of different load types, which improves the basis for load modeling. However, the motor proportion parameter is not the same for different load buses or at different times; therefore, obtaining the actual motor proportion is key to establishing an accurate load model. In the existing load modeling method, motor proportion is commonly identified along with other parameters under rare large disturbances; therefore, the value of the motor proportion is fixed by the time when a large disturbance occurs. In this paper, formulae are derived to estimate motor proportion under small disturbances, and these formulae allow direct calculation of motor proportion without using any optimization algorithm. The proposed estimation formulae do not rely on any parameters of load model or power system but instead rely only on measurement of the voltage and active power at steady-state points before and after a small disturbance. Because of universality of small disturbances in power systems, estimating time-varying motor proportion under small disturbances will be helpful for solving the time-varying problem of load models. Finally, the proposed motor proportion estimation formulae are validated by simulations, physical experiments, and field experiments.

References

[1]

IEEE, “Load representation for dynamic performance analysis (of power systems),” IEEE Transactions on Power Systems, vol. 8, no. 2, pp. 472–482, May 1993, doi: 10.1109/59.260837.

[2]

W. W. Price, C. W. Taylor, and G. J. Rogers, “Standard load models for power flow and dynamic performance simulation,” IEEE Transactions on Power Systems, vol. 10, no. 3, pp. 1302–1313, Aug. 1995, doi: 10.1109/59.466523.

[3]

Q. Wu, Y. Lin, C. Hong, Y. Su, T. Wen, and Y. Liu, “Transient stability analysis of large-scale power systems: a survey,” CSEE Journal of Power and Energy Systems, vol. 9, no. 4, pp. 1284–1300, Jul. 2023, doi: 10.17775/CSEEJPES.2022.07110.

[4]

A. Arif, Z. Y. Wang, J. H. Wang, B. Mather, H. Bashualdo, and D. B. Zhao, “Load modeling—a review,” IEEE Transactions on Smart Grid, vol. 9, no. 6, pp. 5986–5999, Nov. 2018, doi: 10.1109/TSG.2017.2700436.

[5]

J. V. Milanović, K. Yamashita, S. Martínez Villanueva, S. Ž. Djokić, and L. M. Korunović, “International industry practice on power system load modeling,” IEEE Transactions on Power Systems, vol. 28, no. 3, pp. 3038–3046, Aug. 2013, doi: 10.1109/TPWRS.2012.2231969.

[6]

Q. Chen, P. Ju, K. Q. Shi, Y. Tang, Z. Y. Shao, and W. Y. Yang, “Parameter estimation and comparison of the load models with considering distribution network directly or indirectly,” International Journal of Electrical Power & Energy Systems, vol. 32, no. 9, pp. 965–968, Nov. 2010, doi: 10.1016/j.ijepes.2010.02.009.

[7]
P. Ju and Y. Tang, “Load modeling in China-research, applications & tendencies,” in Proceedings of 2008 3rd International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, 2008, pp. 42–45, doi: 10.1109/DRPT.2008.4523377.
[8]

P. Ju, Y. Q. Jin, Q. Chen, Z. Y. Shao, and C. Mao, “Identifiability and identification of a synthesis load model,” Science China Technological Sciences, vol. 53, no. 2, pp. 461–468, Feb. 2010, doi: 10.1007/s11431–009–0404-x.

[9]
D. Kosterev and A. Meklin, “Load modeling in WECC,” in Proceedings of 2006 IEEE PES Power Systems Conference and Exposition, 2006, pp. 576–581, doi: 10.1109/PSCE.2006.296381.
[10]
D. Kosterev, A. Meklin, J. Undrill, B. Lesieutre, W. Price, D. Chassin, R. Bravo, and S. Yang, “Load modeling in power system studies: WECC progress update,” in Proceedings of 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, 2008, pp. 1–8, doi: 10.1109/PES.2008.4596557.
[11]

W. S. Kao, C. J. Lin, C. T. Huang, Y. T. Chen, and C. Y. Chiou, “Comparison of simulated power system dynamics applying various load models with actual recorded data,” IEEE Transactions on Power Systems, vol. 9, no. 1, pp. 248–254, Feb. 1994, doi: 10.1109/59.317604.

