AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Delineation of groundwater potential zones in Wadi Saida Watershed of NW-Algeria using remote sensing, geographic information system-based AHP techniques and geostatistical analysis

Kessar Cherif( )Benkesmia YaminaBlissag BilalWahib Kébir Lahsen
Agence Spatiale Algérienne, Centre des Techniques Spatiales, Arzew, Algérie
Show Author Information

Abstract

Sustainable management of groundwater resources has now become an obligation, especially in arid and semi-arid regions given the socio-economic importance of this resource. The optimization in zoning for groundwater exploitation helps in planning and managing groundwater supply works such as boreholes and wells in the catchment. The objective of this study is to use remote sensing and GIS-based Analytical Hierarchy Process (AHP) techniques to evaluate the groundwater potential of Wadi Saida Watershed. Spatial analysis such as geostatistics was also used to validate results and ensure more accuracy. Through the GIS tools and remote sensing technique, earth observation data were converted into thematic layers such as lineament density, geology, drainage density, slope, land use and rainfall, which were combined to delineate groundwater potential zones. Based on their respective impact on groundwater potential, the AHP approach was adopted to assign weights on multi-influencing factors. These results will enable decision-makers to optimize hydrogeological exploration in large-scale catchment areas and map areas. According to the results, the southern part of the Wadi Saida Watershed is characterized as a higher groundwater potential area, where 32% of the total surface area falls in the excellent and good class of groundwater potential. The validation process revealed a 71% agreement between the estimated and actual yield of the existing boreholes in the study area.

References

 

Adiat KAN, Nawawi MNM, Abdullah K. 2012. Assessing the accuracy of GIS-based elemen-tary multi criteria decision analysis as a spatial prediction tool (A case of predicting potential zones of sustainable ground water resources). Journal of Hydrology, 440-441: 75-89.

 

Alaa AA, Ayser AS. 2015. Groundwater potential mapping of the major aquifer in northeastern missan governorate, South of Iraq by using analytical hierarchy process and GIS. Jour-nal of Environment and Earth Science, 4(10): 125-150.

 

Alonso JA, Lamata MT. 2006. Consistency in the analytic hierarchy process: A new approach. International Journal of Uncertainty Fuzziness and Knowledge Based Systems, 14(4): 445-459.

 

Balasubramani K. 2018. Physical resources assess-ment in a semi-arid watershed: An integrated methodology for sustainable land use planning. ISPRS Journal of Photo-grammetry and Remote Sensing, 142: 358-379.

 

Bartier PM, Keller CP. 1996. Multivariate inter-polation to incorporate thematic surface data using inverse distance weighting (IDW). Computers and Geosciences, 22(7): 795-799.

 
Bencherki A. 2008. Réalisation d'une carte de vulnérabilité des nappes phréatique de la région de Saida, en Algérie, avec l'aide des systèmes d'information géographique. MS. thesis. Canada: MONCTON University.
 

Chowdhury A, Jha MK, Chowdary VM, et al. 2009. Integrated remote sensing and GIS-based approach for assessing groundwater potential in West Medinipur District, West Bengal, India. International Journal of Remote Sensing, 30(1): 231-250.

 
Dahmani MN. 2016. Etude hydrologique e hydro-géologique du Bassin versant de l'Oued Saida, Magister thesis, University of d'Oran 2, Algeria. https://ds.univ-oran2.dz:8443/jspui/handle/123456789/458
 

Das B, Pal SC. (2019). Combination of GIS and fuzzy-AHP for delineating groundwater recharge potential zones in the critical Goghat-Ⅱ block of West Bengal, India. HydroResearch, 2: 21-30.

 

Djidi K, Bakalowicz M, Benali AM. 2008. Mixed, classical and hydrothermal karstification in a carbonate aquifer: Hydrogeological consequences. The case of the Saida aquifer system, Algeria. Comptes Rendus Geo-science, 340(7): 462-473.

 

Döell P, Hoffmann-Dobrev H, Portmann F, et al. 2012. Impact of water withdrawals from groundwater and surface water on continental water storage variations. Journal of Geodynamics, 59: 143-156.

