AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Regular Paper | Open Access

Advanced Sensors Towards Ubiquitous Power Internet of Things

Jinliang He( )Zhifei HanJun Hu
State Key Lab of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
Show Author Information

Abstract

The ubiquitous power Internet of Things (UPIoT) uses modern information technology and advanced communication technologies to realize interconnection and human-computer interaction in all aspects of the power system. UPIoT has the characteristics of comprehensive state perception and efficient information processing, and has broad application prospects for transformation of the energy industry. The fundamental facility of the UPIoT is the sensor-based information network. By using advanced sensors, Wireless Sensor Networks (WSNs), and advanced data processing technologies, Internet of Things can be realized in the power system. In this paper, a framework of WSNs based on advanced sensors towards UPIoT is proposed. In addition, the most advanced sensors for UPIoT purposes are reviewed, along with an explanation of how the sensor data obtained in UPIoT is utilized in various scenarios.

References

[1]

A. Q. Huang, M. L. Crow, G. T. Heydt, J. P. Zheng, and S. J. Dale, “The future renewable electric energy delivery and management (FREEDM) system: the energy internet,” Proceedings of the IEEE, vol. 99, no. 1, pp. 133–148, Jan. 2011.

[2]

S. Y. Chen, S. F. Song, L. X. Li, and J. Shen, “Survey on smart grid technology,” Power System Technology, vol. 33, no. 8, pp. 1–7, 2009.

[3]

H. Farhangi, “The path of the smart grid,” IEEE Power and Energy Magazine, vol. 8, no. 1, pp. 18–28, Jan./Feb. 2010.

[4]

X. Fang, S. Misra, G. L. Xue, and D. J. Yang, “Smart grid — the new and improved power grid: a survey,” IEEE Communications Surveys & Tutorials, vol. 14, no. 4, pp. 944–980, 2011.

[5]

Q. Y. Chen, “Research on implementation strategy of ubiquitous power internet of things,” Power Generation Technology, vol. 40, no. 2, pp. 99–106, Apr. 2019.

[6]

Z. F. Han, F. Xue, J. Hu, and J. L. He, “Micro electric field sensors: principles and applications,” IEEE Industrial Electronics Magazine, vol. 15, no. 4, pp. 35–42, Dec. 2021.

[7]

Y. Ouyang, J. L. He, J. Hu, G. Zhao, Z. X. Wang, and S. X. Wang, “Contactless current sensors based on magnetic tunnel junction for smart grid applications,” IEEE Transactions on Magnetics, vol. 51, no. 11, pp. 4004904, Nov. 2015.

[8]

V. C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, and G. P. Hancke, “Smart grid technologies: communication technologies and standards,” IEEE Transactions on Industrial Informatics, vol. 7, no. 4, pp. 529–539, Nov. 2011.

[9]

J. C. Han, J. Hu, Y. Yang, Z. X. Wang, S. X. Wang, and J. L. He, “A nonintrusive power supply design for self-powered sensor networks in the smart grid by scavenging energy from AC power line,” IEEE Transactions on Industrial Electronics, vol. 62, no. 7, pp. 4398–4407, Jul. 2015.

[10]

A. Ukil, H. Braendle, and P. Krippner, “Distributed temperature sensing: review of technology and applications,” IEEE Sensors Journal, vol. 12, no. 5, pp. 885–892, May 2012.

[11]

A. Chatterjee, P. Bhattacharjee, N. K. Roy, and P. Kumbhakar, “Usage of nanotechnology based gas sensor for health assessment and maintenance of transformers by DGA method,” International Journal of Electrical Power & Energy Systems, vol. 45, no. 1, pp. 137–141, Feb. 2013.

[12]

K. Schroeder, W. Ecke, J. Apitz, E. Lembke, and G. Lenschow, “A fibre Bragg grating sensor system monitors operational load in a wind turbine rotor blade,” Measurement Science and Technology, vol. 17, no. 5, pp. 1167–1172, Apr. 2006.

[13]
C. C., Xiao, L. Y. Zhao, T. Asada, W. G. Odendaal, and J. D. van Wyk, “An overview of integratable current sensor technologies, ” in Proceedings of the 38th IAS Annual Meeting on Conference Record of the Industry Applications Conference, 2003, pp. 1251–1258.
[14]

P. Ripka, “Electric current sensors: a review,” Measurement Science and Technology, vol. 21, no. 11, pp. 112001, Sep. 2010.

[15]

S. Ziegler, R. C. Woodward, H. H. C. Iu, and L. J. Borle, “Current sensing techniques: a review,” IEEE Sensors Journal, vol. 9, no. 4, pp. 354–376, Apr. 2009.

[16]

B. Voljc, M. Lindic, and R. Lapuh, “Direct measurement of AC current by measuring the voltage drop on the coaxial current shunt,” IEEE Transactions on Instrumentation and Measurement, vol. 58, no. 4, pp. 863–867, Apr. 2009.

[17]

P. S. Filipski and M. Boecker, “AC-DC current shunts and system for extended current and frequency ranges,” IEEE Transactions on Instrumentation and Measurement, vol. 55, no. 4, pp. 1222–1227, Aug. 2006.

[18]

K. Lind, T. Sòrsdal, and H. Slinde, “ Design, modeling, and verification of high-performance AC-DC current shunts from inexpensive components,” IEEE Transactions on Instrumentation and Measurement, vol. 57, no. 1, pp. 176–181, Jan. 2008.

[19]

N. Locci and C. Muscas, “A digital compensation method for improving current transformer accuracy,” IEEE Transactions on Power Delivery, vol. 15, no. 4, pp. 1104–1109, Oct. 2000.

[20]

Q. Chen, H. B. Li, M. M. Zhang, and Y. B. Liu, “Design and characteristics of two Rogowski coils based on printed circuit board,” IEEE Transactions on Instrumentation and Measurement, vol. 55, no. 3, pp. 939–943, Jun. 2006.

[21]

W. Stygar and G. Gerdin, “High frequency rogowski coil response characteristics,” IEEE Transactions on Plasma Science, vol. 10, no. 1, pp. 40–44, Mar. 1982.

[22]

D. G. Pellinen, M. S. Di Capua, S. E. Sampayan, H. Gerbracht, and M. Wang, “Rogowski coil for measuring fast, high-level pulsed currents,” Review of Scientific Instruments, vol. 51, no. 11, pp. 1535–1540, Nov. 1980.

