AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Regular Paper | Open Access

Effect of Frequency on Degradation in BOPP Films Under Repetitively Pulsed Voltage

Chuansheng Zhang1,2Yu Feng1Fei Kong1Bangdou Huang1Cheng Zhang1,2Tao Shao1,2 ( )
Beijing International S&T Cooperation Base for Plasma Science and Energy Conversion, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
Show Author Information

Abstract

Operating conditions of film capacitors are complex, and the problem of film insulation failure caused by repetitively pulsed voltage is becoming ever serious. Degradation of the film under repetitively pulsed voltage cannot be accurately evaluated by the average breakdown electric field. In this paper, the effects of pulsed electric field and pulse repetition frequency on the breakdown in biaxially oriented polypropylene (BOPP) films are investigated. Three phases of BOPP degradation are proposed based on the voltage amplitude, i.e., maintenance (M), decline (D), and near-zero (N). Evolution of the BOPP film from degradation to breakdown at different frequencies is presented. Meanwhile, transition of discharge mode and elemental composition of the film are analyzed. Experimental results show continuous heat generation under repetitive microsecond pulses is the dominant factor for degradation of BOPP film. The number of applied pulses and the repetitive stressing time decrease exponentially with increase of frequency. This research can be contributed to the safe and reliable operation of capacitors.

References

[1]

W. M. Ma, J. Y. Lu, and Y. Q. Liu, “Research progress of electromagnetic launch technology,” IEEE Transactions on Plasma Science, vol. 47, no. 5, pp. 2197–2205, May 2019, doi: 10.1109/TPS.2019.2902416.

[2]

O. Soldatenkov, T. Samoilova, A. Ivanov, A. Kozyrev, D. Ginley, and T. Kaydanova, “Nonlinear properties of thin ferroelectric film-based capacitors at elevated microwave power,” Applied Physics Letters, vol. 89, no. 23, pp. 232901, Dec. 2006, doi: 10.1063/1.2399336.

[3]

L. Zhang, Y. T. Zou, J. C. Yu, J. C. Qin, V. Vittal, G. G. Karady, D. Shi, and Z. W. Wang, “Modeling, control, and protection of modular multilevel converter-based multi-terminal HVDC systems: A review,” CSEE Journal of Power and Energy Systems, vol. 3, no. 4, pp. 340–352, Dec. 2017, doi: 10.17775/CSEEJPES.2017.00440.

[4]

D. Q. Tan, “Review of polymer-based nanodielectric exploration and film scale-up for advanced capacitors,” Advanced Functional Materials, vol. 30, no. 18, pp. 1808567, May 2020, doi: 10.1002/adfm.201808567.

[5]

M. Streibl, R. Karmazin, and R. Moos, “Materials and applications of polymer films for power capacitors with special respect to nanocomposites,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 25, no. 6, pp. 2429–2442, Dec. 2018, doi: 10.1109/TDEI.2018.007392.

[6]

X. B. Zhao, J. P. Ding, J. Z. Xu, and J. S. Yuan, “Hybrid MMC with low voltage operations and DC fault ride-through capabilities based on auxiliary full-bridge converter,” CSEE Journal of Power and Energy Systems, vol. 8, no. 3, pp. 864–871, May 2022, doi: 10.17775/CSEEJPES.2019.02470.

[7]
T. R. Jow, F. W. Macdougall, J. B. Ennis, X. H. Yang, M. A. Schneider, C. J. Scozzie, J. D. White, J. R. Macdonald, M. C. Schalnat, R. A. Cooper, and S. P. S. Yen, “Pulsed power capacitor development and outlook,” in 2015 IEEE Pulsed Power Conference (PPC), Austin, TX, USA, 2015, pp. 1–7, doi: 10.1109/PPC.2015.7297027.
[8]

P. T. Sun, W. X. Sima, X. W. Jiang, D. F. Zhang, J. H. He, and L. Ye, “Review of accumulative failure of winding insulation subjected to repetitive impulse voltages,” High Voltage, vol. 4, no. 1, pp. 1–11, Mar. 2019, doi: 10.1049/hve.2018.5051.

[9]

R. Gallo and F. Severini, “Course of the changes in thick and thin isotactic polypropylene samples subjected to natural aging,” Polymer Degradation and Stability, vol. 98, no. 6, pp. 1144–1149, Jun. 2013, doi: 10.1016/j.polymdegradstab.2013.03.017.

[10]

D. Bertin, M. Leblanc, S. R. A. Marque, and D. Siri, “Polypropylene degradation: Theoretical and experimental investigations,” Polymer Degradation and Stability, vol. 95, no. 5, pp. 782–791, May 2010, doi: 10.1016/j.polymdegradstab.2010.02.006.

[11]

A. Yano, N. Akai, H. Ishii, C. Satoh, T. Hironiwa, K. R. Millington, and M. Nakata, “Thermal oxidative degradation of additive-free polypropylene pellets investigated by multichannel Fourier-transform chemiluminescence spectroscopy,” Polymer Degradation and Stability, vol. 98, no. 12, pp. 2680–2686, Dec. 2013, doi: 10.1016/j.polymdegradstab.2013.09.031.

