AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (816.4 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

MiR-135a biogenesis and regulation in malignancy: a new hope for cancer research and therapy

Zhe Cao1,*Jiangdong Qiu1,*Gang Yang1Yueze Liu1Wenhao Luo1Lei You1Lianfang Zheng2Taiping Zhang1,3 ( )
Department of General Surgery
Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing 100730, China

*These authors contributed equally to this work.

Show Author Information

Abstract

MicroRNAs (miRNAs) are evolutionarily conserved small non-coding RNAs that affect posttranscriptional regulation by binding to the 3′-untranslated region of target messenger RNAs. MiR-135a is a critical miRNA that regulates gene expression, and many studies have focused on its function in cancer research. MiR-135a is dysregulated in various cancers and regulates cancer cell proliferation and invasion via several signaling pathways, such as the MAPK and JAK2/STAT3 pathways. MiR-135a has also been found to promote or inhibit the epithelial-mesenchymal transition and chemoresistance in different cancers. Several studies have discovered the value of miR-135a as a novel biomarker for cancer diagnosis and prognosis. These studies have suggested the potential of therapeutically manipulating miR-135a to improve the outcome of cancer patients. Although these findings have demonstrated the role of miR-135a in cancer progression and clinical applications, a number of questions remain to be answered, such as the dual functional roles of miR-135a in cancer. In this review, we summarize the available studies regarding miR-135a and cancer, including background on the biogenesis and expression of miR-135a in cancer and relevant signaling pathways involved in miR-135a-mediated tumor progression. We also focus on the clinical application of miR-135a as a biomarker in diagnosis and as a therapeutic agent or target in cancer treatment, which will provide a greater level of insight into the translational value of miR-135a.

References

1

Bartel DP. Micrornas: genomics, biogenesis, mechanism, and function. Cell. 2004; 116: 281-97.

2

Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAS with antisense complementarity to lin-14. Cell. 1993; 75: 843-54.

3

Rupaimoole R, Slack FJ. Microrna therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017; 16: 203-22.

4

Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many roads to maturity: microrna biogenesis pathways and their regulation. Nat Cell Biol. 2009; 11: 228-34.

5

Ha M, Kim VN. Regulation of microrna biogenesis. Nat Rev Mol Cell Biol. 2014; 15: 509-24.

6

Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human RISC couples microrna biogenesis and posttranscriptional gene silencing. Cell. 2005; 123: 631-40.

7

Gebert LFR, MacRae IJ. Regulation of microrna function in animals. Nat Rev Mol Cell Biol. 2019; 20: 21-37.

8

Lin S, Gregory RI. Microrna biogenesis pathways in cancer. Nat Rev Cancer. 2015; 15: 321-33.

9

Garzon R, Calin GA, Croce CM. Micrornas in cancer. Annu Rev Med. 2009; 60: 167-79.

10

Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase Ⅲ Drosha initiates microrna processing. Nature. 2003; 425: 415-9.

11

Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAS. RNA. 2004; 10: 185-91.

12

Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD. A cellular function for the RNA-interference enzyme DICER in the maturation of the let-7 small temporal RNA. Science. 2001; 293: 834-8.

13

Qiu J, Yang G, Feng M, Zheng S, Cao Z, You L, et al. Extracellular vesicles as mediators of the progression and chemoresistance of pancreatic cancer and their potential clinical applications. Mol Cancer. 2018; 17: 2.

14

Yang TT, Liu CG, Gao SC, Zhang Y, Wang PC. The serum exosome derived microrna-135a, -193b, and -384 were potential Alzheimer’s disease biomarkers. Biomed Environ Sci. 2018; 31: 87-96.

15

Ruan K, Fang X, Ouyang G. Micrornas: novel regulators in the hallmarks of human cancer. Cancer Lett. 2009; 285: 116-26.

16

Yang G, Xiong G, Cao Z, Zheng S, You L, Zhang T, et al. MiR-497 expression, function and clinical application in cancer. Oncotarget. 2016; 7: 55900-11.

