PDF (7.8 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Publishing Language: Chinese | Open Access

A study on synthesis of lead-free piezoelectric (K, Na)NbO3 nanorod arrays

Liqian Cheng()Hui ChengYiying MiaoYiwen SunZipei Zhang
School of Mechanical electronic and Information Engineering, China University of Mining and Technology-Beijing, Beijing 100083
Show Author Information

Abstract

As one of the lead-free piezoelectric systems, potassium sodium niobate [(K, Na)NbO3, abbreviated as KNN] has been a research interest due to its high piezoelectric property, high Curie temperature as well as the tailored phase structures. However, there are still some problems in the study of one dimensional (1D) KNN structures. For instance, the orientation growth of crystals is difficult to be controlled, the piezoelectric properties of the product should be further enhanced. In this paper, the hydrothermal synthesis method was applied to fabricate the 1D KNN structures on the Nb-doped SrTiO3 (NSTO) substrate. The hydrothermal temperature, Nb2O5 concentration and the hydrothermal time were studied, respectively, and the oriented KNN nanorod arrays (NRAs) with high quality were achieved. The results show that the KNN NRAs with single orientation, good crystallinity and high piezoelectric response can be obtained when the hydrothermal temperature is 190 ℃, the Nb2O5 concentration is 40 mL/g, and the reaction time is 18 h, respectively.

CLC number: TQ174 Document code: A Article ID: 2096-2193(2021)04-0480-07

References

[1]

Wang Z L. Piezoelectric nanostructures: from growth phenomena to electric nanogenerators[J]. MRS Bulletin, 2007, 32(2): 109-116.

[2]

Qin Y, Wang X D, Wang Z L. Microfibre-nanowire hybrid structure for energy scavenging[J]. Nature, 2008, 451(7180): 809-813.

[3]

Wang Z L. Piezotronic and piezophototronic effects[J]. Journal of Physical Chemistry Letters, 2010, 1(9): 1388-1393.

[4]

Cheng Liqian, Feng Mei, Zhang Boran, et al. Advances of one dimensional lead-free piezoelectric micro/nanomaterials in the field of energy conversion[J]. Science & Technology Review, 2017, 35(8): 54-59.

[5]

Wu Wenzhuo, Wen Xiaonan, Wang Zhonglin. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging[J]. Science, 2013, 340(6135): 952-957.

[6]

Zhang R, Lin L, Jing Q S, et al. Nanogenerator as an active sensor for vortex capture and ambient wind-velocity detection[J]. Energy & Environmental Science, 2012, 5(9): 8528-8533.

[7]

Li Z T, Wang Z L. Air/liquid-pressure and heartbeat-driven flexible fiber nanogenerators as a micro/nano-power source or diagnostic Sensor[J]. Advanced Materials, 2011, 23(1): 84-89.

[8]

Xu S, Qin Y, Xu C, et al. Self-powered nanowire devices[J]. Nature Nanotechnology, 2010, 5(5): 366-373.

[9]

Wang D A, Ko H H. Piezoelectric energy harvesting from flow-induced vibration[J]. Journal of Micromechanics and Microengineering, 2010, 20(2): 025019.

[10]

Li Xiangchun, Zhang Liang, Nie Baisheng, et al. Law of relative dielectric constant of coal under different stresses and gas pressures[J]. Journal of Mining Science and Technology, 2018, 3(4): 349-355.

[11]

Li Xiangchun, Zhang Liang, Zhao Jianfei, et al. Coal deformation characteristics in gas adsorption and desorption[J]. Journal of Mining Science and Technology, 2018, 3(1): 46-54.

[12]

Zhu Tao, Liu Entong, Wang Yanxia, et al. Experimental study on working parameters optimization of vacuum pressure swing adsorption technology for ventilation air methane in coal mine[J]. Journal of Mining Science and Technology, 2016, 1(2): 196-202

[13]

Ganeshkumar R, Cheah C W, Xu R Z, et al. A high output voltage flexible piezoelectric nanogenerator using porous lead-free KNbO3 nanofibers[J]. Applied Physics Letters, 2017, 111(1): 013905.

[14]

Liu B, Lu B, Chen X Q, et al. High-performance flexible piezoelectric energy harvester based on lead-free (Na0.5Bi0.5)TiO3-BaTiO3 piezoelectric nanofibers[J]. Journal of Materials Chemistry A, 2017, 5(45): 23634-23640.