 

Edet AE, Okereke CS, Teme SC, et al. 1998. Application of remote sensing data to ground-water exploration: A case study of the Cross River State, South Nigeria. Hydrogeology Journal, 6(3): 394-404.

 

Field CB, Barros VR, Dokken DJ, et al. 2014. IPCC Climate change 2014: Impacts, adaptation and vulnerability. Part A: Global and sectoral aspects. Contribution of working group Ⅱ to the Fifth Cambridge, United Kingdom and NewYork, NY, USA: Cambridge University Press: 1132.

 

Gdoura K, Anane M, Jellali S. 2015. Geospatial and AHP multicriteria analyses to locate and rank suitable sites for groundwater recharge with reclaimed water. Resources, Conservation and Recycling, 104: 19-30.

 

Gebru H, Gebreyohannes T, Hagos E. 2020. Identification of groundwater potential zones using analytical hierarchy process (AHP) and GIS-remote sensing integration, the Case of Golina River Basin, Northern Ethiopia. International Journal, 9(1): 3289-3311.

 

Ghosh D, Mandal M, Karmakar M, et al. 2020. Application of geospatial technology for delineating groundwater potential zones in the Gandheswari Watershed, West Bengal. Sustain. Water Resour Manag, 6: 14. https://link.springer.com/article/10.1007/s40899-020-00372-0

 

Hachem AM, Ali E, El Ouali Abdelhadi EHA, et al. 2015. Using remote sensing and GIS-Multicriteria decision analysis for ground-water potential mapping in the Middle Atlas Plateaus, Morocco. Research Journal of Recent Sciences, 4(7): 1-10.

 
Hanquiez V, Coutelier C, Pierson J. 2014. Introduction a l'analyse spatiale sur ArcGis for Desktop 10.2. Université de Bordeaux et CNRS. http://vincent.hanquiez.free.fr/Images/Hanquiez_Formation_ArcGIS10.2_IntroAS.pdf
 

Hennequi M. 2010. Spatialization of modeling data by Krigeage. Strasburg University: 7. https://dumas.ccsd.cnrs.fr/dumas-00520260/document

 

Huisman O, Rolf De by. 2009. Principles of geographic information systems-an intro-ductory text book, serie 1. The interna-tional institute for geo-information science and earth observation. Netherlands: ITC: 1-441.

 

Isaaks EH, Srivastava RM. 1989. An introduction to applied geostatistics. New York: Oxford University Press.

 

Jha MK, Chowdary VM, Chowdhury A. 2010. Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system and multicriteria decision analysis techniques. Hydrogeology Journal, 18(7): 1713-1728. https://doi.org/10.1007/s10040-010-0631-z

 

Jordan G, Meijninger BML, Hinsbergen DJJV, et al. 2005. Extraction of morphotectonic features from DEMs: Development and applications for study areas in Hungary and NW Greece. International Journal of Applied Earth Observation and Geoinformation, 7(3): 163-182.

 

Kanohin F, Saley MB, Aké GE, et al. 2012. Apport de la télédétection et des SIG dans l'identification des ressources en eau souterraine dans la région de Daoukro (Centre- Est de la Côte D'Ivoire). Journal of Innovation and Applied Studies, 1(1): 35-53.

 

Kessar C, Benkesmia Y, Blissag B, et al. 2020. Gis based analytical hierarchical process for the assessment of groundwater potential zones in Wadi Saida Watershed (NW-ALGERIA). 2020 Mediterranean and Middle-East Geo-science and Remote Sensing Symposium (M2GARSS). IEEE: 277-280.

 

Kettab A. 2001. Les ressources en eau en Algérie: stratégies, enjeux et vision. Desalination, 136(1-3): 25-33.

 

Klaus GD. 2013. Implementing the analytic hierarchy process as a standard method for multi-criteria decision making in corporate enterprises-a new AHP excel template with multiple inputs. Proceedings of the International Symposium on the Analytic Hierarchy Process: 1-10.

