Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Integration of distributed energy storage (DES) is beneficial for mitigating voltage fluctuations in highly distributed generator (DG)-penetrated active distribution networks (ADNs). Based on an accurate physical model of ADN, conventional model-based methods can realize optimal control of DES. However, absence of network parameters and complex operational states of ADN poses challenges to model-based methods. This paper proposes a data-driven predictive voltage control method for DES. First, considering time-series constraints, a data-driven predictive control model is formulated for DES by using measurement data. Then, a data-driven coordination method is proposed for DES and DGs in each area. Through boundary information interaction, voltage mitigation effects can be improved by inter-area coordination control. Finally, control performance is tested on a modified IEEE 33-node test case. Case studies demonstrate that by fully utilizing multi-source data, the proposed predictive control method can effectively regulate DES and DGs to mitigate voltage violations.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).