17

Heravi-Moussavi A, Anglesio MS, Cheng SW, Senz J, Yang W, Prentice L, et al. Recurrent somatic DICER1 mutations in nonepithelial ovarian cancers. N Engl J Med. 2012; 366: 234-42.

18

Wallace JA, O’Connell RM. Micrornas and acute myeloid leukemia: therapeutic implications and emerging concepts. Blood. 2017; 130: 1290-301.

19

Nagel R, le Sage C, Diosdado B, van der Waal M, Oude Vrielink JA, Bolijn A, et al. Regulation of the adenomatous polyposis coli gene by the MiR-135 family in colorectal cancer. Cancer Res. 2008; 68: 5795-802.

20

Zhou W, Li X, Liu F, Xiao Z, He M, Shen S, et al. MiR-135a promotes growth and invasion of colorectal cancer via metastasis suppressor 1 in vitro. Acta Biochim Biophys Sin (Shanghai). 2012; 44: 838-46.

21

Wang Q, Zhang H, Shen X, Ju S. Serum microrna-135a-5p as an auxiliary diagnostic biomarker for colorectal cancer. Ann Clin Biochem. 2017; 54: 76-85.

22

Costa FF, Bischof JM, Vanin EF, Lulla RR, Wang M, Sredni ST, et al. Identification of micrornas as potential prognostic markers in ependymoma. PLoS One. 2011; 6: e25114.

23

Chen Y, Zhang J, Wang H, Zhao J, Xu C, Du Y, et al. miRNA-135a promotes breast cancer cell migration and invasion by targeting HOXA10. BMC Cancer. 2012; 12: 111.

24

Mao XP, Zhang LS, Huang B, Zhou SY, Liao J, Chen LW, et al. MiR-135a enhances cellular proliferation through post-transcriptionally regulating PHLPP2 and FOXO1 in human bladder cancer. J Transl Med. 2015; 13: 86.

25

Ren J, Li Z, Tu C. MiR-135 post-transcriptionally regulates FOXO1 expression and promotes cell proliferation in human malignant melanoma cells. Int J Clin Exp Pathol. 2015; 8: 6356-66.

26

Zeng YB, Liang XH, Zhang GX, Jiang N, Zhang T, Huang JY, et al. miRNA-135a promotes hepatocellular carcinoma cell migration and invasion by targeting forkhead box O1. Cancer Cell Int. 2016; 16: 63.

27

Fukagawa S, Miyata K, Yotsumoto F, Kiyoshima C, Nam SO, Anan H, et al. Microrna-135a-3p as a promising biomarker and nucleic acid therapeutic agent for ovarian cancer. Cancer Sci. 2017; 108: 886-96.

28

Dang Z, Xu WH, Lu P, Wu N, Liu J, Ruan B, et al. Microrna-135a inhibits cell proliferation by targeting BMI1 in pancreatic ductal adenocarcinoma. Int J Biol Sci. 2014; 10: 733-45.

29

Xu B, Tao T, Wang Y, Fang F, Huang Y, Chen S, et al. HSA-MiR-135a-1 inhibits prostate cancer cell growth and migration by targeting EGFR. Tumour Biol. 2016; 37: 14141-51.

30

Zhang YK, Sun B, Sui G. Serum microrna-135a downregulation as a prognostic marker of non-small cell lung cancer. Genet Mol Res. 2016; 15: gmr.15038252.

31

Shi H, Ji Y, Zhang D, Liu Y, Fang P. MiR-135a inhibits migration and invasion and regulates EMT-related marker genes by targeting KLF8 in lung cancer cells. Biochem Biophys Res Commun. 2015; 465: 125-30.

32

Zhou L, Qiu T, Xu J, Wang T, Wang J, Zhou X, et al. MiR-135a/b modulate cisplatin resistance of human lung cancer cell line by targeting MCL1. Pathol Oncol Res. 2013; 19: 677-83.

33

He Q, Fang Y, Lu F, Pan J, Wang L, Gong W, et al. Analysis of differential expression profile of miRNA in peripheral blood of patients with lung cancer. J Clin Lab Anal. 2019; 33: e23003.