[23]

J. E. Lenz, “A review of magnetic sensors,” Proceedings of the IEEE, vol. 78, no. 6, pp. 973–989, Jun. 1990.

[24]

J. Lenz and S. Edelstein, “Magnetic sensors and their applications,” IEEE Sensors Journal, vol. 6, no. 3, pp. 631–649, Jun. 2006.

[25]

A. Roux, O. Le contel, C. Coillot, A. Bouabdellah, B. de la Porte, D. Alison, S. Ruocco, and M. C. Vassal, “The search coil magnetometer for THEMIS,” Space Science Reviews, vol. 141, no. 1–4, pp. 265–275, Nov. 2008.

[26]

H. C. Séran and P. Fergeau, “An optimized low-frequency three-axis search coil magnetometer for space research,” Review of Scientific Instruments, vol. 76, no. 4, pp. 044502, Apr. 2005.

[27]

F. Primdahl, “The fluxgate magnetometer,” Journal of Physics E: Scientific Instruments, vol. 12, no. 4, pp. 241–253, Apr. 1979.

[28]

P. Ripka, “Advances in fluxgate sensors,” Sensors and Actuators A: Physical, vol. 106, no. 1–3, pp. 8–14, Sep. 2003.

[29]

M. H. Acuna and C. J. Pellerin, “A miniature two-axis fluxgate magnetometer,” IEEE Transactions on Geoscience Electronics, vol. 7, no. 4, pp. 252–260, Oct. 1969.

[30]

L. Sileo, M. T. Todaro, V. Tasco, M. De Vittorio, and A. Passaseo, “Fully integrated three-axis Hall magnetic sensor based on micromachined structures,” Microelectronic Engineering, vol. 87, no. 5–8, pp. 1217–1219, May/Aug. 2010.

[31]

P. Leroy, C. Coillot, V. Mosser, A. Roux, and G. Chanteur, “An ac/dc magnetometer for space missions: improvement of a Hall sensor by the magnetic flux concentration of the magnetic core of a searchcoil,” Sensors and Actuators A: Physical, vol. 142, no. 2, pp. 503–510, Apr. 2008.

[32]

Y. Ouyang, J. Hu, J. L. He, G. Zhao, F. Xue, Z. X. Wang, S. X. Wang, Z. Y. Yuan, and Z. J. Ding, “Modeling the frequency dependence of packaged linear magnetoresisitive sensors based on MTJ,” IEEE Transactions on Magnetics, vol. 50, no. 11, pp. 4006404, Nov. 2014.

[33]

Y. Ouyang, J. L. He, J. Hu, G. Zhao, Z. X. Wang, and S. X. Wang, “Prediction and optimization of linearity of MTJ magnetic sensors based on single-domain model,” IEEE Transactions on Magnetics, vol. 51, no. 11, pp. 4004204, Nov. 2015.

[34]

D. A. Thompson, L. Romankiw, and A. Mayadas, “Thin film magnetoresistors in memory, storage, and related applications,” IEEE Transactions on Magnetics, vol. 11, no. 4, pp. 1039–1050, Jul. 1975.

[35]

R. Schad, C. D. Potter, P. Beliën, G. Verbanck, V. V. Moshchalkov, and Y. Bruynseraede, “Giant magnetoresistance in Fe/Cr superlattices with very thin Fe layers,” Applied Physics Letters, vol. 64, no. 25, pp. 3500–3502, Jun. 1994.

[36]

M. Löhndorf, T. Duenas, M. Tewes, E. Quandt, M. Rührig, and J. Wecker, “Highly sensitive strain sensors based on magnetic tunneling junctions,” Applied Physics Letters, vol. 81, no. 2, pp. 313–315, Jul. 2002.

[37]

W. P. Jr. Pratt, S. F. Lee, J. M. Slaughter, R. Loloee, P. A. Schroeder, and J. Bas, “Perpendicular giant magnetoresistances of Ag/Co multilayers,” Physical Review Letters, vol. 66, no. 23, pp. 3060–3063, Jun. 1991.

[38]

W. J. Tabor and F. S. Chen, “Electromagnetic propagation through materials possessing both faraday rotation and birefringence: experiments with ytterbium orthoferrite,” Journal of Applied Physics, vol. 40, no. 7, pp. 2760–2765, Jun. 1969.

[39]

D. Budker, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and M. Zolotorev, “Sensitive magnetometry based on nonlinear magneto-optical rotation,” Physical Review A, vol. 62, no. 4, pp. 043403, Sep. 2000.

[40]

D. M. Dagenais, F. Bucholtz, K. P. Koo, and A. Dandridge, “Detection of low-frequency magnetic signals in a magnetostrictive fiber-optic sensor with suppressed residual signal,” Journal of Lightwave Technology, vol. 7, no. 6, pp. 881–887, Jun. 1989.

[41]
F. Bucholtz, D. M. Dagenais, K. P. Koo, and S. T. Vohra, “Recent developments in fiber optic magnetostrictive sensors, ” in Proceedings of SPIE 1367, Fiber Optic and Laser Sensors VIII, 1991.
[42]

E. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance absorption by nuclear magnetic moments in a solid,” Physical Review, vol. 69, no. 1–2, pp. 37–38, Jan. 1946.

[43]

A. Dutta, and C. N. Archie, “High field nuclear magnetometer,” Review of Scientific Instruments, vol. 58, no. 4, pp. 628–631, Apr. 1987.

[44]

J. Magnusson, C. Djurberg, P. Granberg, and P. Nordblad, “A low field superconducting quantum interference device magnetometer for dynamic measurements,” Review of Scientific Instruments, vol. 68, no. 10, pp. 3761–3765, Oct. 1997.

[45]

R. H. Koch, J. Z. Sun, V. Foglietti, and W. J. Gallagher, “Flux dam, a method to reduce extra low frequency noise when a superconducting magnetometer is exposed to a magnetic field,” Applied Physics Letters, vol. 67, no. 5, pp. 709–711, Jul. 1995.

[46]

Y. Ouyang, J. L. He, J. Hu, and S. X. Wang, “A current sensor based on the giant magnetoresistance effect: design and potential smart grid applications,” Sensors, vol. 12, no. 11, pp. 15520–15541, Nov. 2012.

[47]

G. Zhao, J. Hu, Y. Ouyang, J. L. He, S. X. Wang, and Z. Y. Yuan, “Mobile ions generated by external direct current electric field influence direct current measurement of giant magnetoresistance current sensors,” Journal of Applied Physics, vol. 117, no. 17, pp. 17A307, May 2015.

[48]

Y. Ouyang, Z. X. Wang, G. Zhao, J. Hu, S. J. Ji, J. L. He, and S. X. Wang, “Current sensors based on GMR effect for smart grid applications,” Sensors and Actuators A: Physical, vol. 294, pp. 8–16, Aug. 2019.