[12]

Z. Y. Ran, B. X. Du, M. Xiao, and J. Li, “Crystallization morphology-dependent breakdown strength of polypropylene films for converter valve capacitor,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 28, no. 3, pp. 964–971, Jun. 2021, doi: 10.1109/TDEI.2021.009387.

[13]

T. Shao, G. S. Sun, P. Yan, J. Wang, W. Q. Yuan, Y. H. Sun, and S. C. Zhang, “An experimental investigation of repetitive nanosecond-pulse breakdown in air,” Journal of Physics D: Applied Physics, vol. 39, no. 10, pp. 2192–2197, May 2006, doi: 10.1088/0022-3727/39/10/030.

[14]

Y. K. Zhao, G. Q. Zhang, D. Han, K. Li, Z. J. Qiu, and F. Y. Yang, “Experimental study on insulation properties of epoxy casting resins using high-frequency square waveforms,” CSEE Journal of Power and Energy Systems, vol. 7, no. 6, pp. 1227–1237, Nov. 2021, doi: 10.17775/CSEEJPES.2019.02110.

[15]
T. H. Martin, M. Williams, and M. Kristiansen, “J. C. Martin on pulsed power,” in Advances in Pulsed Power Technology, vol. 3, A. H. Guenther and M. Kristiansen, Eds. New York, NY, USA: Springer, 1996, pp. 227–245, doi: 10.1007/978-1-4899-1561-0.
[16]

L. Zhao, J. C. Su, X. B. Zhang, Y. F. Pan, L. M. Wang, X. Sun, and R. Li, “Research on reliability and lifetime of solid insulation structures in pulsed power systems,” IEEE Transactions on Plasma Science, vol. 41, no. 1, pp. 165–172, Jan. 2013, doi: 10.1109/TPS.2012.2203152.

[17]

L. Zhao and C. L. Liu, “A multi-physic field lifetime evaluation formula for insulators under pulsed field and mechanical stress,” IEEE Transactions on Plasma Science, vol. 49, no. 12, pp. 3913–3918, Dec. 2021, doi: 10.1109/TPS.2021.3125787.

[18]

V. A. Zakrevskii, V. A. Pakhotin, and N. T. Sudar’, “Pulsed electric strength of polypropylene film,” Technical Physics, vol. 62, no. 2, pp. 276–281, Feb. 2017, doi: 10.1134/S1063784217020281.

[19]
W. J. Yin, F. F. Tao, J. W. Zhao, G. Chen, and D. Schweickart, “Failure mechanisms of polyimide and perfluoroalkoxy films under high frequency pulses,” in 2010 IEEE International Power Modulator and High Voltage Conference, Atlanta, GA, USA, 2010, pp. 45–50, doi: 10.1109/IPMHVC.2010.5958292.
[20]
Y. N. Vershinin and S. V. Barakhvostov. (2022, Jul. 31). Electron processes in the pulse breakdown of solid dielectrics. Ekaterinburg, Russia: Institute of Electrophysics. [Online]. Available: http://physics.gov.az/lab29/pdf_tpe_2006/eem/c73.pdf
[21]

A. A. Radzig and B. M. Smirnov, Reference Data on Atoms, Molecules and Ions, Berlin, Heidelberg, Germany: Springer, 1985.

[22]

Z. L. Zhao, D. Z. Yang, W. C. Wang, H. Yuan, L. Zhang, S. Wang, Z. J. Liu, and S. Zhang, “Spectroscopic and electrical characters of SBD plasma excited by bipolar nanosecond pulse in atmospheric air,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 161, pp. 186–194, May 2016, doi: 10.1016/j.saa.2016.02.006.

[23]
A. Kramida, Y. Ralchenko, and J. Reader. (2022, Oct.). Atomic spectra database (version 5.9). Gaithersburg, MD, USA: National Institute of Standards and Technology. [Online]. Available: https://physics.nist.gov/asd
[24]

D. Z. Yang, Y. Yang, S. Z. Li, D. X. Nie, S. Zhang, and W. C. Wang, “A homogeneous dielectric barrier discharge plasma excited by a bipolar nanosecond pulse in nitrogen and air,” Plasma Sources Science and Technology, vol. 21, no. 3, pp. 035004, May 2012, doi: 10.1088/0963-0252/21/3/035004.

[25]

C. O. Laux, T. G. Spence, C. H. Kruger, and R. N. Zare, “Optical diagnostics of atmospheric pressure air plasmas,” Plasma Sources Science and Technology, vol. 12, no. 2, pp. 125–138, Feb. 2003, doi: 10.1088/0963-0252/12/2/301.

[26]

L. Yu, L. Pierrot, C. O. Laux, and C. H. Kruger, “Effects of vibrational nonequilibrium on the chemistry of two-temperature nitrogen plasmas,” Plasma Chemistry and Plasma Processing, vol. 21, no. 4, pp. 483–503, Dec. 2001, doi: 10.1023/a:1012073800284.