34

Zhao X, Sun Z, Li H, Jiang F, Zhou J, Zhang L. MiR-135a-5p modulates biological functions of thyroid carcinoma cells via targeting VCAN 3’-UTR. Cancer Biomark. 2017; 20: 207-16.

35

Zhou W, Bi X, Gao G, Sun L. miRNA-133b and miRNA-135a induce apoptosis via the JAK2/STAT3 signaling pathway in human renal carcinoma cells. Biomed Pharmacother. 2016; 84: 722-9.

36

Zhou H, Guo W, Zhao Y, Wang Y, Zha R, Ding J, et al. Microrna-135a acts as a putative tumor suppressor by directly targeting very low density lipoprotein receptor in human gallbladder cancer. Cancer Sci. 2014; 105: 956-65.

37

Zhao Z, Lin X, Tong Y, Li W. Silencing lncRNA ZFAS1 or elevated microrna-135a represses proliferation, migration, invasion and resistance to apoptosis of osteosarcoma cells. Cancer Cell Int. 2019; 19: 326.

38

Wu S, Lin Y, Xu D, Chen J, Shu M, Zhou Y, et al. MiR-135a functions as a selective killer of malignant glioma. Oncogene. 2012; 31: 3866-74.

39

Tomsic J, Fultz R, Liyanarachchi S, Genutis LK, Wang Y, Li W, et al. Variants in microrna genes in familial papillary thyroid carcinoma. Oncotarget. 2017; 8: 6475-82.

40

Wu H, Huang M, Cao P, Wang T, Shu Y, Liu P. MiR-135a targets JAK2 and inhibits gastric cancer cell proliferation. Cancer Biol Ther. 2012; 13: 281-8.

41

Zhang C, Chen X, Chen X, Wang X, Ji A, Jiang L, et al. MiR-135a acts as a tumor suppressor in gastric cancer in part by targeting KIFC1. Onco Targets Ther. 2016; 9: 3555-63.

42

Yan LH, Chen ZN, Li L, Chen J, Wei WE, Mo XW, et al. MiR-135a promotes gastric cancer progression and resistance to oxaliplatin. Oncotarget. 2016; 7: 70699-714.

43

Kroiss A, Vincent S, Decaussin-Petrucci M, Meugnier E, Viallet J, Ruffion A, et al. Androgen-regulated microrna-135a decreases prostate cancer cell migration and invasion through downregulating ROCK1 and ROCK2. Oncogene. 2015; 34: 2846-55.

44

Wei X, Cheng X, Peng Y, Zheng R, Chai J, Jiang S. STAT5a promotes the transcription of mature Mmu-MiR-135a in 3t3-l1 cells by binding to both MiR-135a-1 and MiR-135a-2 promoter elements. Int J Biochem Cell Biol. 2016; 77: 109-19.

45

Cheng Z, Liu F, Zhang H, Li X, Li Y, Li J, et al. MiR-135a inhibits tumor metastasis and angiogenesis by targeting FAK pathway. Oncotarget. 2017; 8: 31153-68.

46

Zhang X, Gao F, Zhou L, Wang H, Shi G, Tan X. UCA1 regulates the growth and metastasis of pancreatic cancer by sponging MiR-135a. Oncol Res. 2017; 25: 1529-41.

47

Wang J, Zhang M, Lu W. Long noncoding RNA GACAT3 promotes glioma progression by sponging MiR-135a. J Cell Physiol. 2019; 234: 10877-87.

48

Wu Q, Shi M, Meng W, Wang Y, Hui P, Ma J. Long noncoding RNA FOXD3-as1 promotes colon adenocarcinoma progression and functions as a competing endogenous RNA to regulate sirt1 by sponging MiR-135a-5p. J Cell Physiol. 2019; 234: 21889-902.

49

Tang Y, Cao G, Zhao G, Wang C, Qin Q. lncRNA differentiation antagonizing non-protein coding RNA promotes proliferation and invasion through regulating MiR-135a/NLRP37 axis in pancreatic cancer. Invest New Drugs. 2020; 38: 714-21.

