AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (18.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline

Hydro-geochemical evaluation of groundwater with studies on water quality index and suitability for drinking in Sagardari, Jashore

Mohammad Tofayal Ahmed1( )Minhaj Uddin Monir1Md Yeasir Hasan1Md Mominur Rahman1Md Shamiul Islam Rifat1Md Naim Islam1,2Abu Shamim Khan2Md Mizanur Rahman2Md Shajidul Islam1
Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Jashore-7408, Bangladesh
Environmental Laboratory, Asia Arsenic Network, Arsenic Center, Benapole Road, Krishnobati, Pulerhat, Jashore-7400, Bangladesh
Show Author Information

Abstract

Sagardari union is facing groundwater crisis because of contaminations from agriculture and urban sewage, which bring a considerable change in water quality. In view of this, hydro-chemical analyses were undertaken on 35 groundwater samples and the following hydro-geochemical parameters, pH, total dissolved solids (TDS), total hardness (TH), electrical conductivity (EC), cations and anions, were analyzed. From the analytical results, it is found that pH value was lower than WHO drinking water standard and the middle-downstream portions of the investigation region show higher EC. The piper plot indicates that the groundwater in Sagardari falls in the categories of NaClHCO3 hydro-chemical facies. Higher TH in groundwater was detected, but still in an acceptable range. In addition, salinity and arsenic ratio are higher and moderately higher, respectively. The spatial distribution of Groundwater Quality Index (GWQI) was determined by geo-statistical modelling of Sagardari union. The study provides information and supports the administration which to make better groundwater utilization and quality control in the Sagardari union.

References

 

Acharya S, Sharma S, Khandegar, et al. 2018. Assessment of groundwater quality by water quality indices for irrigation and drinking in South West Delhi, India. Data in Brief, 18: 2019-2028.

 

Ahmed MT, Hasan Md Yeasir, Khan Abu AS, et al. 2019. Valuation of irrigation water at Shagordari, Jashore, Bangladesh. International Research Journal of Engineering and Technology, 6(11): 1050-1057.

 

Al Tanjil H, Ahmed MT, Akter S, et al. 2019. Water quality assessment in Maddhapara Granite Mine, Bangladesh. International Journal of Environmental Protection and Policy, 7(2): 39.

 

Alexandratos SD, Barak N, Bauer D, et al. 2019. Sustaining water resources: Environmental and economic impact. ACS Sustainable Chemistry & Engineering, 7(3): 2879-2888.

 

Ali MH, Abustan I, Rahman MA, et al. 2012. Sustainability of groundwater resources in the North-Eastern Region of Bangladesh. Water Resources Management, 26(3): 623-641.

 

Annapoorna H, Janardhana MR. 2015. Assessment of groundwater quality for drinking purpose in rural areas surrounding a defunct copper mine. Aqutic Procedia, 4: 685-692.

 

Balachandar D, Sundararaj P, Murthy KR, et al. 2010. An investigation of groundwater quality and its suitability to irrigated agriculture in Coimbatore District, Tamil Nadu, India: A GIS approach. International Journal of Environment Sciences, 1(2): 176-190.

 

Balan IN, Shivakumar M, Madan Kumar PD. 2012. An assessment of groundwater quality using water quality index in Chennai, Tamil Nadu, India. Chronicles of Young Scientists, 3(2): 146.

 

Bhuiyan MAH, Dampare SB, Islam MA, et al. 2015. Source apportionment and pollution evaluation of heavy metals in water and sediments of Buriganga River, Bangladesh, using multivariate analysis and pollution evaluation indices. Environmental Monitoring and Assessment, 187(1): 4075.

 

Biswas, Raman Roy, Dhiman Towfiqul Islam, et al. 2014. Assessment of drinking water related to arsenic and salinity hazard in Patuakhali district, Bangladesh. International Journal of Advanced Geosciences, 2(2): 82-85.

 

Bousser MG, Amarenco P, Chamorro A, et al. 2011. Terutroban versus aspirin in patients with cerebral ischaemic events (PERFORM): A randomised, double-blind, parallel-group trial. Lancet (London England), 377(9782): 2013-2022.

 

Chourasia LP. 2018. Assessment of ground-water quality using water quality index in and around Korba City, Chhattisgarh, India. American Journal of Software Engineering and Applications, 7: 15-21.

 

DeSutter T, Franzen D, HE Yang-bo, et al. 2015. Relating sodium percentage to sodium adsorption ratio and its utility in the northern Great Plains. Soil Science Society of America Journal, 79(4): 1261-1264.

 

Edet A, Offiong OE. 2002. Evaluation of water quality pollution indices for heavy metal contamination monitoring: A study case from Akpabuyo-Odukpani area, Lower Cross River Basin (southeastern Nigeria). Geojournal, 57(4): 295-304.

