AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (599.6 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Proteasomal and lysosomal degradation for specific and durable suppression of immunotherapeutic targets

Yungang Wang1,2Shouyan Deng1,3Jie Xu1 ( )
Institutes of Biomedical Sciences, Zhongshan-Xuhui Hospital, and Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200433, China
Department of Laboratory Medicine, The First People’s Hospital of Yancheng City, Yancheng 224006, China
Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
Show Author Information

Abstract

Cancer immunotherapy harness the body’s immune system to eliminate cancer, by using a broad panel of soluble and membrane proteins as therapeutic targets. Immunosuppression signaling mediated by ligand-receptor interaction may be blocked by monoclonal antibodies, but because of repopulation of the membrane via intracellular organelles, targets must be eliminated in whole cells. Targeted protein degradation, as exemplified in proteolysis targeting chimera (PROTAC) studies, is a promising strategy for selective inhibition of target proteins. The recently reported use of lysosomal targeting molecules to eliminate immune checkpoint proteins has paved the way for targeted degradation of membrane proteins as crucial anti-cancer targets. Further studies on these molecules’ modes of action, target-binding “warheads”, lysosomal sorting signals, and linker design should facilitate their rational design. Modifications and derivatives may improve their cell-penetrating ability and the in vivo stability of these pro-drugs. These studies suggest the promise of alternative strategies for cancer immunotherapy, with the aim of achieving more potent and durable suppression of tumor growth. Here, the successes and limitations of antibody inhibitors in cancer immunotherapy, as well as research progress on PROTAC- and lysosomal-dependent degradation of target proteins, are reviewed.

References

1

Topalian SL, Taube JM, Pardoll DM. Neoadjuvant checkpoint blockade for cancer immunotherapy. Science. 2020; 367. Doi: 10.1126/science.aax0182.Inpress.

2

Heyman B, Yang YP. New developments in immunotherapy for lymphoma. Cancer Biol Med. 2018; 15: 189-209.

3

Muir C, Menzies AM, Clifton-Bligh RJ, Tsang VHM. Thyroid toxicity following immune checkpoint inhibitor treatment in advanced cancer. Thyroid. 2020. Doi: 10.1089/thy.2020.0032. In press.

4

Park JG, Lee CR, Kim MG, Kim G, Shin HM, Jeon YH, et al. Kidney residency of VISTA-positive macrophages accelerates repair from ischemic injury. Kidney Int. 2019; 97: 980-94.

5

Okoye IS, Xu L, Walker J, Elahi S. The glucocorticoids prednisone and dexamethasone differentially modulate T cell function in response to anti-PD-1 and anti-CTLA-4 immune checkpoint blockade. Cancer Immunol Immunother. 2020. Doi: 10.1007/s00262-020-02555-2. In press.

6

Zerdes I, Matikas A, Bergh J, Rassidakis GZ, Foukakis T. Genetic, transcriptional and post-translational regulation of the programmed death protein ligand 1 in cancer: biology and clinical correlations. Oncogene. 2018; 37: 4639-61.

7

Wang YT, Wang HB, Yao H, Li CS, Fang JY, Xu J. Regulation of PD-L1: emerging routes for targeting tumor immune evasion. Front Pharmacol. 2018; 9: 536.

8

Yao H, Wang HB, Li CS, Fang JY, Xu J. Cancer cell-intrinsic PD-1 and implications in combinatorial immunotherapy. Front Immunol. 2018; 9: 1774.

9

Shimizu K, Sugiura D, Okazaki IM, Maruhashi T, Takegami Y, Cheng CY, et al. PD-1 imposes qualitative control of cellular transcriptomes in response to T cell activation. Mol Cell. 2020; 77: 937-50.

10

Wei YH, Du Q, Jiang XY, Li L, Li T, Li MQ, et al. Efficacy and safety of combination immunotherapy for malignant solid tumors: a systematic review and meta-analysis. Crit Rev Oncol Hematol. 2019; 138: 178-89.

11

Dougan M, Pietropaolo M. Time to dissect the autoimmune etiology of cancer antibody immunotherapy. J Clin Invest. 2020; 130: 51-61.

12

Moser JC, Hu-Lieskovan S. Mechanisms of resistance to PD-1 checkpoint blockade. Drugs. 2020; 80: 459-65.

13

Friedman CF, Snyder A. Atypical autoimmune adverse effects with checkpoint blockade therapies. Ann Oncol. 2017; 28: 206-7.

14

Wang HF, Fu C, Du J, Wang HS, He R, Yin XF, et al. Enhanced histone H3 acetylation of the PD-L1 promoter via the COP1/c-Jun/HDAC3 axis is required for PD-L1 expression in drug-resistant cancer cells. J Exp Clin Cancer Res. 2020; 39: 29.

15

Zhang R, Zhu ZY, Lv HY, Li FT, Sun SQ, Li J, et al. Immune checkpoint blockade mediated by a small-molecule nanoinhibitor targeting the PD-1/PD-L1 pathway synergizes with photodynamic therapy to elicit antitumor immunity and antimetastatic effects on breast cancer. Small. 2019; 15: e1903881.

16

Hu ZP, Yu PF, Du GY, Wang WY, Zhu HB, Li N, et al. PCC0208025 (BMS202), a small molecule inhibitor of PD-L1, produces an antitumor effect in B16-F10 melanoma-bearing mice. PLoS One. 2020; 15: e0228339.

17

Adjei AA. What is the right dose? The elusive optimal biologic dose in phase Ⅰ clinical trials. J Clin Oncol. 2006; 24: 4054-5.

