AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (609.3 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Groundwater contaminant source identification based on QS-ILUES

Jin-bing LIU1Si-min JIANG1,2( )Nian-qing ZHOU1Yi CAI1Lu CHENG2Zhi-yuan WANG2
Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China
State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
Show Author Information

Abstract

When groundwater pollution occurs, to come up with an efficient remediation plan, it is particularly important to collect information of contaminant source (location and source strength) and hydraulic conductivity field of the site accurately and quickly. However, the information can not be obtained by direct observation, and can only be derived from limited measurement data. Data assimilation of observations such as head and concentration is often used to estimate parameters of contaminant source. As for hydraulic conductivity field, especially for complex non-Gaussian field, it can be directly estimated by geostatistics method based on limited hard data, while the accuracy is often not high. Better estimation of hydraulic conductivity can be achieved by solving inverse groundwater problem. Therefore, in this study, the multi-point geostatistics method Quick Sampling (QS) is proposed and introduced for the first time and combined with the iterative local updating ensemble smoother (ILUES) to develop a new data assimilation framework QS-ILUES. It helps to solve the contaminant source parameters and non-Gaussian hydraulic conductivity field simultaneously by assimilating hydraulic head and pollutant concentration data. While the pilot points are utilized to reduce the dimension of hydraulic conductivity field, the influence of pilot points' layout and the ensemble size of ILUES algorithm on the inverse simulation results are further explored.

References

 

CAO Zhen-dan, LI Liang-ping, CHEN Kang. 2018. Bridging iterative ensemble smoother and multiple-point geostatistics for better flow and transport modeling. Journal of Hydrology, 565: 411-421.

 

Chen Y, Oliver DS. 2012. Ensemble randomized maximum likelihood method as an itera-tive ensemble smoother. Mathematical Geo-sciences, 44(1): 1-26.

 

Emerick AA, Reynolds AC. 2013. Ensemble smoother with multiple data assimilation. Computers & Geosciences, 55: 3-15.

 

Evensen G, Van Leeuwen PJ. 2000. An ensemble kalman smoother for nonlinear dynamics. Monthly Weather Review, 128(6): 1852-1867.

 

Gravey M, Mariethoz G. 2020. QuickSampling v1.0: A robust and simplified pixel-based multiple-point simulation approach. Geosci-entific Model Development, 13(6): 2611-2630.

 

Guneshwor L, Eldho TI, Vinod kumar A. 2018. Identification of groundwater contamination sources using meshfree RPCM simulation and particle swarm optimization. Water Resources Management, 32(4): 1517-1538.

 

Jha M, Datta B. 2013. Three-dimensional ground-water contamination source identi-fication using adaptive simulated annealing. Journal of Hydrologic Engineering, 18(3): 307-317.

 

JIANG Si-min, ZAHNG Ya-li, WANG Pei, et al. 2013. An almost-parameter-free harmony search algorithm for groundwater pollution source identification. Water Science and Technology, 68(11): 2359-2366.

 

JU Lei, ZHANG Jiang-jiang, MENG Long, et al. 2018. An adaptive Gaussian process-based iterative ensemble smoother for data assimilation. Advances in Water Resources, 115: 125-135.

 

LI Li, WANG Yong-gang. 2006. Review of app-lications of geostatistics. Progress in Expora-tion Geophysics, 29(3): 163-169. (in Chinese)

 

LI Liang-ping, Stetler L, CAO Zhen-dan, et al. 2018a. An iterative normal-score ensemble smoother for dealing with non-Gaussianity in data assimilation. Journal of Hydrology, 567: 759-766.

 

LI Liang-ping, Puzel R, Davis A, et al. 2018b. Data assimilation in groundwater modelling: Ensemble Kalman filter versus ensemble smoothers. Hydrological Processes, 32(13): 2020-2029.