 

Koita M, Jourde H, Ruelland D, et al. 2010. Cartographie des accidents régionaux et identification de leur rôle dans l'hydro-dynamique souterraine en zone de socle. Cas de la région de Dimbokro-Bongouanou (Côte d'Ivoire). Hydrological Sciences Journal, 55(5): 805-820.

 

Koudou A, Assoma TV, Adiaffi B, et al. 2014. Analyses statistique et géostatistique de la fracturation extraite de l'imagerie ASAR ENVISAT du SUD-EST de la Côte d'Ivoire. Larhyss Journal, 20: 147-166.

 

Kumar T, Gautam K, Kumar T. 2014. Appraising the accuracy of GIS based multicriteria decision making technique for delineation of groundwater potential zones. Water Resources Management, 28: 4449-4466.

 

Le Page M, Berjamy B, Fakir Y, et al. 2012. An integrated DSS for groundwater management based on remote sensing. The case of a semi-arid aquifer in Morocco. Water Resources Management, 26(11): 3209-3230.

 
Leroux R. 2007. Définition et application d'une méthodologie pour l'étude de la propagation d'états de mer en milieu côtier. http://web.univ-ubs.fr/lmba/frenod/IMG/pdf/Rap-StagRomain.pdf. (in French)
 

Machiwal D, Jha MK, Mal BC. 2011. Assessment of groundwater potential in semi-arid region of india using remote sensing, GIS and MCDM Techniques. Water Resources Management, 25(5): 1359-1386.

 

Magesh NS, Chandrasekar N, Soundranayagam JP. 2012. Delineation of groundwater potential zones in Theni. District, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geoscience Frontiers, 3(2): 189-196.

 

Maity DK, Manda S. 2017. Identification of groundwater potential zones of the Kumari river Basin, India: An RS and GIS based semi-quantitative approach. Environ Dev Sustain, 21: 1013-1034.

 

Malczewski J. 1999. GIS and Multicriteria decision analysis. Wiley, United States of America: 177-192.

 

Medjber A, Berkane F. 2016. Quantification et évolution du Bilan de la nappe karstique de Saida (Nord-Ouest De l'Algérie). Journal Scientifique Européen, 12(9): 349. (in French)

 
NAHR. 2008. The 1/200000 geological map of northern Algeria.
 
NAHR. 2014. Five Stations Rainfall Data.
 

Nas B. 2009. Geostatistical approach to assessment of spatial distribution of groundwater quality. Polish Journal of Environmental Studies, 18(6): 1073-1082.

 

Nithyaa CN, Srinivas Y, Magesh NS, et al. 2019. Assessment of groundwater potential zones in Chittar basin, Southern India using GIS based AHP technique. Remote Sensing Applications: Society and Environment, 5: 1-15.

 

Nouayti A, Khattach D, Hilali M, et al. 2019. Mapping potential areas for groundwater storage in the High Guir Basin (Morocco): Contribution of remote sensing and geo-graphic information system. Journal of Groundwater Science and Engineering, 7(4): 309-322.

 

Nouayti N, Khattach D, Hilali M. 2017. Potential areas mapping for the groundwater storage in the high Ziz Basin (Morocco): Contribution of remote sensing and geographic information system. Bulletin de l'Institut Scientifique, Rabat, Section Sciences de la Terre, 39: 45-57.

 

Ould Cherif Ahmed A, Nagasawa R, Hattorin K, et al. 2008. Identification of groundwater potential areas in arid land using remote sensing and GIS: A case study for the Adrar region of northern Mauritania. Sand Dune Research, 55(1): 1-11.

 

Pankaj KS, Amit KB. 2006. Groundwater assess-ment through an integrated approach using remote sensing, GIS and resistivity tech-niques: A case study from a hard rock terrain. International Journal of Remote Sensing, 27(20): 4599-4620.

 
Pitaud G. 1973. Etude hydrogéologique pour la mise en valeur de la vallée de l'oued Saïda, DEMRH: 54-55. (in French)
 

Prasad RK, Mondal NC, Banerjee P, et al. 2008. Deciphering potential groundwater zone in hard rock through the application of GIS. Environmental Geology, 55: 467-475.