50

Wei X, Yang X, Wang B, Yang Y, Fang Z, Yi C, et al. lncRNA MBNL1-AS1 represses cell proliferation and enhances cell apoptosis via targeting MiR-135a-5p/PHLPP2/FOXO1 axis in bladder cancer. Cancer Med. 2020; 9: 724-36.

51

Wang X, Kan J, Han J, Zhang W, Bai L, Wu H. lncRNA SNHG16 functions as an oncogene by sponging MiR-135a and promotes JAK2/STAT3 signal pathway in gastric cancer. J Cancer. 2019; 10: 1013-22.

52

Klinge CM. Non-coding RNAS: long non-coding RNAS and micrornas in endocrine-related cancers. Endocr Relat Cancer. 2018; 25: R259-82.

53

Zheng Y, Zheng B, Meng X, Yan Y, He J, Liu Y. lncRNA DANCR promotes the proliferation, migration, and invasion of tongue squamous cell carcinoma cells through MiR-135a-5p/KLF8 axis. Cancer Cell Int. 2019; 19: 302.

54

Setien-Olarra A, Marichalar-Mendia X, Bediaga NG, Aguirre-Echebarria P, Aguirre-Urizar JM, Mosqueda-Taylor A. Micrornas expression profile in solid and unicystic ameloblastomas. PLoS One. 2017; 12: e0186841.

55

Diniz MG, Franca JA, Vilas-Boas FAS, de Souza FTA, Calin GA, Gomez RS, et al. The long noncoding RNA KIAA0125 is upregulated in ameloblastomas. Pathol Res Pract. 2019; 215: 466-9.

56

Li P, Yang X, Yuan W, Yang C, Zhang X, Han J, et al. Circrna-Cdr1as exerts anti-oncogenic functions in bladder cancer by sponging microrna-135a. Cell Physiol Biochem. 2018; 46: 1606-16.

57

Shi L, Li X, Wu Z, Li X, Nie J, Guo M, et al. DNA methylation-mediated repression of MiR-181a/135a/302c expression promotes the microsatellite-unstable colorectal cancer development and 5-fu resistance via targeting PLAG1. J Genet Genomics. 2018; 45: 205-14.

58

Bi C, Chung TH, Huang G, Zhou J, Yan J, Ahmann GJ, et al. Genome-wide pharmacologic unmasking identifies tumor suppressive micrornas in multiple myeloma. Oncotarget. 2015; 6: 26508-18.

59

Shi H, Fang R, Li Y, Li L, Zhang W, Wang H, et al. The oncoprotein HBXIP suppresses gluconeogenesis through modulating pck1 to enhance the growth of hepatoma cells. Cancer Lett. 2016; 382: 147-56.

60

Wan X, Pu H, Huang W, Yang S, Zhang Y, Kong Z, et al. Androgen-induced MiR-135a acts as a tumor suppressor through downregulating RBAK and MMP11, and mediates resistance to androgen deprivation therapy. Oncotarget. 2016; 7: 51284-300.

61

Duan S, Dong X, Hai J, Jiang J, Wang W, Yang J, et al. Microrna-135a-3p is downregulated and serves as a tumour suppressor in ovarian cancer by targeting CCR2. Biomed Pharmacother. 2018; 107: 712-20.

62

Yamada Y, Hidaka H, Seki N, Yoshino H, Yamasaki T, Itesako T, et al. Tumor-suppressive microrna-135a inhibits cancer cell proliferation by targeting the c-MYC oncogene in renal cell carcinoma. Cancer Sci. 2013; 104: 304-12.

63

Navarro A, Diaz T, Martinez A, Gaya A, Pons A, Gel B, et al. Regulation of JAK2 by MiR-135a: prognostic impact in classic Hodgkin lymphoma. Blood. 2009; 114: 2945-51.

64

Xu B, Lu X, Zhao Y, Liu C, Huang X, Chen S, et al. Microrna-135a induces prostate cancer cell apoptosis via inhibition of STAT6. Oncol Lett. 2019; 17: 1889-95.