 

Farnham IM, Johannesson KH, Singh AK, et al. 2003. Factor analytical approaches for evaluating groundwater trace element chemistry data. Analytica Chimica Acta, 490(1-2): 123-138.

 

Haque SE. 2018. An overview of groundwater quality in Bangladesh, groundwater of South Asia. Groundwater of South Asia, Springer: 205-232.

 

Haritash AK, Kaushik CP, Kaushik A, et al. 2008. Suitability assessment of groundwater for drinking, irrigation and industrial use in some North Indian villages. Environmetal Monitoring and Assessment, 145(1-3): 397-406.

 
Hubbard R, Sheridan J. 1994. Nitrates in ground-water in the southeastern USA.
 

Iqbal MA, Gupta SG. 2009. Studies on heavy metal ion pollution of ground water sources as an effect of municipal solid waste dumping. African Journal of Basic & Applied Sciences, 1(5-6): 117-122.

 

Islam MA, Rahman Md M, Bodrud-Doza Md, et al. 2018. A study of groundwater irrigation water quality in south-central Bangladesh: A geo-statistical model approach using GIS and multivariate statistics. Acta Geochimica, 37(2): 193-214.

 

Islam M, Marandi A, Fatema S, et al. 2019. The evolution of the groundwater quality in the alluvial aquifers of the south-western part of Bengal Basin, Bangladesh. Environmental Earth Sciences, 78(24): 705.

 

Joarder MAM, Raihan F, Rahman Md T, et al. 2008. Regression analysis of ground water quality data of Sunamganj District, Bangladesh. International Journal of Environmental Research, 2(3): 291-296.

 

Kadyampakeni D, Appoh R, Barron J, et al. 2017. Analysis of water quality of selected irrigation water sources in northern Ghana. Water Science and Technology: Water Supply, 18(4): 1308-1317.

 

Kawo NS, Karuppannan S. 2018. Groundwater quality assessment using water quality index and GIS technique in Modjo River Basin, central Ethiopia. Journal of African Earth Sciences, 147: 300-311.

 

Kumar PJ Sajil. 2013. Interpretation of ground-water chemistry using piper and Chadha's diagrams: A comparative study from Perambalur Taluk. Elixir Geosciences, 54: 12208-12211.

 

LI Yu, GOU Xin, WANG Gang, et al. 2007. Heavy metal concentrations and source in arid agricultural soil in central Gansu Province, China. Journal of Environmental Sciences, 18(1): 77-88.

 

Madhav S, Ahamad A, Kumar A, et al. Ecology, Landscapes. Geochemical assessment of groundwater quality for its suitability for drinking and irrigation purpose in rural areas of Sant Ravidas Nagar (Bhadohi), Uttar Pradesh. Geology, Ecology, and Landscapes, 2(2): 127-136.

 

Marandi A, Shand P. 2018. Groundwater chemistry and Gibbs diagram. Applied Geochemistry, 97: 209-212.

 

Monir M, Khan Y, Hossain Kazi HM, et al. 2011. Investigation of water quality in the Ganges River, Bangladesh: Implications for drinking and household purposes. International Journal of Economic and Environment Geology, 2(2): 22-24.

 
Monir MU, Khan YA, Quamruzzaman C, et al. 2012. Ganges river water suitability for drinking and household purposes in Rajshahi city area, Bangladesh. Indian Journal of Power & River Vally Development.
 

Mukherjee A. 2018. Overview of the groundwater of South Asia, Groundwater of South Asia. Springer: 3-20.

 

Mukherjee I, Singh UK. 2018. Groundwater fluoride contamination, probable release, and containment mechanisms: A review on Indian context. Environmental Geochemistry and Health, 40(6): 2259-2301.

 
Organization WH, 2009. Boron in drinking-water: Background document for development of WHO Guidelines for Drinking-water Quality, Geneva: World Health Organization.
 

Peterson E, Hoef Jay Ver. 2014. STARS: An ArcGIS toolset used to calculate the spatial information needed to fit spatial statistical models to stream network data. Journal of Statistical Software, 56(2): 1-17.

 

Piper AM. 1944. A graphic procedure in the geochemical interpretation of wateranalyses. Transactions American Geophysical Union, 25(6): 914-928.

 

Rabeiy Ragab EISayed. 2018. Assessment and modeling of groundwater quality using WQI and GIS in Upper Egypt area. Environmental Science and Pollution Research, 25(31): 30808-30817.

 

Rajesh R, Brindha K, Murugan R, et al. 2012. Influence of hydrogeochemical processes on temporal changes in groundwater quality in a part of Nalgonda district, Andhra Pradesh, India. Environmental Earth Sciences, 65: 1203-1213.