 

Pretorius JPG, Partridge TC. 1974. Analysis of angular a typicality of lineaments as aid to mineral exploration. Journal of South African Institute of Mining and Metallurgy, 74(10): 367-369.

 

Rahmati O, Samani AN, Mahdavi M, et al. 2015. Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arabian Journal of Geosciences, 8: 7059-7071.

 

Rajasekhar M, Sudarsana Raju G, Sreenivasulu Y, et al. 2019. Delineation of groundwater potential zones in semi-arid region of Jilledu-banderu river basin, Anantapur District, Andhra Pradesh, India using fuzzy logic, AHP and integrated fuzzy-AHP approaches. Hydro Research, 2: 97-108.

 

Rao BV, Briz-Kishore BH. 1991. A methodology for locating potential aquifers in a typical semi-arid region in India using resistivity and hydrogeologic parameters. Geoexploration, 27(1-2): 55-64.

 
Rilo RSA, Doni PEP, Lucas DS. 2019. Delineation of groundwater potential zones using re-mote sensing, GIS, and AHP techniques in southern region of Banjarnegara, Central Java, Indonesia, In: Proc. SPIE 11311, Sixth Geoinformation Science Symposium. Doi: 10.1117/12.2548473
 

Saaty TL. 1980. The analytic hierarchy process: Planning, priority setting, resource allocation. New York: McGraw-Hill: 340.

 

Sander P. 2007. Lineaments in groundwater ex-ploration: A review of applications and limi-tations. Hydrogeology Journal, 15(1): 71-74.

 
Saprikhine O, Riabenko V. 1978. Rapport sur les résultants des recherches systématiques et levé géologique à 1/50000 effectué en 1978 par l'équipe dans le périmètre de la feuille n°304 (Saida). (in French)
 

Sekar I, Randhir TO. 2007. Spatial assessment of conjunctive water harvesting potential in watershed systems. Journal of Hydrology, 334(1-2): 39-52.

 

Senanayake IP, Dissanayake DMDOK, Maya-dunna BB, et al. 2015. An approach to delineate groundwater recharge potential sites in Ambalantota, Sri Lanka using GIS techniques. Geoscience Frontiers, 7(1): 115-124.

 

Shekhar S, Pandey AC. 2014. Delineation of groundwater potential zone in hard rock terrain of India using remote sensing, geo-graphical information system (GIS) and analytic hierarchy process (AHP) techniques. Geocarto International, 30(4): 402-421.

 

Suja Rose RS, Krishnan N. 2009. Spatial analysis of groundwater potential using remote sensing and GIS in the Kanyakumari and Nambiyar basins, India. Journal of the Indian Society of Remote Sensing, 37: 681-692. Doi: 10.1007/s12524-009-0058-y

 

Wondifraw N, Binyam TH, Tilahun A. 2019. Mapping of groundwater potential zones using sentinel satellites (-1 SAR and -2A MSI) images and analytical hierarchy process in Ketar Watershed, Main Ethiopian Rift. Journal of African Earth Sciences, 160: 1-17.

 

WWDR. 2019. UN World Water Development Report 2019: Leaving No One Behind. The United Nations Educational, Scientific and Cultural Organization.

 
Yles F. 2014. Modélisation pluie-débit et transport solide dans le bassin versant de l'oued Saida. Ph. D. thesis, Algeria: Abou Bakr Belkaid University. (in French)
Journal of Groundwater Science and Engineering
Pages 45-64
Cite this article:
Cherif K, Yamina B, Bilal B, et al. Delineation of groundwater potential zones in Wadi Saida Watershed of NW-Algeria using remote sensing, geographic information system-based AHP techniques and geostatistical analysis. Journal of Groundwater Science and Engineering, 2021, 9(1): 45-64. https://doi.org/10.19637/j.cnki.2305-7068.2021.01.005

865

Views

63

Downloads

0

Crossref

0

Web of Science

2

Scopus

Altmetrics

Received: 10 September 2020
Accepted: 03 December 2020
Published: 28 March 2021
© 2021 Journal of Groundwater Science and Engineering Editorial Office
Return