[49]

G. Zhao, J. Hu, Y. Ouyang, W. Z. Chang, Z. X. Wang, S. X. Wang, J. L. He, and J. G. Bi, “Novel method for magnetic field vector measurement based on dual-axial tunneling magnetoresistive sensors,” IEEE Transactions on Magnetics, vol. 53, no. 8, pp. 4400306, Aug. 2017.

[50]

G. Zhao, J. Hu, S. Zhao, Z. X. Wang, S. X. Shan, Wang, and J. L. He, “Current reconstruction of bundle conductors based on tunneling magnetoresistive sensors,” IEEE Transactions on Magnetics, vol. 53, no. 11, pp. 4004005, Nov. 2017.

[51]

C. Daniel Oancea and C. Dinu, “LEM transducers interface for voltage and current monitoring,” 2015 9th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, 2015, pp. 949–952

[52]

P. Skeath, C. H. Bulmer, S. C. Hiser, and W. K. Burns, “Novel electrostatic mechanism in the thermal instability of z-cut LiNbO3 interferometers,” Applied Physics Letters, vol. 49, no. 19, pp. 1221–1223, Nov. 1986.

[53]

C. H. Bulmer, W. K. Burns, and S. C. Hiser, “Pyroelectric effects in LiNbO3 channel-waveguide devices,” Applied Physics Letters, vol. 48, no. 16, pp. 1036–1038, Apr. 1986.

[54]

M. M. Howerton, C. H. Bulmer, and W. K. Burns, “Effect of intrinsic phase mismatch on linear modulator performance of the 1*2 directional coupler and Mach-Zehnder interferometer,” Journal of Lightwave Technology, vol. 8, no. 8, pp. 1177–1186, Aug. 1990.

[55]

C. H. Bulmer, W. K. Burn, and A. S. Greenblatt, “Phase tuning by laser ablation of LiNbO3 interferometric modulators to optimum linearity,” IEEE Photonics Technology Letters, vol. 3, no. 6, pp. 510–512, Jun. 1991.

[56]

A. S. Greenblatt, C. H. Bulmer, R. P. Moeller, and W. K. Burns, “Thermal stability of bias point of packaged linear modulators in lithium niobate,” Journal of Lightwave Technology, vol. 13, no. 12, pp. 2314–2319, Dec. 1995.

[57]

K. Tajima, R. Kobayashi, N. Kuwabara, and M. Tokuda, “Frequency bandwidth improvement of electric field sensor using optical modulator by resistively loaded element,” Electrical Engineering in Japan, vol. 123, no. 4, pp. 25–33, Jun. 1998.

[58]

R. Kobayashi, K. Tajima, N. Kuwabara, and M. Tokuda, “Improvement of frequency characteristics of electric field sensor using Mach-Zehnder interferometer,” Electronics and Communications in Japan (Part Ⅰ: Communications), vol. 83, no. 11, pp. 76–84, Nov. 2000.

[59]

K. Tajima, R. Kobayashi, N. Kuwabara, and M. Tokuda, “Development of optical isotropic E-field sensor operating more than 10 GHz using Mach-Zehnder interferometer,” IEICE Transactions on Electronics, vol. E85-C, no. 4, pp. 961–968, Apr. 2002.

[60]

T. Meier, K. Kostrzcewa, B. Schüppert, and K. Petermann, “Electro-optical E-field sensor with optimised electrode structure,” Electronics Letters, vol. 28, no. 14, pp. 1327–1329, Jul. 1992.

[61]

T. Meier, C. Kostrzewa, K. Petermann, and B. Schuppert, “Integrated optical E-field probes with segmented modulator electrodes,” Journal of Lightwave Technology, vol. 12, no. 8, pp. 1497–1503, Aug. 1994.

[62]

M. Schwerdt, J. Berger, B. Schuppert, and K. Petermann, “Integrated optical E-field sensors with a balanced detection scheme,” IEEE Transactions on Electromagnetic Compatibility, vol. 39, no. 4, pp. 386–390, Nov. 1997.

[63]

J. Berger, D. Pouhè, G. Mönich, H. Fähling, P. Wust, and K. Petermann, “Calibration cell for E-field sensors in water environment,” Electronics Letters, vol. 35, no. 16, pp. 1317–1318, Aug. 1999.

[64]

R. Zeng, B. Wang, Z. Q. Yu, and W. Y. Chen, “Design and application of an integrated electro-optic sensor for intensive electric field measurement,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 18, no. 1, pp. 312–319, Feb. 2011.

[65]

R. Zeng, J. J. Yu, B. Wang, B. Niu, and Y. Hua, “Study of an integrated optical sensor with mono-shielding electrode for intense transient E-field measurement,” Measurement, vol. 50, pp. 356–362, Apr. 2014.

[66]

M. M. Howerton, C. H. Bulmer, and W. K. Burns, “Linear 1 × 2 directional coupler for electromagnetic field detection,” Applied Physics Letters, vol. 55, no. 22, pp. 1850–1852, May 1988.

[67]

R. Zeng, B. Wang, Z. Q. Yu, B. Niu, and Y. Hua, “Integrated optical E-field sensor based on balanced Mach–Zehnder interferometer,” Optical Engineering, vol. 50, no. 11, pp. 114404, Nov. 2011.

[68]
N. A. F. Jaeger, “Integrated optics pockels cell voltage sensor, ” U.S. Patent 5029273, Jul. 2, 1991.
[69]

T. Takahashi, K. Hidaka, and T. Kouno, “New optical-waveguide pockels sensor for measuring electric fields,” Japanese Journal of Applied Physics, vol. 35, no. 2R, pp. 767–771, Feb. 1996.

[70]

T. Takahashi, “Electric field measurement just beneath a surface discharge by optical-waveguide pockels sensors,” Electrical Engineering in Japan, vol. 145, no. 2, pp. 28–34, Nov. 2003.

[71]

R. Zeng, B. Wang, B. Niu, and Z. Q. Yu, “Development and application of integrated optical sensors for intense E-field measurement,” Sensors, vol. 12, no. 8, pp. 11406–11434, Aug. 2012.

[72]

F. Xue, J. Hu, Y. Guo, G. W. Han, Y. Ouyang, S. X. Wang, and J. L. He, “Piezoelectric-piezoresistive coupling MEMS sensors for measurement of electric fields of broad bandwidth and large dynamic range,” IEEE Transactions on Industrial Electronics, vol. 67, no. 1, pp. 551–559, Jan. 2020.

