AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (801.7 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Grain size characteristics and genesis of the Muxing loess in the Muling-Xingkai Plain, Northeast China

Zhong-shuang Cheng1,2Chen Su1,2( )Zhao-xian Zheng1,2Zhuang Li3Li-kang Wang1,2En-bao Wang4
Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Science, Shijiazhuang 050061, China
Key Laboratory of Groundwater Science and Engineering, Ministry of Natural Resource, Shijiazhuang 050061, China
Shandong Geological Environment Monitoring Station, Jinan 250014, China
Research of Regional Geological Survey of Heilongjiang, Harbin 150036, China
Show Author Information

Abstract

Thick loess is deposited on the platform in the piedmont zone of Muling-Xingkai Plain (Muxing Plain), but the genesis of the Muxing loess is still unclear. The aims of this study are to analyze the grain size characteristics of Muxing loess collected from the cores of a typical borehole (ZK1) in the piedmont zone of Muxing Plain, and to verify its genesis. The Muxing loess is mainly composed of the particles with diameter less than 50 μm, with an average content of 92.48%. The coarse silt particles with diameter of 10-50 μm are the basic composition of aeolian sediments, and their average content is 44.34% for the Muxing loess, which is the mode class among the particles with different diameters. The grain size parameters and frequency curves are similar to those of the typical aeolian sediments. The distribution characteristic of the Muxing loess in the C-M scatter diagram is consistent with that of the Xi Feng loess. In addition, the discriminant analysis shows the Muxing loess mostly consists of aeolian sediments. Therefore, it can be concluded that the Muxing loess mainly resulted from aeolian deposition based on the grain size characteristics. Muxing Plain is dominated by the monsoon climate, and the wind-blown dusts are gradually deposited after being transported over long distances.

References

 

An ZS, Liu XD. 2000. The history and variability of East Asian monsoon climate. Chinese Science Bulletin, 45(3): 238-248. (in Chinese)

 

Cao Z, Zhu XD. 2014. Research on the formation reason of loess in Middle and Eastern Place in Northeast China. Journal of Changchun Normal University: Natural Science (2): 85-89.

 

Chen PJ, Zheng XM, Zhou LM, et al. 2017. The grain size characteristics of Xiashu loess in Ningzhen area and its paleoenvironmental significance. Geological Science and Technology Information, 36(5): 7-13. (in Chinese)

 

Ding ZL, Derby SE, Yang SL. 2005. Stepwise expansion of desert environment across northern China in the past 3.5 Ma and implications for monsoon evolution. Earth and Planetary Science Letters, 237(1/2): 45-55.

 

He KH, Xie YQ, Kang CG, et al. 2009. Particle size composition and source analysis of Harbin sand dust sediments. Chinese Agricultural Science Bulletin, 25(11): 200-205. (in Chinese)

 

Huang Z, Wang JL, Wang Y. 2010. Grain-size features of Quaternary sediments in Changjiang Three Gorge Reservoir of the Wushan area. Tropical Geography, 30(1): 30-33, 39.

 

Jiang GL, Liu LJ, Bi ZW, et al. 2018. Grain size characteristics of Fengning loess in Hebei and its environmental significance. Geological Science and Technology Information, 37(4): 83-89. (in Chinese)

 

Li CA, Zhang YF, Yuan SY. 2010. Grain size characteristics of “Wushan loess” and its indication of genesis. Earth Science-Journal of China University of Geosciences, 35(5): 779-884. (in Chinese)

 

Li XS, Yang DY. 2001. A preliminary study on the grain size characteristics and genesis of Xiashu loess in Zhenjiang. Marine Geology and Quaternary Geology, 21(1): 25-31. (in Chinese)

 

Li Y, Song YG, Yan LB, et al. 2014. The formation of loess in Tacheng, Xinjiang. Journal of Geological Environment, 5(2): 127-134. (in Chinese)

 
Liu DS. 1985. Loess and environment. Beijing: Science Press. (in Chinese)
 

Liu JF, Guo ZT, Qiao YS. 2005. The morphological characteristics and size distribution of quartz particles in the Miocene loess-paleosoil sequence in Tai’an and their significance to the genesis. Chinese Science Bulletin, 50(24): 2806-2809. (in Chinese)

 

Lu HY, An ZS. 1998. The paleoclimatic significance of the grain size composition of loess in the Loess Plateau. Science in China: Series D, 28(3): 278-283. (in Chinese)

 

Peng SZ, Hao QZ, Wang L, et al. 2016. Geochemical and grain-size evidence for the provenance of loess deposits in the Central Shandong Mountains region, northern China. Quaternary Research, 85(2): 290-298.