65

Coarfa C, Fiskus W, Eedunuri VK, Rajapakshe K, Foley C, Chew SA, et al. Comprehensive proteomic profiling identifies the androgen receptor axis and other signaling pathways as targets of micrornas suppressed in metastatic prostate cancer. Oncogene. 2016; 35: 2345-56.

66

Luo W, Sun C, Zhou J, Wang Q, Yu L, Bian XW, et al. MiR-135a-5p functions as a glioma proliferation suppressor by targeting tumor necrosis factor receptor-associated factor 5 and predicts patients’ prognosis. Am J Pathol. 2019; 189: 162-76.

67

Gomez Zubieta DM, Hamood MA, Beydoun R, Pall AE, Kondapalli KC. Microrna-135a regulates nhe9 to inhibit proliferation and migration of glioblastoma cells. Cell Commun Signal. 2017; 15: 55.

68

Ahmad A, Zhang W, Wu M, Tan S, Zhu T. Tumor-suppressive miRNA-135a inhibits breast cancer cell proliferation by targeting ELK1 and ELK3 oncogenes. Genes Genomics. 2018; 40: 243-51.

69

Tribollet V, Barenton B, Kroiss A, Vincent S, Zhang L, Forcet C, et al. MiR-135a inhibits the invasion of cancer cells via suppression of ERRalpha. PLoS One. 2016; 11: e0156445.

70

Guo LM, Ding GF, Xu W, Ge H, Jiang Y, Chen XJ, et al. MiR-135a-5p represses proliferation of HNSCC by targeting HOXA10. Cancer Biol Ther. 2018; 19: 973-83.

71

Wang LX, Kang ZP, Yang ZC, Ma RX, Tan Y, Peng XB, et al. Microrna-135a inhibits nasopharyngeal carcinoma cell proliferation through targeting interleukin-17. Cell Physiol Biochem. 2018; 46: 2232-8.

72

Ren JW, Li ZJ, Tu C. MiR-135 post-transcriptionally regulates FOXO1 expression and promotes cell proliferation in human malignant melanoma cells. Int J Clin Exp Pathol. 2015; 8: 6356-66.

73

Liu S, Guo W, Shi J, Li N, Yu X, Xue J, et al. Microrna-135a contributes to the development of portal vein tumor thrombus by promoting metastasis in hepatocellular carcinoma. J Hepatol. 2012; 56: 389-96.

74

Van Renne N, Roca Suarez AA, Duong FHT, Gondeau C, Calabrese D, Fontaine N, et al. MiR-135a-5p-mediated downregulation of protein tyrosine phosphatase receptor delta is a candidate driver of HCV-associated hepatocarcinogenesis. Gut. 2018; 67: 953-62.

75

Mao XW, Xiao JQ, Li ZY, Zheng YC, Zhang N. Effects of microrna-135a on the epithelial-mesenchymal transition, migration and invasion of bladder cancer cells by targeting GSK3beta through the Wnt/beta-catenin signaling pathway. Exp Mol Med. 2018; 50: e429.

76

Leung CO, Deng W, Ye TM, Ngan HY, Tsao SW, Cheung AN, et al. MiR-135a leads to cervical cancer cell transformation through regulation of beta-catenin via a SIAH1-dependent ubiquitin proteosomal pathway. Carcinogenesis. 2014; 35: 1931-40.

77

Xie Y, Li F, Li Z, Shi Z. MiR-135a suppresses migration of gastric cancer cells by targeting TRAF5-mediated NF-kappaB activation. Onco Targets Ther. 2019; 12: 975-84.

78

Zhou Y, Li S, Li J, Wang D, Li Q. Effect of microrna-135a on cell proliferation, migration, invasion, apoptosis and tumor angiogenesis through the IGF-1/PI3K/AKT signaling pathway in non-small cell lung cancer. Cell Physiol Biochem. 2017; 42: 1431-46.