[73]

F. Xue, J. Hu, S. X. Wang, and J. L. He, “Electric field sensor based on piezoelectric bending effect for wide range measurement,” IEEE Transactions on Industrial Electronics, vol. 62, no. 9, pp. 5730–5737, Sep. 2015.

[74]

Z. F. Han, F. Xue, G. Z. Yang, Z. Q. Yu, J. Hu, and J. L. He, “Micro-cantilever capacitive sensor for high-resolution measurement of electric fields,” IEEE Sensors Journal, vol. 21, no. 4, pp. 4317–4324, Feb. 2021.

[75]

A. Dante, R. M. Bacurau, A. W. Spengler, E. C. Ferreira, and J. A. S. Dias, “A temperature-independent interrogation technique for FBG sensors using monolithic multilayer piezoelectric actuators,” IEEE Transactions on Instrumentation and Measurement, vol. 65, no. 11, pp. 2476–2484, Nov. 2016.

[76]

R. C. Allil and M. M. Werneck, “Optical high-voltage sensor based on fiber Bragg grating and PZT piezoelectric ceramics,” IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 6, pp. 2118–2125, Jun. 2011.

[77]
G. Fusiek and P. Niewczas, “Laboratory investigation of an intensiometric dual FBG-based hybrid voltage sensor, ” in Proceedings of SPIE 9634, 24th International Conference on Optical Fibre Sensors, 2015, pp. 96341H.
[78]

Q. Yang, Y. X. He, S. P. Sun, M. D. Luo, and R. Han, “An optical fiber Bragg grating and piezoelectric ceramic voltage sensor,” Review of Scientific Instruments, vol. 88, no. 10, pp. 105005, Oct. 2017.

[79]

P. S. Riehl, K. L. Scott, R. S. Muller, R. T. Howe, and J. A. Yasaitis, “Electrostatic charge and field sensors based on micromechanical resonators,” Journal of Microelectromechanical Systems, vol. 12, no. 5, pp. 577–589, Oct. 2003.

[80]

C. R. Peng, X. X. Chen, C. Ye, H. Tao, G. P. Cui, Q. Bai, S. F. Chen, and S. H. Xia, “Design and testing of a micromechanical resonant electrostatic field sensor,” Journal of Micromechanics and Microengineering, vol. 16, no. 5, pp. 914–919, Mar. 2006.

[81]
C. R. Peng, P. F. Yang, X. Guo, H. Y. Zhang, and S. H. Xia, “Measuring atmospheric electric field using novel micromachined sensor, ” in Proceedings of the 6th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2011, pp. 417–420.
[82]

Y. Mou, Z. Yu, K. Huang, Q. Ma, R. Zeng, and Z.Wang, “Research on a novel MEMS sensor for spatial DC electric field measurements in an ion flows field,” Sensors, vol.18, no.6, 1740, 2018.

[83]
K. T. Huang, Z. Q. Yu, Z. Y. Gao, R. Zeng, M. Li, and L. Liu, “The charging process on sensor’s shell in ion flow field and its influence towards electric field near HVDC lines, ” in Proceedings of 2016 Asia-Pacific International Symposium on Electromagnetic Compatibility, 2016, pp. 540–543.
[84]

Q. Ma, K. T. Huang, Z. Q. Yu, and Z. Y. Wang, “A MEMS-based electric field sensor for measurement of high-voltage DC synthetic fields in air,” IEEE Sensors Journal, vol. 17, no. 23, pp. 7866–7876, Dec. 2017.

[85]

A. Kainz, H. Steiner, J. Schalko, A. Jachimowicz, F. Kohl, M. Stifter, R. Beigelbeck, F. Keplinger, and W. Hortschitz, “Distortion-free measurement of electric field strength with a MEMS sensor,” Nature Electronics, vol. 1, no. 1, pp. 68–73, Jan. 2018.

[86]

Z. F. Han, F. Xue, J. Hu, and J. L. He, “Trampoline-shaped micro electric-field sensor for AC/DC high electric field measurement,” IEEE Transactions on Industrial Electronics, vol. 69, no. 12, pp. 13791–13798, Dec. 2022.

[87]

Z. F. Han, J. Hu, L. C. Li, and J. L. He, “Micro-cantilever electric field sensor driven by electrostatic force,” Engineering, vol. 24, pp. 184–191. May 2023.

[88]
X. Wu. A sensitivity-enhanced electric field sensor with electrostatic field bias. In: 2017 IEEE Sensors, IEEE.
[89]

T. Chen, C. Shafai, A. Rajapakse, J. S. H. Liyanage, and T. D. Neusitzer, “Micromachined ac/dc electric field sensor with modulated sensitivity,” Sensors and Actuators A: Physical, vol. 245, pp. 76–84, Jul. 2016.

[90]

C. S. Li and W. Q. Wang, “Review of optical voltage sensor based on electroluminescent effect,” Chinese Optics, vol. 9, no. 1, pp. 30–40, Feb. 2016.

[91]

T. Mizuno, Y. S. Liu, W. Shionoya, M. Okada, K. Yasuoka, S. Ishii, A. Yokoyama, and H. Miyata, “Electroluminescence from surface layer of insulating polymer under ac voltage application,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 5, no. 6, pp. 903–908, Dec. 1998.

[92]

H. Takeda, T. Shimada, Y. Katsuyama, and T. Shiosaki, “Fabrication and operation limit of lead-free PTCR ceramics using BaTiO3-(Bi1/2Na1/2)TiO3 system,” Journal of Electroceramics, vol. 22, no. 1–3, pp. 263–269, Feb. 2009.

[93]

H. Takeda, H. Harinaka, T. Shiosaki, M. A. Zubair, C. Leach, R. Freer, T. Hoshina, and T. Tsurumi, “Fabrication and positive temperature coefficient of resistivity properties of semiconducting ceramics based on the BaTiO3-(Bi1/2K1/2)TiO3 system,” Journal of the European Ceramic Society, vol. 30, no. 2, pp. 555–559, Jan. 2010.

[94]

S. L. Leng, G. R. Li, L. Y. Zheng, T. B. Wang, and Q. R. Yin, “Synthesis of Y-doped BaTiO3-(Bi1/2K1/2)TiO3 lead-free positive temperature coefficient of resistivity ceramics and their PTC effects,” Journal of the American Ceramic Society, vol. 92, no. 11, pp. 2772–2775, Nov. 2009.