[15]

Rørvik P M, Grande T, Einarsrud M A. One-dimensional nanostructures of ferroelectric perovskites[J]. Advanced Materials, 2011, 23(35): 4007-4034.

[16]

Zhang Y D, Pan X M, Wang Z, et al. Fast and highly sensitive humidity sensors based on NaNbO3 nanofibers[J]. RSC Advances, 2015, 5(26): 20453-20458.

[17]

Li J F, Wang K, Zhu F Y, et al. (K, Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges[J]. Journal of the American Ceramic Society, 2013, 96(12): 3677-3696.

[18]

Yan Bowu. Progress in preparation of KNN-basd lead-free piezoelectric ceramic material[J]. Piezoelectrics & Acoustooptics, 2009, 41(4): 517-523.

[19]

Saito Y, Takao H, Tani T, et al. Lead-free piezoceramics[J]. Nature, 2004, 432(7013): 84-87.

[20]

Saito Y, Takao H. High performance lead-free piezoelectric ceramics in the (K, Na)NbO3-LiTaO3 solid solution system[J]. Ferroelectrics, 2006, 338(1): 17-32.

[21]

Li J F, Wang K, Zhang B P, et al. Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering[J]. Journal of the American Ceramic Society, 2006, 89(2): 706-709.

[22]

Xu K, Li J, Lü X, et al. Superior piezoelectric properties in potassium-sodium niobate lead-free ceramics[J]. Advanced Materials, 2016, 28(38): 8519-8523.

[23]

Guo Yiping, Kakimoto K, Ohsato H. Phase transitional behavior and piezoelectric properties of (Na0.5K0.5) NbO3-LiNbO3 ceramics[J]. Applied Physics Letters, 2004, 85(18): 4121-4123.

[24]

Guo Yiping, Kakimoto K, Ohsato H. (Na0.5K0.5NbO3)-LiTaO3 lead-free piezoelectric ceramics[J]. Materials Letters, 2005, 59(2/3): 241-244.

[25]

Wang X P, Wu J G, Xiao D Q, et al. Giant piezoelectricity in potassium-sodium niobate lead-free ceramics[J]. Journal of the American Chemical Society, 2014, 136(7): 2905-2910.

[26]

Li P, Zhai J W, Shen B, et al. Ultrahigh piezoelectric properties in textured (K, Na)NbO3-based lead-free ceramics[J]. Advanced Materials, 2018, 30(8): 1705171.

[27]

Hu J T, Odom T W, Lieber C M. Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes[J]. Accounts of Chemical Research, 1999, 32(5): 435-445.

[28]

Cheng L Q, Wang K, Li J F. Synthesis of highly piezoelectric lead-free (K, Na)NbO3 one-dimensional perovskite nanostructures[J]. Chemical Communications, 2013, 49(38): 4003-4005.

[29]

Cheng L Q, Wang K, Li J F, et al. Piezoelectricity of lead-free (K, Na)NbO3 nanoscale single crystals[J]. Journal of Materials Chemistry C, 2014, 2(43): 9091-9098.

[30]

Sun C, Xing X R, Chen J, et al. Hydrothermal synthesis of single crystalline (K, Na)NbO3 powders[J]. European Journal of Inorganic Chemistry, 2007, 2007(13): 1884-1888.

[31]

Wang Z, Gu H S, Hu Y, et al. Synthesis, growth mechanism and optical properties of (K, Na)NbO3 nanostructures[J]. CrystEngComm, 2010, 12(10): 3157-3162.

[32]

Rørvik P M, Grande T, Einarsrud M A. One-dimensional nanostructures of ferroelectric perovskites[J]. Advanced Materials, 2011, 23(35): 4007-4034.

[33]

He Y H, Wang Z, Hu X K, et al. Orientation-dependent piezoresponse and high-performance energy harvesting of lead-free (K, Na)NbO3 nanorod arrays[J]. RSC Advances, 2017, 7(28): 16908-16915.

Journal of Mining Science and Technology
Pages 480-486
Cite this article:
Cheng L, Cheng H, Miao Y, et al. A study on synthesis of lead-free piezoelectric (K, Na)NbO3 nanorod arrays. Journal of Mining Science and Technology, 2021, 6(4): 480-486. https://doi.org/10.19606/j.cnki.jmst.2021.04.013
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return