 

Pye K, Tsoar H. 1987. The mechanics and geological implications of dust transport and deposition in deserts with particular reference to loess formation and dune sand diagenesis in the northern Negev, Israel. Geological Society Special Publication, 35: 139-156.

 

Sahu BK. 1964. Depositional mechanisms from the size analysis of clastic sediments. Journal of SedimentaryResearch, 34(1): 73-83.

 

Sun DH, Lu HY, David R. 2000. The bimodal distribution of grain size of Chinese loess and its paleoclimatic significance. Acta Sedimentologica Sinica, 18(3): 327-335. (in Chinese)

 

Sun HY, Song YJ, Li Y, et al. 2018. Magnetic susceptibility, grain size characteristics and paleoclimatic significance of bole loess in the northern foot of Tianshan Mountains. Journal of Earth Environment, 9(2): 123-136. (in Chinese)

 

Wang XY, Lu HY, Zhang HZ, et al. 2018. Distribution, provenance, and onset of the Xiashu loess in Southeast China with paleoclimatic implications. Journal of Asian Earth Sciences, 155: 180-187. (in Chinese)

 

Wang ZD, Huang CC, Yang HJ. 2018a. Provenance characteristics and evolution of loess grain size indicators from the eastern foot of Liupan Mountain since the Late Pleistocene. Geographical Sciences, 38(5): 818-826.

 

Wang ZD, Huang CC, Zhou YL. 2018b. Variation characteristics and paleoclimate significance of Holocene loess-paleosoil sequence in eastern Guanzhong. Advances in Earth Science, 33(3): 293-304. (in Chinese)

 

Wei CY, Li CA, Kang CG. 2015. Grain size characteristics of the loess around the mountain in Harbin and its indications of genesis. Earth Science-Journal of China University of Geosciences, 40(12): 1945-1954. (in Chinese)

 

Wu C, Zheng XM, Wang H. 2019. Multivariate statistical analysis of grain size and sedimentary environment discrimination of the first hard clay layer in the Yangtze River Delta. Acta Sedimentologica Sinica, 037(001): 115-123. (in Chinese)

 

Wu K, Peng HX, Shi R. 2014. Analysis of the grain size characteristics and causes of loess in the Three Gorges area of the Yangtze River. Journal of Central China Normal University (Natural Science Edition), 48(2): 284-289. (in Chinese)

 
Zeng L, Wu HF, Lyu AQ, et al. 2016. New magnetostratigraphic and pedostratigraphic investigations of loess deposits in north-east China and their implications for regional environmental change during the Mid-Pleistocene climatic transition. Journal of Quaternary Science, 31(1): 20-32. DOI: 10.1002/jqs.2829.
 

Zhang YX, Chen DL, Xue XX. 1998. Genetic types of late Neogene red clay in the middle reaches of the Yellow River. Journal of Stratigraphy, 22(1): 10-15.

 

Zhu XY, Liu LW, Meng XQ. 2019. Grain size characteristics and source enlightenment of the Wushan loess in the Yangtze Three Gorges area. Journal of Earth Environment, 10(6): 579-589. (in Chinese)

Journal of Groundwater Science and Engineering
Pages 152-160
Cite this article:
Cheng Z-s, Su C, Zheng Z-x, et al. Grain size characteristics and genesis of the Muxing loess in the Muling-Xingkai Plain, Northeast China. Journal of Groundwater Science and Engineering, 2021, 9(2): 152-160. https://doi.org/10.19637/j.cnki.2305-7068.2021.02.007

436

Views

22

Downloads

0

Crossref

0

Web of Science

0

Scopus

Altmetrics

Received: 04 August 2020
Accepted: 05 February 2021
Published: 28 June 2021
© 2021 Journal of Groundwater Science and Engineering Editorial Office
Return