[95]

Y. Y. Li, G. R. Li, T. B. Wang, L. Y. Zheng, S. L. Leng, and Q. R. Yin, “Effects of niobium-doping on the structure and electrical properties of (Ba, Bi, Na)TiO3-based PTCR ceramics,” Journal of Inorganic Materials, vol. 24, no. 2, pp. 374–378, Mar. 2009.

[96]

A. Hartog, “A distributed temperature sensor based on liquid-core optical fibers,” Journal of Lightwave Technology, vol. 1, no. 3, pp. 498–509, Sep. 1983.

[97]

A. H. Hartog, A. P. Leach, and M. P. Gold, “Distributed temperature sensing in solid-core fibres,” Electronics Letters, vol. 21, no. 23, pp. 1061–1062, Nov. 1985.

[98]

W. Ma, M. Ma, H. Wang, Z. Zhang, R. Zhang and J. Wang, “Shading Fault Detection Method for Household Photovoltaic Power Stations Based on Inherent Characteristics of Monthly String Current Data Mapping,” CSEE Journal of Power and Energy Systems, vol. 9, no. 4, pp. 1370–1382, Jul. 2023.

[99]

T. Horiguchi and M. Tateda, “Optical-fiber-attenuation investigation using stimulated Brillouin scattering between a pulse and a continuous wave,” Optics Letters, vol. 14, no. 8, pp. 408–410, Apr. 1989.

[100]

M. A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, S. H. Chin, J. D. Ania-Castanon, P. Corredera, E. Rochat, M. Gonzalez-Herraez, and L. Thevenaz, “Extending the real remoteness of long-range Brillouin optical time-domain fiber analyzers,” Journal of Lightwave Technology, vol. 32, no. 1, pp. 152–162, Jan. 2014.

[101]

Y. K. Dong, L. Chen, and X. Y. Bao, “Extending the sensing range of Brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs,” Journal of Lightwave Technology, vol. 30, no. 8, pp. 1161–1167, Apr. 2012.

[102]

Y. K. Dong, H. Y. Zhang, L. Chen, and X. Y. Bao, “2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair,” Applied Optics, vol. 51, no. 9, pp. 1229–1235, Mar. 2012.

[103]

W. W. Zou, Z. Y. He, and K. Hotate, “Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber,” Optics Express, vol. 17, no. 3, pp. 1248–1255, Feb. 2009.

[104]

W. W. Qian, C. L. Zhao, S. L. He, X. Y. Dong, S. Q. Zhang, Z. X. Zhang, S. Z. Jin, J. T. Guo, and H. F. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Optics Letters, vol. 36, no. 9, pp. 1548–1550, May 2011.

[105]

F. Ahmed and M. B. G. Jun, “Microfiber Bragg grating sandwiched between standard optical fibers for enhanced temperature sensing,” IEEE Photonics Technology Letters, vol. 28, no. 6, pp. 685–688, Mar. 2016.

[106]

M. G. Pulido-Navarro, P. J. Escamilla-Ambrosio, S. Marrujo-García, J. A. Álvarez-Chávez, and F. Martínez-Piñón, “Temperature sensing through long period fiber gratings mechanically induced on tapered optical fibers,” Applied Optics, vol. 56, no. 19, pp. 5526–5531, Jul. 2017.

[107]

T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba, and K. Hata, “A stretchable carbon nanotube strain sensor for human-motion detection,” Nature Nanotechnology, vol. 6, no. 5, pp. 296–301, Mar. 2011.

[108]

L. Cai, L. Song, P. S. Luan, Q. Zhang, N. Zhang, Q. Q. Gao, D. Zhao, X. Zhang, M. Tu, F. Yang, W. B. Zhou, Q. X. Fan, J. Luo, W. Y. Zhou, P. M. Ajayan, and S. S. Xie, “Super-stretchable, transparent carbon nanotube-based capacitive strain sensors for human motion detection,” Scientific Reports, vol. 3, no. 1, pp. 3048, Oct. 2013.

[109]

S. Tadakaluru, W. Thongsuwan, and P. Singjai, “Stretchable and flexible high-strain sensors made using carbon nanotubes and graphite films on natural rubber,” Sensors, vol. 14, no. 1, pp. 868–876, Jan. 2014.

[110]

Q. W. Liu, T. Tokunaga, and Z. Y. He, “Realization of nano static strain sensing with fiber Bragg gratings interrogated by narrow linewidth tunable lasers,” Optics Express, vol. 19, no. 21, pp. 20214–20223, Oct. 2011.

[111]

C. Y. Shen, C. Zhong, J. L. Chu, X. Zou, Y. X. Jin, J. F. Wang, X. Y. Dong, Y. Li, and L. Wang, “Temperature-insensitive strain sensor using a fiber loop mirror based on low-birefringence polarization-maintaining fibers,” Optics Communications, vol. 287, pp. 31–34, Jan. 2013.

[112]

J. Liang and X. H. Sun, “Research and application of twisted optical fiber strain sensor,” Instrument Technique and Sensor, no. 4, pp. 8–10, Apr. 2015.

[113]

F. Xia, Y. Zhao, and M. Q. Chen, “Optimization of Mach-Zehnder interferometer with cascaded up-tapers and application for curvature sensing,” Sensors and Actuators A: Physical, vol. 263, pp. 140–146, Aug. 2017.

[114]

M. Pasquale, “Mechanical sensors and actuators,” Sensors and Actuators A: Physical, vol. 106, no. 1–3, pp. 142–148, Sep. 2003.

[115]

D. Son, S. J. Lim, and C. S. Kim, “Noncontact torque sensor using the difference of maximum induction of amorphous cores,” IEEE Transactions on Magnetics, vol. 28, no. 5, pp. 2205–2207, Sep. 1992.

[116]

R. P. Strittmatter, R. A. Beach, J. Brooke, E. J. Preisler, G. S. Picus, and T. C. Mcgill, “GaN Schottky diodes for piezoelectric strain sensing,” Journal of Applied Physics, vol. 93, no. 9, pp. 5675–5681, May 2003.

[117]

Z. L. Wang, “Self-assembled nanoarchitectures of polar nanobelts/nanowires,” Journal of Materials Chemistry, vol. 15, no. 10, pp. 1021–1024, Feb. 2005.

[118]
M. Benetti, D. Cannata, F. Di Pietrantonio, C. Marchiori, P. Persichetti, and E. Verona, “Pressure sensor based on surface acoustic wave resonators, ” in Proceedings of SENSORS, 2008 IEEE, 2008, pp. 1024–1027.
[119]
S. C. Moulzolf, R. Behanan, R. J. Lad, and M. P. da Cunha, “Langasite SAW pressure sensor for harsh environments, ” in Proceedings of 2012 IEEE International Ultrasonics Symposium, 2012, pp. 1224–1227.
[120]

J. Schalwig, P. Kreisl, S. Ahlers, and G. Müller, “Response mechanism of SiC-based MOS field-effect gas sensors,” IEEE Sensors Journal, vol. 2, no. 5, pp. 394–402, Oct. 2002.

