AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (843.1 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Sensitivity assessment of strontium isotope as indicator of polluted groundwater for hydraulic fracturing flowback fluids produced in the Dameigou Shale of Qaidam Basin

Zhao-xian Zheng1,2Xiao-shun Cui1,2( )Pu-cheng Zhu1,2Si-jia Guo1,2
Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
Key Laboratory of Groundwater Science and Engineering, Ministry of Natural Resources, Shijiazhuang 050061, China
Show Author Information

Abstract

Hydrogeochemical processes that would occur in polluted groundwater and aquifer system, may reduce the sensitivity of Sr isotope being the indicator of hydraulic fracturing flowback fluids (HFFF) in groundwater. In this paper, the Dameigou shale gas field in the northern Qaidam Basin was taken as the study area, where the hydrogeochemical processes affecting Sr isotope was analysed. Then, the model for Sr isotope in HFFF-polluted groundwater was constructed to assess the sensitivity of Sr isotope as HFFF indicator. The results show that the dissolution can release little Sr to polluted groundwater and cannot affect the εSr (the deviation of the 87Sr/86Sr ratio) of polluted groundwater. In the meantime, cation exchange can considerably affect Sr composition in the polluted groundwater. The Sr with low εSr is constantly released to groundwater from the solid phase of aquifer media by cation exchange with pollution of Quaternary groundwater by the HFFF and it accounts for 4.6% and 11.0% of Sr in polluted groundwater when the HFFF flux reaches 10% and 30% of the polluted groundwater, respectively. However, the Sr from cation exchange has limited impact on Sr isotope in polluted groundwater. Addition of Sr from cation exchange would only cause a 0.2% and 1.2% decrease in εSr of the polluted groundwater when the HFFF flux reaches 10% and 30% of the polluted groundwater, respectively. These results demonstrate that hydrogeochemical processes have little effect on the sensitivity of Sr isotope being the HFFF indicator in groundwater of the study area. For the scenario of groundwater pollution by HFFF, when the HFFF accounts for 5% (in volume percentage) of the polluted groundwater, the HFFF can result in detectable shifts of εSr (ΔεSr=0.86) in natural groundwater. Therefore, after consideration of hydrogeochemical processes occurred in aquifer with input of the HFFF, Sr isotope is still a sensitive indicator of the Quaternary groundwater pollution by the HFFF produced in the Dameigou shale of Qaidam Basin.

References

 
Appelo CAJ, Postma D. 2005. Geochemistry, groundwater and pollution. Leiden: A.A. Balkema Publishers: 377.
 

Breeuwsma A, Wösten JHM, Vleeshouwer JJ, et al. 1986. Derivation of land qualities to assess environmental problems from soil surveys. Soil Science Society of America Journal, 50: 186-190.

 

Chapman EC, Capo RC, Stewart BW, et al. 2012. Geochemical and strontium isotope characterization of produced waters from marcellus shale natural gas extraction. Environmental Science & Technology, 46(6): 3545-3553.

 

Cui XS, Zheng ZX, Zhang HD, et al. 2020a. Impact of water-rock interactions on indicators of hydraulic fracturing flowback fluids produced from the Jurassic shale of Qaidam Basin, NW China. Journal of Hydrology, 590: 1-10.

 

Cui XS, Zheng ZX, Zhu PC, et al. 2020b. Origin and geochemical evolution of formation water in the Dameigou shale gas reservoir in Northern Qaidam Basin. Polish Journal of Environmental Studies, 29(5): 3097-3107.

 

Douglas GB, Gray CM, Hart BT, et al. 1995. A strontium isotopic investigation of the origin of suspended particulate matter (SPM) in the Murray-Darling River system, Australia. Geochimica et Cosmochimica Acta, 59(18): 3799-3815.

 

Huang TM, Li ZB, Mayer B, et al. 2020. Identification of geochemical processes during hydraulic fracturing of a shale gas reservoir: A controlled field and laboratory water-rock interaction experiment. Geophysical Research Letters, 47: e2020GL090420.

 

Lasaga AC. 1984. Chemical kinetics of water-rock interactions. Journal of Geophysical Research, 89: 4009-4025.