79

Zhang Y, Jiang WL, Yang JY, Huang J, Kang G, Hu HB, et al. Downregulation of lysyl oxidase-like 4 LOXL4 by MiR-135a-5p promotes lung cancer progression in vitro and in vivo. J Cell Physiol. 2019; 234: 18679-87.

80

Zhang T, Wang N. MiR-135a confers resistance to gefitinib in non-small cell lung cancer cells by upregulation of RAC1. Oncol Res. 2018; 26: 1191-200.

81

Holleman A, Chung I, Olsen RR, Kwak B, Mizokami A, Saijo N, et al. MiR-135a contributes to paclitaxel resistance in tumor cells both in vitro and in vivo. Oncogene. 2011; 30: 4386-98.

82

Puisieux A, Brabletz T, Caramel J. Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol. 2014; 16: 488-94.

83

De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 2013; 13: 97-110.

84

Diepenbruck M, Christofori G. Epithelial–mesenchymal transition (EMT) and metastasis: yes, no, maybe? Curr Opin Cell Biol. 2016; 43: 7-13.

85

Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, et al. The transcription factor snail is a repressor of e-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. 2000; 2: 84-9.

86

Pieterse Z, Amaya-Padilla MA, Singomat T, Binju M, Madjid BD, Yu Y, et al. Ovarian cancer stem cells and their role in drug resistance. Int J Biochem Cell Biol. 2019; 106: 117-26.

87

Li Q, Yang G, Feng M, Zheng S, Cao Z, Qiu J, et al. Nf-kappaB in pancreatic cancer: its key role in chemoresistance. Cancer Lett. 2018; 421: 127-34.

88

Xiong G, Feng M, Yang G, Zheng S, Song X, Cao Z, et al. The underlying mechanisms of non-coding RNAS in the chemoresistance of pancreatic cancer. Cancer Lett. 2017; 397: 94-102.

89

Wang J, Yang M, Li Y, Han B. The role of micrornas in the chemoresistance of breast cancer. Drug Dev Res. 2015; 76: 368-74.

90

Caliskan M, Guler H, Bozok Cetintas V. Current updates on micrornas as regulators of chemoresistance. Biomed Pharmacother. 2017; 95: 1000-12.

91

Leonetti A, Assaraf YG, Veltsista PD, El Hassouni B, Tiseo M, Giovannetti E. Micrornas as a drug resistance mechanism to targeted therapies in EGFR-mutated NSCLC: current implications and future directions. Drug Resist Updat. 2019; 42: 1-11.

92

Madurantakam Royam M, Ramesh R, Shanker R, Sabarimurugan S, Kumarasamy C, Ramesh N, et al. miRNA predictors of pancreatic cancer chemotherapeutic response: a systematic review and meta-analysis. Cancers (Basel). 2019; 11: 900.

93

Garofalo M, Croce CM. Micrornas as therapeutic targets in chemoresistance. Drug Resist Updat. 2013; 16: 47-59.

94

Matuszcak C, Haier J, Hummel R, Lindner K. Micrornas: promising chemoresistance biomarkers in gastric cancer with diagnostic and therapeutic potential. World J Gastroenterol. 2014; 20: 13658-66.

95

Deb S, Uhr K, Prager-van der Smissen WJC, Heine AAJ, Ozturk B, van Jaarsveld MTM, et al. Micrornas as possible indicators of drug sensitivity in breast cancer cell lines. PLoS One. 2019; 14: e0216400.

96

Li J, Tan S, Kooger R, Zhang C, Zhang Y. Micrornas as novel biological targets for detection and regulation. Chem Soc Rev. 2014; 43: 506-17.

97

Berindan-Neagoe I, Monroig Pdel C, Pasculli B, Calin GA. MicroRNAome genome: a treasure for cancer diagnosis and therapy. CA Cancer J Clin. 2014; 64: 311-36.

98

Gao Y, Lin L, Li T, Yang J, Wei Y. The role of miRNA-223 in cancer: function, diagnosis and therapy. Gene. 2017; 616: 1-7.

99

Shen K, Cao Z, Zhu R, You L, Zhang T. The dual functional role of microrna-18a (MiR-18a) in cancer development. Clin Transl Med. 2019; 8: 32.