[121]

O. Casals, B. Barcones, A. Romano-Rodríguez, C. Serre, A. Pérez-Rodríguez, J. R. Morante, P. Godignon, J. Montserrat, and J. Millán, “Characterisation and stabilisation of Pt/TaSix/SiO2/SiC gas sensor,” Sensors and Actuators B: Chemical, vol. 109, no. 1, pp. 119–127, Aug. 2005.

[122]

R. Bogue, “Nanomaterials for gas sensing: a review of recent research,” Sensor Review, vol. 34, no. 1, pp. 1–8, Jan. 2014.

[123]

F. Mendoza, D. M. Hernández, V. Makarov, E. Febus, B. R. Weiner, and G. Morell, “Room temperature gas sensor based on tin dioxide-carbon nanotubes composite films,” Sensors and Actuators B: Chemical, vol. 190, pp. 227–233, Jan. 2014.

[124]

X. X. Zhang, J. B. Zhang, J. Tang, F. S. Meng, and W. T. Liu, “Ni-doped carbon nanotube sensor for detecting dissolved gases in transformer oil,” Proceedings of the CSEE, vol. 31, no. 4, pp. 119–124, Feb. 2011.

[125]

X. J. Wang, X. X. Zhang, C. X. Sun, and B. Yang, “Surface modification of multi-walled carbon nanotubes by dielectric barrier discharge in atmospheric pressure and the analysis on gas sensitive characteristics,” High Voltage Engineering, vol. 38, no. 1, pp. 223–228, Jan. 2012.

[126]

X. X. Zhang, F. S. Meng, R. H. Li, Y. F. Liao, and B. Yang, “Gas sensitivity studies on hydroxyl modified single-wall carbon nanotube detecting SF6 decomposed components under PD,” High Voltage Engineering, vol. 39, no. 5, pp. 1069–1074, May 2013.

[127]

Y. L. Wu, L. Wang, F. S. Li, H. Y. Zhao, Y. Q. Zhao, and L. Dai, “Preparation and NO2 gas sensing properties of La0.75Sr0.25Cr0.5Mn0.5O3,” Journal of the Chinese Rare Earth Society, vol. 25, no. 5, pp. 562–565, Oct. 2007.

[128]

Z. H. Liu, M. L. Wen, Y. Yao, and J. Xiong, “Plastic pethidine hydrochloride membrane sensor and its pharmaceutical applications,” Sensors and Actuators B: Chemical, vol. 77, no. 3, pp. 219–223, Feb. 2001.

[129]

A. Doménech and J. Alarcón, “Determination of hydrogen peroxide using glassy carbon and graphite/polyester composite electrodes modified by vanadium-doped zirconias,” Analytica Chimica Acta, vol. 425, no. 1, pp. 11–22, Jan. 2002.

[130]

N. G. Pavlyukovich, P. A. Murashov, G. N. Dorozhkina, and I. A. Rozanov, “Physicochemical characteristics of the reaction of vapors of organic liquids with divinyl-styrene and isoprene polymer films of piezoelectric chemical sorption sensors,” Journal of Analytical Chemistry, vol. 55, no. 5, pp. 469–473, May 2000.

[131]

P. G. Su, I. C. Chen, and R. J. Wu, “Use of poly(2-acrylamido-2-methylpropane sulfonate) modified with tetraethyl orthosilicate as sensing material for measurement of humidity,” Analytica Chimica Acta, vol. 449, no. 1–2, pp. 103–109, Dec. 2001.

[132]

K. Suri, S. Annapoorni, A. K. Sarkar, and R. P. Tandon, “Gas and humidity sensors based on iron oxide-polypyrrole nanocomposites,” Sensors and Actuators B: Chemical, vol. 81, no. 2–3, pp. 277–282, Jan. 2002.

[133]

M. R. Cavallari, J. E. E. Izquierdo, G. S. Braga, E. A. T. Dirani, M. A. Pereira-da-Silva, E. F. G. Rodríguez, and F. J. Fonseca, “Enhanced sensitivity of gas sensor based on poly(3-hexylthiophene) thin-film transistors for disease diagnosis and environment monitoring,” Sensors, vol. 15, no. 4, pp. 9592–9609, Apr. 2015.

[134]

T. Xie, G. Z. Xie, H. F. Du, Y. Zhou, F. B. Xie, Y. D. Jiang, and H. L. Tai, “The fabrication and optimization of thin-film transistors based on poly(3-hexylthiophene) films for nitrogen dioxide detection,” IEEE Sensors Journal, vol. 16, no. 7, pp. 1865–1871, Apr. 2016.

[135]

A. F. Lv, M. Wang, Y. D. Wang, Z. S. Bo, and L. F. Chi, “Investigation into the sensing process of high-performance H2S sensors based on polymer transistors,” Chemistry-A European Journal, vol. 22, no. 11, pp. 3654–3659, Mar. 2016.

[136]

K. H. Cheon, J. Cho, Y. H. Kim, and D. S. Chung, “Thin film transistor gas sensors incorporating high-mobility diketopyrrolopyrole-based polymeric semiconductor doped with graphene oxide,” ACS Applied Materials & Interfaces, vol. 7, no. 25, pp. 14004–14010, Jun. 2015.

[137]

S. Zampolli, I. Elmi, F. Ahmed, M. Passini, G. C. Cardinali, S. Nicoletti, and L. Dori, “An electronic nose based on solid state sensor arrays for low-cost indoor air quality monitoring applications,” Sensors and Actuators B: Chemical, vol. 101, no. 1–2, pp. 39–46, Jun. 2004.

[138]

W. M. Qu, C. Wenzel, and G, Gerlach, “Fabrication of a 3D differential-capacitive acceleration sensor by UV-LIGA,” Sensors and Actuators A: Physical, vol. 77, no. 1, pp. 14–20, Sep. 1999.

[139]
C. Burbaum, J. Mohr, P. Bley, and W. Ehrfeldabrication of capacitive acceleration sensors by the LIGA technique. Sensors and Actuators A: Physical, vol.27, no.1–3, pp. 559–563, 1991.
[140]
X. H. Ma and L. Jun, “Design of hybrid integrated capacitive acceleration sensor,” in Proceedings of 2010 International Conference on Electrical and Control Engineering, 2010, pp. 744–747.
[141]

Y. Ohara, M. Miyayama, K. Koumoto, and H. Yanagida, “PZT-polymer piezoelectric composites: a design for an acceleration sensor,” Sensors and Actuators A: Physical, vol. 36, no. 2, pp. 121–126, Mar. 1993.