 

RamyaPriya R, Elango L. 2018. Evaluation of geogenic and anthropogenic impacts on spatio-temporal variation in quality of surface water and groundwater along Cauvery River, India. Environmental Earth Science, 77(1): 2.

 

Rao GS, Nageswararao G. 2013. Assessment of ground water quality using water quality index. Arch Environ Sci, 7: 1-5.

 

Richards LA. 1954. Diagnosis and improvement of saline and alkali soils. Soil Science, 78(2):154.

 

Sadashivaiah C, Ramakrishnaiah C, Ranganna G. 2008. Hydrochemical analysis and evaluation of groundwater quality in Tumkur Taluk, Karnataka State, India. International Journal of Environmental Research and Public, 5(3): 158-164.

 

Safeeq M, Fares A. 2016. Groundwater and surface water interactions in relation to natural and anthropogenic environmental changes, Emerging Issues in Groundwater Resources. Springer: 289-326.

 

Sarker BC, Hara M, Zaman MW. 2000. Suitability assessment of natural water in relation to irrigation and soil properties. Soil Science & Plant Nutrition, 46(4): 773-786.

 

Shahidullah SM, Hakim MA, Alam MS, et al. 2000. Assessment of a groundwater quality in a selected area of Bangladesh. Pakistan Journal of Biological Sciences, 3(2): 246-249.

 

Shammi M, Rahman R, Rahman Md M, et al. 2016. Assessment of salinity hazard in existing water resources for irrigation and potentiality of conjunctive uses: A case report from Gopalganj District, Bangladesh. Sustainable Water Resources Management, 2(4): 369-378.

 

Sharma Prerna, Meher PK, Kumar A, et al. 2014. Changes in water quality index of Ganges river at different locations in Allahabad. Sustainability of Water Quality and Ecology. Ecology, 3-4: 67-76.

 

Singaraja C. 2017. Relevance of water quality index for groundwater quality evaluation: Thoothukudi District, Tamil Nadu, India. Applied Water Science, 7(5): 2157-2173.

 

Singh AK, Kumar SR. 2015. Quality assessment of groundwater for drinking and irrigation use in semi-urban area of Tripura, India. Ecology, Environment and Conservation, 21(1): 97-108.

 
Singh AK, Mondal GC, Tewary BK, et al. 2009. Major ion chemistry, solute acquisition processes and quality assessment of mine water in Damodar valley coalfields, India.International Mine Water Conference.
 

Singh, G Kamal, R Kant. 2017. Heavy metal contamination and its indexing approach for groundwater of Goa mining region, India. Applied Water Science, 7(3): 1479-1485.

 

Subramani T, Rajmohan N, Elango LJE. 2010. Groundwater geochemistry and identification of hydrogeochemical processes in a hard rock region, Southern India. Environmental Monitoring and Assessment, 162(1-4): 123-137.

 

Sutadian AD, Muttil N, Yilmaz AG, et al. 2018. Development of the water quality index for rivers in West Java Province, Indonesia. Ecological Indicators, 85: 966-982.

 

Vasanthavigar M, Srinivasamoorthy K, Ganthi RR, et al. 2012. Characterisation and quality assessment of groundwater with a special emphasis on irrigation utility: Thirumanimuttar sub-basin, Tamil Nadu, India. Arabian Journal of Geosciences, 5(2): 245-258.

 

XU Pan-pan, FENG Wen-wen, QIAN Hui, et al. 2019. Hydrogeochemical characterization and Irrigation quality assessment of shallow groundwater in the Central-Western Guanzhong Basin, China. International Journal of Environmental Research & Public Health, 16(9): 1492.

 

ZHANG Yu-qin, WANG Guang-wei, WANG Shi-qin, et al. 2018. Hydrochemical characteristics and geochemistry evolution of groundwater in the plain area of the Lake Baiyangdian watershed, North China Plain. Journal of Groundwater Science and Engineering, 6(3): 220-233.

 
ZHANG W, Kinniburgh D, Gabos S. 2013. Assessment of groundwater quality in Alberta, Canada using GIS mapping, 3rd International Conference on Medical, Biological and Pharmaceutical Sciences, Bali, Indonesia.
Journal of Groundwater Science and Engineering
Pages 259-273
Cite this article:
Ahmed MT, Monir MU, Hasan MY, et al. Hydro-geochemical evaluation of groundwater with studies on water quality index and suitability for drinking in Sagardari, Jashore. Journal of Groundwater Science and Engineering, 2020, 8(3): 259-273. https://doi.org/10.19637/j.cnki.2305-7068.2020.03.006

459

Views

26

Downloads

0

Crossref

6

Web of Science

8

Scopus

Altmetrics

Received: 25 December 2019
Accepted: 19 March 2020
Published: 28 September 2020
© 2020 Journal of Groundwater Science and Engineering Editorial Office
Return