100

Vickers MM, Bar J, Gorn-Hondermann I, Yarom N, Daneshmand M, Hanson JE, et al. Stage-dependent differential expression of micrornas in colorectal cancer: potential role as markers of metastatic disease. Clin Exp Metastasis. 2012; 29: 123-32.

101

Alhasan AH, Scott AW, Wu JJ, Feng G, Meeks JJ, Thaxton CS, et al. Circulating microrna signature for the diagnosis of very high-risk prostate cancer. Proc Natl Acad Sci U S A. 2016; 113: 10655-60.

102

Hofbauer SL, de Martino M, Lucca I, Haitel A, Susani M, Shariat SF, et al. A urinary microrna (MiR) signature for diagnosis of bladder cancer. Urol Oncol. 2018; 36: 531.e1-8.

103

Tang W, Jiang Y, Mu X, Xu L, Cheng W, Wang X. MiR-135a functions as a tumor suppressor in epithelial ovarian cancer and regulates HOXA10 expression. Cell Signal. 2014; 26: 1420-6.

104

von Felden J, Heim D, Schulze K, Krech T, Ewald F, Nashan B, et al. High expression of micro RNA-135a in hepatocellular carcinoma is associated with recurrence within 12 months after resection. BMC Cancer. 2017; 17: 60.

105

Ling H, Fabbri M, Calin GA. Micrornas and other non-coding RNAS as targets for anticancer drug development. Nat Rev Drug Discov. 2013; 12: 847-65.

106

Rupaimoole R, Calin GA, Lopez-Berestein G, Sood AK. miRNA deregulation in cancer cells and the tumor microenvironment. Cancer Discov. 2016; 6: 235-46.

107

Rupaimoole R, Ivan C, Yang D, Gharpure KM, Wu SY, Pecot CV, et al. Hypoxia-upregulated microrna-630 targets DICER, leading to increased tumor progression. Oncogene. 2016; 35: 4312-20.

108

Gilligan KE, Dwyer RM. Engineering exosomes for cancer therapy. Int J Mol Sci. 2017; 18: 1122.

109

Cheng CJ, Slack FJ. The duality of oncomir addiction in the maintenance and treatment of cancer. Cancer J. 2012; 18: 232-7.

110

Rupaimoole R, Han HD, Lopez-Berestein G, Sood AK. Microrna therapeutics: principles, expectations, and challenges. Chin J Cancer. 2011; 30: 368-70.

111

Li Z, Rana TM. Therapeutic targeting of micrornas: current status and future challenges. Nat Rev Drug Discov. 2014; 13: 622-38.

112

Merritt WM, Lin YG, Han LY, Kamat AA, Spannuth WA, Schmandt R, et al. DICER, DROSHA, and outcomes in patients with ovarian cancer. N Engl J Med. 2008; 359: 2641-50.

113

Allegra D, Bilan V, Garding A, Dohner H, Stilgenbauer S, Kuchenbauer F, et al. Defective DROSHA processing contributes to downregulation of MiR-15/-16 in chronic lymphocytic leukemia. Leukemia. 2014; 28: 98-107.

114

Karube Y, Tanaka H, Osada H, Tomida S, Tatematsu Y, Yanagisawa K, et al. Reduced expression of DICER associated with poor prognosis in lung cancer patients. Cancer Sci. 2005; 96: 111-5.

Cancer Biology & Medicine
Pages 569-582
Cite this article:
Cao Z, Qiu J, Yang G, et al. MiR-135a biogenesis and regulation in malignancy: a new hope for cancer research and therapy. Cancer Biology & Medicine, 2020, 17(3): 569-582. https://doi.org/10.20892/j.issn.2095-3941.2020.0033

64

Views

0

Downloads

26

Crossref

N/A

Web of Science

32

Scopus

Altmetrics

Received: 29 January 2020
Accepted: 27 May 2020
Published: 15 August 2020
©2020 Cancer Biology & Medicine.

Creative Commons Attribution-NonCommercial 4.0 International License

Return