[12]

D. N. Kosterev, C. W. Taylor, and W. A. Mittelstadt, “Model validation for the august 10, 1996 WSCC system outage,” IEEE Transactions on Power Systems, vol. 14, no. 3, pp. 967–979, Aug. 1999, doi: 10.1109/59.780909.

[13]

J. K. Kim, J. Ma, K. Sun, J. Lee, J. Shin, Y. Kim, and K. Hur, “A computationally efficient method for bounding impacts of multiple uncertain parameters in dynamic load models,” IEEE Transactions on Power Systems, vol. 34, no. 2, pp. 897–907, Mar. 2019, doi: 10.1109/TPWRS.2018.2879102.

[14]

L. M. Korunović, J. V. Milanović, S. Z. Djokic, K. Yamashita, S. M. Villanueva, and S. Sterpu, “Recommended parameter values and ranges of most frequently used static load models,” IEEE Transactions on Power Systems, vol. 33, no. 6, pp. 5923–5934, Nov. 2018, doi: 10.1109/TPWRS.2018.2834725.

[15]
L. Zhu, X. R. Li, H. Ouyang, Y. N. Wang, W. J. Liu, and K. Shao, “Research on component-based approach load modeling based on energy management system and load control system,” in Proceedings of IEEE PES Innovative Smart Grid Technologies, 2012, pp. 1–6, doi: 10.1109/ISGT-Asia.2012.6303137.
[16]
A. Gaikwad, P. Markham, and P. Pourbeik, “Implementation of the WECC Composite Load Model for utilities using the component-based modeling approach,” in Proceedings of 2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), 2016, pp. 1–5, doi: 10.1109/TDC.2016.7520081.
[17]
K. E. Wong, M. E. Haque, and M. Davies, “Component-based dynamic load modeling of a paper mill,” in Proceedings of 2012 22nd Australasian Universities Power Engineering Conference (AUPEC), 2012, pp. 1–6.
[18]

B. K. Choi, H. D. Chiang, Y. H. Li, H. Li, Y. T. Chen, D. H. Huang, and M. G. Lauby, “Measurement-based dynamic load models: derivation, comparison, and validation,” IEEE Transactions on Power Systems, vol. 21, no. 3, pp. 1276–1283, Aug. 2006, doi: 10.1109/TPWRS.2006.876700.

[19]

J. Ma, D. Han, R. M. He, Z. Y. Dong, and D. J. Hill, “Reducing identified parameters of measurement-based composite load model,” IEEE Transactions on Power Systems, vol. 23, no. 1, pp. 76–83, Feb. 2008, doi: 10.1109/TPWRS.2007.913206.

[20]

D. Han, J. Ma, R. M. He, and Z. Y. Dong, “A real application of measurement-based load modeling in large-scale power grids and its validation,” IEEE Transactions on Power Systems, vol. 24, no. 4, pp. 1756–1764, Nov. 2009, doi: 10.1109/TPWRS.2009.2030298.

[21]

P. Ju, C. Qin, F. Wu, H. L. Xie, and Y. Ning, “Load modeling for wide area power system,” International Journal of Electrical Power & Energy Systems, vol. 33, no. 4, pp. 909–917, May 2011, doi: 10.1016/j.ijepes.2010.12.030.

[22]

P. Ju, F. Wu, Z. Y. Shao, X. P. Zhang, H. J. Fu, P. F. Zhang, N. Q. He, and J. D. Han, “Composite load models based on field measurements and their applications in dynamic analysis,” IET Generation, Transmission & Distribution, vol. 1, no. 5, pp. 724–730, Sep. 2007, doi: 10.1049/iet-gtd:20060430.

[23]
X. R. Zhang, C. Lu, Y. Wang, Q. T. Ruan, H. B. Ye, and W. H. Wang, “Identifiability analysis of load model by estimating parameters' confidential intervals,” CSEE Journal of Power and Energy Systems, to be published, doi: 10.17775/CSEEJPES.2020.02780.
[24]

V. Vignesh, S. Chakrabarti, and S. C. Srivastava, “Power system load modelling under large and small disturbances using phasor measurement units data,” IET Generation, Transmission & Distribution, vol. 9, no. 12, Sep. 2015, pp. 1316–1323.