[27]

P. J. Bruggeman, N. Sadeghi, D. C. Schram, and V. Linss, “Gas temperature determination from rotational lines in non-equilibrium plasmas: A review,” Plasma Sources Science and Technology, vol. 23, no. 2, pp. 023001, Apr. 2014, doi: 10.1088/0963-0252/23/2/023001.

[28]

C. S. Zhang, C. Y. Ren, S. Zhang, H. W. Xue, Y. X. Zhao, Z. H. Zhou, J. H. Chen, Z. Z. Luo, W. J. Sang, L. W. Jing, Y. P. Teng, Q. Q. Qiu, C. Zhang, M. Q. Gong, G. M. Zhang, T. Shao, and L. Y. Xiao, “Liquefied natural gas for superconducting energy pipelines: A feasibility study on electrical insulation,” Energy & Fuels, vol. 35, no. 17, pp. 13930–13936, Aug. 2021, doi: 10.1021/acs.energyfuels.1c01550.

[29]

C. S. Zhang, C. Y. Ren, Z. H. Zhou, Y. P. Teng, Y. X. Zhao, X. G. Chen, X. C. Hu, Q. Q. Qiu, C. Zhang, and T. Shao, “Breakdown and flashover properties of cryogenic liquid fuel for superconducting energy pipeline,” IEEE Transactions on Applied Superconductivity, vol. 32, no. 3, pp. 7700307, Apr. 2022, doi: 10.1109/TASC.2022.3153950.

[30]

P. Liu, Z. L. Xie, X. Pang, T. L. Xu, S. Y. Zhang, P. H. F. Morshuis, H. Li, and Z. R. Peng, “Space charge behavior in epoxy-based dielectrics: Progress and perspective,” Advanced Electronic Materials, vol. 8, no. 10, pp. 2200259, Oct. 2022, doi: 10.1002/aelm.202200259.

[31]

Y. Zhou, Q. Li, B. Dang, Y. Yang, T. Shao, H. Li, J. Hu, R. Zeng, J. L. He, and Q. Wang, “A scalable, high-throughput, and environmentally benign approach to polymer dielectrics exhibiting significantly improved capacitive performance at high temperatures,” Advanced Materials, vol. 30, no. 49, pp. 1805672, Dec. 2018, doi: 10.1002/adma.201805672.

[32]

T. A. Nguyen, S. Ichise, K. Kinashi, W. Sakai, N. Tsutsumi, and S. Okubayashi, “Spin trapping analysis of the thermal degradation of polypropylene,” Polymer Degradation and Stability, vol. 197, pp. 109871, Mar. 2022, doi: 10.1016/j.polymdegradstab.2022.109871.

[33]

C. Zhang, Y. Wang, Y. Zhou, Q. Xie, R. X. Wang, P. Yan, and T. Shao, “Electrical characteristics in surface dielectric barrier discharge driven by microsecond pulses,” IEEE Transactions on Plasma Science, vol. 44, no. 11, pp. 2772–2778, Nov. 2016, doi: 10.1109/TPS.2016.2591555.

[34]

S. Tantipattarakul, A. S. Vaughan, and T. Andritsch, “Ageing behaviour of a polyethylene blend: Influence of chemical defects and morphology on charge transport,” High Voltage, vol. 5, no. 3, pp. 270–279, Jun. 2020, doi: 10.1049/hve.2019.0402.

[35]

C. S. Zhang, C. Y. Ren, B. Z. Zhou, B. D. Huang, J. C. Yang, S. K. Li, C. X. Man, P. C. He, C. Zhang, Y. P. Teng, and T. Shao, “Linking trap to G10 surface flashover in liquid nitrogen under DC voltage,” Cryogenics, vol. 122, pp. 103423, Mar. 2022, doi: 10.1016/j.cryogenics.2022.103423.

[36]

S. L. Walden, H. Frisch, B. V. Unterreiner, A. N. Unterreiner, and C. Barner-Kowollik, “Revealing the wavelength dependence of photochemical reactions: Cutting-edge research in the teaching lab,” Journal of Chemical Education, vol. 97, no. 2, pp. 543–548, Feb. 2020, doi: 10.1021/acs.jchemed.9b00752.

[37]

G. S. James, Lange’s Handbook of Chemistry, 16th ed., New York, NY, USA: McGraw-Hill Companies, Inc., 2005.

CSEE Journal of Power and Energy Systems
Pages 1280-1290
Cite this article:
Zhang C, Feng Y, Kong F, et al. Effect of Frequency on Degradation in BOPP Films Under Repetitively Pulsed Voltage. CSEE Journal of Power and Energy Systems, 2024, 10(3): 1280-1290. https://doi.org/10.17775/CSEEJPES.2022.07250

221

Views

3

Downloads

3

Crossref

1

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 24 October 2022
Revised: 05 December 2022
Accepted: 29 December 2022
Published: 12 May 2023
© 2022 CSEE.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return