 

LIU Ling-ling, WU Jian-feng, WU Ji-chun, et al. 2009. A comparative study of four geostatistical methods for identifying the hydraulic conductivity fields based on test data. Hydrogeology & Engineering Geology, 36(5): 66-71. (in Chinese)

 

LIU Wen-ting, CHAO LUN Ba-gen, LIU Yan-wei, et al. 2010. Applying geostatistic for the study on spatial variability of coefficient of permeability. Water Conservancy Science and Technology and Economy, 16(4): 364-366. (in Chinese)

 

LUO Hong-mei, YANG Pei-jie, WANG Chang-jiang, et al. 2015. Lithofacies simulation based on multi-point geostatistics multiple data joint constraints. Oil Geophysical Pros-pecting, 50(1): 162-169. (in Chinese)

 

Mariethoz G, Renard P, Straubhaar J, et al. 2010. The Direct sampling method to perform multiple‐point geostatistical simulations. Water Resources Research, 46(11): 1-14.

 

MO Shao-xing, Zabaras N, SHI Xiao-qing, et al. 2019. Deep autoregressive neural net-works for high‐dimensional inverse pro-blems in groundwater contaminant source identification. Water Resources Research, 55(5): 3856-3881.

 

MO Shao-xing, Zabaras N, SHI Xiao-qing, et al. 2020. Integration of adversarial autoencoders with residual dense convolutional networks for estimation of non-Gaussian hydraulic conductivities. Water Resources Research, 56(2): 1-24.

 

Ramarao BS, Lavenue AM, DE Marsily G, et al. 1995. Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields: 1. Theory and computational experiments. Water Resources Research, 31(3): 475-493.

 

Rezaee H, Mariethoz G, Koneshloo M, et al. 2013. Multiple-point geostatistical simulation using the bunch-pasting direct sampling method. Computers & Geosciences, 54: 293-308.

 

Straubhaar J, Renard P, Mariethoz G, et al. 2011. An improved parallel multiple-point algorithm using a list approach. Mathematical Geosciences, 43(3): 305-328.

 

Strebelle S. 2002. Conditional simulation of complex geological structures using multiple-point statistics. Mathematical Geology, 34(1): 1-21.

 

XIA Xue-min, JIANG Si-min, ZHOU Nian-qing, et al. 2019. Genetic algorithm hyper-parameter optimization using taguchi design for ground-water pollution source identification. Water Supply, 19(1): 137-146.

 

YANG Ai-lin, JIANG Si-min, LIU Jin-bing, et al. 2020. Groundwater contaminant source identification based on iterative local update ensemble smoother. Journal of Groundwater Science and Engineering, 8(1): 1-9.

 

YANG Pei-jie. 2014. Geostatistics inversion- from two-point to multiple-point. Progress in Geophysics, 29(5): 2293-2300. (in Chinese)

 

ZHANG Jiang-jiang, LIN Guang, LI Wei-xuan, et al. 2018. An iterative local updating en-semble smoother for estimation and un-certainty assessment of hydrologic model parameters with multimodal distributions. Water Resources Research, 54(3): 1716-1733.

 

ZONG Cheng-yuan, KANG Xue-yuan, SHI Xiao-qing, et al. 2020. Characterization of non-Gaussian hydraulic conductivity fields using multiple-point geostatistics and ensemble smoother with multiple data assimilation method. Hydrogeology & Engineering Geology, 47(02): 1-8. (in Chinese)

Journal of Groundwater Science and Engineering
Pages 73-82
Cite this article:
LIU J-b, JIANG S-m, ZHOU N-q, et al. Groundwater contaminant source identification based on QS-ILUES. Journal of Groundwater Science and Engineering, 2021, 9(1): 73-82. https://doi.org/10.19637/j.cnki.2305-7068.2021.01.007

639

Views

27

Downloads

0

Crossref

8

Web of Science

8

Scopus

Altmetrics

Received: 27 September 2020
Accepted: 23 November 2020
Published: 28 March 2021
© 2021 Journal of Groundwater Science and Engineering Editorial Office
Return