[25]
X. C. Zhang, S. Grijalva, and M. J. Reno, “A time-variant load model based on smart meter data mining,” in Proceedings of 2014 IEEE PES General Meeting | Conference & Exposition, 2014, pp. 1–5, doi: 10.1109/PESGM.2014.6939365.
[26]

Z. Y. Guo, Z. J. Wang, and A. Kashani, “Home appliance load modeling from aggregated smart meter data,” IEEE Transactions on Power Systems, vol. 30, no. 1, pp. 254–262, Jan. 2015, doi: 10.1109/TPWRS.2014.2327041.

[27]

Y. Wang, Q. X. Chen, T. Hong, and C. Q. Kang, “Review of smart meter data analytics: applications, methodologies, and challenges,” IEEE Transactions on Smart Grid, vol. 10, no. 3, pp. 3125–3148, May 2019, doi: 10.1109/TSG.2018.2818167.

[28]

S. Makonin, F. Popowich, I. V. Bajić, B. Gill, and L. Bartram, “Exploiting HMM sparsity to perform online real-time nonintrusive load monitoring,” IEEE Transactions on Smart Grid, vol. 7, no. 6, pp. 2575–2585, Nov. 2016, doi: 10.1109/TSG.2015.2494592.

[29]

Y. Zhou, S. Zhang, B. Ran, W. Yang, Y. Wang, and X. Xiao, “Event-based two-stage non-intrusive load monitoring method involving multi-dimensional features,” CSEE Journal of Power and Energy Systems, vol. 9, no. 3, pp. 1119–1128, May 2023, doi: 10.17775/CSEEJPES.2021.09540.

[30]

S. Singh and A. Majumdar, “Deep sparse coding for non-intrusive load monitoring,” IEEE Transactions on Smart Grid, vol. 9, no. 5, pp. 4669–4678, Sep. 2018, doi: 10.1109/TSG.2017.2666220.

[31]

R. Bonfigli, E. Principi, M. Fagiani, M. Severini, S. Squartini, and F. Piazza, “Non-intrusive load monitoring by using active and reactive power in additive Factorial Hidden Markov Models,” Applied Energy, vol. 208, pp. 1590–1607, Aug. 2017, doi: 10.1016/j.apenergy.2017.08.203.

[32]

P. Kundur, Power System Stability and Control. New York: McGraw-Hill, 1994.

[33]
“Bibliography on load models for power flow and dynamic performance simulation,” IEEE Transactions on Power Systems, vol. 10, no. 1, pp. 523–538, Feb. 1995, doi: 10.1109/59.373979.
[34]

Z. X. Ma, Z. Y. Wang, Y. S. Wang, R. S. Diao, and D. Shi, “Mathematical representation of WECC composite load model,” Journal of Modern Power Systems and Clean Energy, vol. 8, no. 5, pp. 1015–1023, Sep. 2020, doi: 10.35833/MPCE.2019.000296.

[35]
J. Milanović, J. Matevosiyan, A. Gaikwad, A. Borghetti, S. Ž. Djokić, Z. Y. Dong, A. Halley, L. M. Korunović, S. M. Villanueva, J. Ma, P. Pourbeik, F. Resende, S. Sterpu, F. Villella, K. Yamashita, O. Auer, K. Karoui, D. Kosterev, S. K. Leung, D. M. S. M. Zali, A. Collin, Y. Z. Xu, H. Abildgaard, J. Conto, M. Piekutowski, W. Sattinger, T. Inoue, W. Hung, “Modelling and aggregation of loads in flexible power networks,” CIGRE, Paris, France, Tech. Rep. 566, Feb. 2014.
CSEE Journal of Power and Energy Systems
Pages 1599-1607
Cite this article:
Ju P, Xia S, Jin Y, et al. Analytic Formulae for Estimating Motor Proportion of Load Model Under Small Disturbance. CSEE Journal of Power and Energy Systems, 2024, 10(4): 1599-1607. https://doi.org/10.17775/CSEEJPES.2021.07660

106

Views

0

Downloads

0

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 13 October 2021
Revised: 27 February 2022
Accepted: 24 March 2022
Published: 25 January 2023
© 2021 CSEE.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return