[142]

J. Terada, “Vibration piezoelectric acceleration sensor,” Journal of the Acoustical Society of America, vol. 127, no. 3, pp. 1703, Mar. 2010.

[143]
R. Amarasinghe, D. V. Dao, V. T. Dau, B. T. Tung, and S. Sugiyama, “Sensitivity enhancement of piezoresistive micro acceleration sensors with Nanometer Stress Concentration Regions on sensing elements, ” in Proceedings of 2009 International Solid-State Sensors, Actuators and Microsystems Conference, 2009, pp. 1333–1336.
[144]

S. Vetrivel, R. Mathew, and A. R. Sankar, “Design and optimization of a doubly clamped piezoresistive acceleration sensor with an integrated silicon nanowire piezoresistor,” Microsystem Technologies, vol. 23, no. 8, pp. 3525–3536, Aug. 2017.

[145]
Y. H. Gao, J. Xie, and M. R. Wei, “Structure optimization design of cantilever beam in the piezoresistive acceleration sensor based on artificial neural network, ” in Proceedings of 2009 Second International Symposium on Computational Intelligence and Design, 2009, pp. 254–257.
[146]
Y. Tomikawa and S. Okada, “Piezoelectric angular acceleration sensor, ” in Proceedings of the IEEE Symposium on Ultrasonics, 2003, pp. 1346–1349.
[147]
A. Gupta, R. Singh, A. Ahmad, and M. Kumar, “Vibration sensors, ” in Proceedings of SPIE 5062, Smart Materials, Structures, and Systems, 2003.
[148]

Y. Li, Y. Wang, Q. Cao, J. Cao and D. Qiao, “A Self-Powered Vibration Sensor With Wide Bandwidth,” IEEE Transactions on Industrial Electronics, vol. 67, no. 1, pp. 560–568, Jan. 2020.

[149]

S. Egusa and N. Iwasawa, “Piezoelectric paints: preparation and application as built-in vibration sensors of structural materials,” Journal of Materials Science, vol. 28, no. 6, pp. 1667–1672, Jan. 1993.

[150]

A. M. Vengsarkar, J. A. Greene, B. R. Fogg, and K. A. Murphy, “Spatially weighted, grating-based, two-mode, elliptical-core optical fiber vibration sensors,” Optics Letters, vol. 16, no. 21, pp. 1707–1709, Nov. 1991.

[151]

K. Tanaka, Y. Mochida, M. Sugimoto, K. Moriya, T. Hasegawa, K. Atsuchi, and K. Ohwada, “A micromachined vibrating gyroscope,” Sensors and Actuators A: Physical, vol. 50, no. 1–2, pp. 111–115, Aug. 1995.

[152]
M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. M. N. Passaro, Advances in Gyroscope Technologies, Berlin Heidelberg: Springer, 2011.
[153]

K. J. Chen, Z. Y. He, S. X. Wang, J. Hu, L. C. Li, and J. L. He, “Learning-based data analytics: moving towards transparent power grids,” CSEE Journal of Power and Energy Systems, vol. 4, no. 1, pp. 67–82, Mar. 2018.

[154]
A. Hussey, A. Nasipuri, R. Cox, and J. Sorge, “Feasibility of using a wireless mesh sensor network in a coal-fired power plant, ” in Proceedings of the IEEE SoutheastCon 2010, 2010, pp. 384–389.
[155]

M. J. Prieto, A. M. Pernía, F. Nuño, J. Díaz, and P. J. Villegas, “Development of a wireless sensor network for individual monitoring of panels in a photovoltaic plant,” Sensors, vol. 14, no. 2, pp. 2379–2396, Jan. 2014.

[156]

A. R. Dyreson, E. R. Morgan, S. H. Monger, and T. L. Acker, “Modeling solar irradiance smoothing for large PV power plants using a 45-sensor network and the Wavelet Variability Model,” Solar Energy, vol. 110, pp. 482–495, Dec. 2014.

[157]
R. J. Bessa, A. Trindade, A. Monteiro, V. Miranda, and C. S. P. Silva, “Solar power forecasting in smart grids using distributed information, ” in Proceedings of 2014 Power Systems Computation Conference, 2014, pp. 1–7.
[158]

Y. Amirat, M. E. H. Benbouzid, E. Al-Ahmar, B. Bensaker, and S. Turri, “A brief status on condition monitoring and fault diagnosis in wind energy conversion systems,” Renewable and Sustainable Energy Reviews, vol. 13, no. 9, pp. 2629–2636, Dec. 2009.

[159]

K. J. Chen, J. Hu, Y. Zhang, Z. Q. Yu, and J. L. He, “Fault location in power distribution systems via deep graph convolutional networks,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 1, pp. 119–131, Jan. 2020.

[160]
P. Pinson, “Introducing distributed learning approaches in wind power forecasting, ” in Proceedings of 2016 International Conference on Probabilistic Methods Applied to Power Systems, 2016, pp. 1–6.
[161]

L. Duan, J. Hu, G. Zhao, K. J. Chen, J. L. He, and S. X. Wang, “Identification of partial discharge defects based on deep learning method,” IEEE Transactions on Power Delivery, vol. 34, no. 4, pp. 1557–1568, Aug. 2019.

[162]

L. Duan, J. Hu, G. Zhao, K. J. Chen, S. X. Wang, and J. L. He, “Method of inter-turn fault detection for next-generation smart transformers based on deep learning algorithm,” High Voltage, vol. 4, no. 4, pp. 282–291, Dec. 2019.

[163]

V. C. Gungor, B. Lu, and G. P. Hancke, “Opportunities and challenges of wireless sensor networks in smart grid,” IEEE Transactions on Industrial Electronics, vol. 57, no. 10, pp. 3557–3564, Oct. 2010.

[164]
A. Nasipuri, R. Cox, J. Conrad, L. Van der Zel, B. Rodriguez, and R. McKosky, “Design considerations for a large-scale wireless sensor network for substation monitoring, ” in Proceedings of the IEEE Local Computer Network Conference, 2010, pp. 866–873.
[165]

R. A. Leon, V. Vittal, and G. Manimaran, “Application of sensor network for secure electric energy infrastructure,” IEEE Transactions on Power Delivery, vol. 22, no. 2, pp. 1021–1028, Apr. 2007.