 

Li JS, Li TW, Peng XM, et al. 2014. Hydrogeochemical behaviors of oilfield water in the Tertiary in western Qaidam Basin. Oil & Gas Geology, 35(1): 50-55. (in Chinese)

 
Li TW. 2007. The origin analysis by hydro-chemical characters and Sr isotope of oil field brines in west of Qaidam Basin. M.S. thesis, Xining: Qinghai Institute of Salt Lakes, Chinese Academy of Sciences: 31. (in Chinese)
 

Li XH, Wang R, Li JF. 2018. Study on hydrochemical characteristics and formation mechanism of shallow groundwater in eastern Songnen Plain. Journal of Groundwater Science and Engineering, 6(3): 161-170.

 

Ma BH, Liu S, Wang XZ, et al. 2018. A preliminary study on the spatial distribution characteristics and causes of strontium-rich mineral water in the Dushan complex. Journal of Groundwater Science and Engineering, 6(2): 115-125.

 

Mclntosh J, Hendry MJ, Ballentine CJ, et al. 2019. A critical review of state-of-the-art and emerging approaches to identify fracking-derived gases and associated contaminants in aquifers. Environmental Science & Technology, 53(3): 1063-1077.

 

Schott J, Berner RA, Sjoberg EL. 1981. Mechanism of pyroxene and amphibole weathering, experimental studies of iron-free minerals. Geochimica et Cosmochimica Acta, 45(11): 2132-2135.

 

Vengosh A, Jackson RB, Warner NR, et al. 2014. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States. Environmental Science & Technology, 48(15): 8334-8348.

 

Vengosh A, Warner NR, Kondash A, et al. 2015. Isotopic fingerprints for delineating the environmental effects of hydraulic fracturing fluids. Procedia Earth and Planetary Science, 13: 244-247.

 

Warner NR, Darrah TH, Jackson RB, et al. 2014. New tracers identify hydraulic fracturing fluids and accidental releases from oil and gas operations. Environmental Science & Technology, 48(21): 12552-12560.

 

Zhang A, Li QH, Shao CS, et al. 2020. Discovery and development suggestions of strontium-rich groundwater in Chibi City, China. China Geology, 3(1): 184-185.

 
Zheng ZX. 2019. Hydrogeochemical and isotopic indicators of hydraulic fracturing flowback fluids produced from continental shale in Northern China--Derived from Dameigou shale in the Northern Qaidam Basin. Ph.D. thesis. Beijing: China University of Geosciences (Beijing): 38. (in Chinese)
 

Zheng ZX, Chen ZY, Su C. 2014. Genetic mechanism of potential methane contamination of aquifer caused by shale gas development. Hydrogeology & Engineering Geology, 41(6): 116-121. (in Chinese)

 

Zheng ZX, Zhang HD, Chen ZY, et al. 2017. Hydrogeochemical and isotopic indicators of hydraulic fracturing flowback fluids in shallow groundwater and stream water, derived from dameigou shale gas extraction in the northern Qaidam Basin. Environmental Science & Technology, 51(11): 5889-5898.

 

Zhou Z, Ren SM, Wu YL, et al. 2016. Evaluation of shale gas resources in Yuqia sag of Qaidam Basin. Geological Bulletin of China, 35(2-3): 242-249. (in Chinese)

Journal of Groundwater Science and Engineering
Pages 93-101
Cite this article:
Zheng Z-x, Cui X-s, Zhu P-c, et al. Sensitivity assessment of strontium isotope as indicator of polluted groundwater for hydraulic fracturing flowback fluids produced in the Dameigou Shale of Qaidam Basin. Journal of Groundwater Science and Engineering, 2021, 9(2): 93-101. https://doi.org/10.19637/j.cnki.2305-7068.2021.02.001

511

Views

24

Downloads

0

Crossref

5

Web of Science

5

Scopus

Altmetrics

Received: 07 December 2020
Accepted: 30 March 2021
Published: 28 June 2021
© 2021 Journal of Groundwater Science and Engineering Editorial Office
Return