[166]

K. J. Chen, C. W. Huang, and J. L. He, “Fault detection, classification and location for transmission lines and distribution systems: a review on the methods,” High Voltage, vol. 1, no. 1, pp. 25–33, Apr. 2016.

[167]

K. J. Chen, J. Hu, and J. L. He, “A framework for automatically extracting overvoltage features based on sparse autoencoder,” IEEE Transactions on Smart Grid, vol. 9, no. 2, pp. 594–604, Mar. 2018.

[168]

K. J. Chen, J. Hu, and J. L. He, “Detection and classification of transmission line faults based on unsupervised feature learning and convolutional sparse autoencoder,” IEEE Transactions on Smart Grid, vol. 9, no. 3, pp. 1748–1758, May 2018.

[169]

Y. Liu, W. X. Yao, D. Zhou, L. Wu, S. T. You, H. S. Liu, L. W. Zhan, J. C. Zhao, H. Y. Lu, W. Gao, and Y. L. Liu, “Recent developments of FNET/GridEye — A situational awareness tool for smart grid,” CSEE Journal of Power and Energy Systems, vol. 2, no. 3, pp. 19–27, Sep. 2016.

[170]

D. Zhou, J. H. Guo, Y. Zhang, J. D. Chai, H. S. Liu, Y. Liu, C. Huang, X. Gui, and Y. L. Liu, “Distributed data analytics platform for wide-area synchrophasor measurement systems,” IEEE Transactions on Smart Grid, vol. 7, no. 5, pp. 2397–2405, Sep. 2016.

[171]

C. S. Saunders, G. Y. Liu, Y. Yu, and W. D. Zhu, “Data-driven distributed analytics and control platform for smart grid situational awareness,” CSEE Journal of Power and Energy Systems, vol. 2, no. 3, pp. 51–58, Sep. 2016.

[172]

K. J. Chen, Q. Wang, Z. Y. He, K. L. Chen, J. Hu, and J. L. He, “Convolutional Sequence to Sequence Non-intrusive Load Monitoring,” The Journal of Engineering, vol. 2018, no. 17, pp. 1860–1864, Nov. 2018.

[173]

K. J. Chen, K. L. Chen, Q. Wang, Z. Y. He, J. Hu, and J. L. He, “Short-term load forecasting with deep residual networks,” IEEE Transactions on Smart Grid, vol. 10, no. 4, pp. 3943–3952, Jul. 2019.

[174]

K. J. Chen, Y. Zhang, Q. Wang, J. Hu, H. Fan, and J. L. He, “Scale- and context-aware convolutional non-intrusive load monitoring,” IEEE Transactions on Power Systems, vol. 35, no. 3, pp. 2362–2373, May 2020.

[175]

J. Hare, X. F. Shi, S. Gupta, and A. Bazzi, “Fault diagnostics in smart micro-grids: a survey,” Renewable and Sustainable Energy Reviews, vol. 60, pp. 1114–1124, Jul. 2016.

[176]

X. Wang and Q. L. Liang, “Efficient sensor selection schemes for wireless sensor networks in microgrid,” IEEE Systems Journal, vol. 12, no. 1, pp. 539–547, Mar. 2018.

[177]

S. Y. Wang, J. F. Wan, D. Q. Zhang, D. Li, and C. H. Zhang, “Towards smart factory for industry 4.0: a self-organized multi-agent system with big data based feedback and coordination,” Computer Networks, vol. 101, pp. 158–168, Jun. 2016.

[178]

M. Brettel, N. Friederichsen, M. Keller, and M. Rosenberg, “How virtualization, decentralization and network building change the manufacturing landscape: an industry 4.0 perspective,” International Journal of Information and Communication Engineering, vol. 8, no. 1, pp. 37–44, 2014.

[179]

M. F. Li and H. J. Lin, “Design and implementation of smart home control systems based on wireless sensor networks and power line communications,” IEEE Transactions on Industrial Electronics, vol. 62, no. 7, pp. 4430–4442, Jul. 2015.

[180]

N. K. Suryadevara, S. C. Mukhopadhyay, S. D. T. Kelly, and S. P. S. Gill, “WSN-based smart sensors and actuator for power management in intelligent buildings,” IEEE/ASME Transactions on Mechatronics, vol. 20, no. 2, pp. 564–571, Apr. 2015.

[181]

F. Viani, F. Robol, A. Polo, P. Rocca, G. Oliveri, and A. Massa “Wireless architectures for heterogeneous sensing in smart home applications: concepts and real implementation,” Proceedings of the IEEE, vol. 101, no. 11, pp. 2381–2396, Nov. 2013.

[182]

Q. Q. Sun, W. H. Yu, N. Kochurov, Q. Hao, and F. Hu, “A multi-agent-based intelligent sensor and actuator network design for smart house and home automation,” Journal of Sensor and Actuator Networks, vol. 2, no. 3, pp. 557–588, Aug. 2013.

[183]

K. L. Zhou, S. L. Yang, and C. Shen, “A review of electric load classification in smart grid environment,” Renewable and Sustainable Energy Reviews, vol. 24, pp. 103–110, Aug. 2013.

[184]

S. Haben, C. Singleton, and P. Grindrod, “Analysis and clustering of residential customers energy behavioral demand using smart meter data,” IEEE Transactions on Smart Grid, vol. 7, no. 1, pp. 136–144, Jan. 2016.

[185]
R. Pal, C. Chelmis, C. Tadepalli, M. Frincu, S. Aman, and V. Prasanna, “Challenge: on online time series clustering for demand response: optic-a theory to break the ‘curse of dimensionality’, ” in Proceedings of the 2015 ACM Sixth International Conference on Future Energy Systems, 2015, pp. 95–100.
[186]

H. H. Goh et al., “Improving the Performance of DC Microgrids by Utilizing Adaptive Takagi-Sugeno Model Predictive Control,” CSEE Journal of Power and Energy Systems, vol. 9, no. 4, pp. 1472–1481, Jul. 2023.

CSEE Journal of Power and Energy Systems
Pages 871-890
Cite this article:
He J, Han Z, Hu J. Advanced Sensors Towards Ubiquitous Power Internet of Things. CSEE Journal of Power and Energy Systems, 2024, 10(3): 871-890. https://doi.org/10.17775/CSEEJPES.2023.05850

254

Views

13

Downloads

0

Crossref

1

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 13 July 2023
Revised: 19 October 2023
Accepted: 22 November 2023
Published: 28 December 2023
© 2023 CSEE.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return