18

Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature. 2004; 432: 173-8.

19

Bumcrot D, Manoharan M, Koteliansky V, Sah DW. RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat Chem Biol. 2006; 2: 711-9.

20

Tokatlian T, Segura T. siRNA applications in nanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010; 2: 305-15.

21

Bashraheel SS, Domling A, Goda SK. Update on targeted cancer therapies, single or in combination, and their fine tuning for precision medicine. Biomed Pharmacother. 2020; 125: 110009.

22

Zhang XH, Lee HC, Shirazi F, Baladandayuthapani V, Lin H, Kuiatse I, et al. Protein targeting chimeric molecules specific for bromodomain and extra-terminal motif family proteins are active against pre-clinical models of multiple myeloma. Leukemia. 2018; 32: 2224-39.

23

Li JY, Yang Y, Yu Y, Li QB, Tan GX, Wang YY, et al. LAPONITE® nanoplatform functionalized with histidine modified oligomeric hyaluronic acid as an effective vehicle for the anticancer drug methotrexate. J Mater Chem B. 2018; 6: 5011-20.

24

Yao H, Lan J, Li CS, Shi HB, Brosseau JP, Wang HB, et al. Author correction: inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours. Nat Biomed Eng. 2019; 3: 414.

25

Vaddepally RK, Kharel P, Pandey R, Garje R, Chandra AB. Review of indications of FDA-approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence. Cancers (Basel). 2020; 12: 738.

26

Ali MHM, Toor SM, Rakib F, Mall R, Ullah E, Mroue K, et al. Investigation of the effect of PD-L1 blockade on triple negative breast cancer cells using fourier transform infrared spectroscopy. Vaccines (Basel). 2019; 7: 109.

27

Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002; 8: 793-800.

28

Jefferis R, Lund J. Interaction sites on human IgG-Fc for FcgammaR: current models. Immunol Lett. 2002; 82: 57-65.

29

Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, et al. Phase Ⅰ study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010; 28: 3167-75.

30

Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013; 369: 134-44.

31

Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012; 366: 2443-54.

32

Tan SG, Zhang H, Chai Y, Song H, Tong Z, Wang QH, et al. An unexpected N-terminal loop in PD-1 dominates binding by nivolumab. Nat Commun. 2017; 8: 14369.

33

Rizvi NA, Hellmann MD, Brahmer JR, Juergens RA, Borghaei H, Gettinger S, et al. Nivolumab in combination with platinum-based doublet chemotherapy for first-line treatment of advanced non-small-cell lung cancer. J Clin Oncol. 2016; 34: 2969-79.

34

Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015; 373: 1627-39.

35

Fiala O, Sorejs O, Sustr J, Kucera R, Topolcan O, Finek J. Immune-related adverse effects and outcome of patients with cancer treated with immune checkpoint inhibitors. Anticancer Res. 2020; 40: 1219-27.

36

Baroudjian B, Arangalage D, Cuzzubbo S, Hervier B, Lebbé C, Lorillon G, et al. Management of immune-related adverse events resulting from immune checkpoint blockade. Expert Rev Anticancer Ther. 2019; 19: 209-22.

37

Burr ML, Sparbier CE, Chan YC, Williamson JC, Woods K, Beavis PA, et al. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature. 2017; 549: 101-5.

38

Xie FT, Xu MX, Lu J, Mao LX, Wang SJ. The role of exosomal PD-L1 in tumor progression and immunotherapy. Mol Cancer. 2019; 18: 146.

39

Seo N, Akiyoshi K, Shiku H. Exosome-mediated regulation of tumor immunology. Cancer Sci. 2018; 109: 2998-3004.

40

Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature. 2018; 560: 382-6.

41

Zhai WJ, Zhou XM, Du JF, Gao YF. In vitro assay for the development of small molecule inhibitors targeting PD-1/PD-L1. Meth Enzymol. 2019; 629: 361-81.

42

Li JD, Van Valkenburgh J, Hong XF, Conti PS, Zhang XZ, Chen K. Small molecules as theranostic agents in cancer immunology. Theranostics. 2019; 9: 7849-71.

43

Collier AM, Nemtsova Y, Kuber N, Banach-Petrosky W, Modak A, Sleat DE, et al. Lysosomal protein thermal stability does not correlate with cellular half-life: global observations and a case study of tripeptidyl-peptidase 1. Biochem J. 2020; 477: 727-45.

44

Li CL, Zhang NP, Zhou DJ, Ding C, Jin YQ, Cui XY, et al. Peptide blocking of PD-1/PD-L1 interaction for cancer immunotherapy. Cancer Immunol Res. 2018; 6: 178-88.

45

Sasikumar PG, Ramachandra RK, Adurthi S, Dhudashiya AA, Vadlamani S, Vemula K, et al. A rationally designed peptide antagonist of the PD-1 signaling pathway as an immunomodulatory agent for cancer therapy. Mol Cancer Ther. 2019; 18: 1081-91.

46

Musielak B, Kocik J, Skalniak L, Magiera-Mularz K, Sala D, Czub M, et al. CA-170 - a potent small-molecule PD-L1 inhibitor or not? Molecules. 2019; 24: 2804.

47
United States patent application, US20130022629A1, accessed on 20 November 2019.
48
United States patent application, US9850225, accessed on 20 November 2019.
49

Chang HN, Liu BY, Qi YK, Zhou Y, Chen YP, Pan KM, et al. Blocking of the PD-1/PD-L1 interaction by a D-peptide antagonist for cancer immunotherapy. Angew Chem Int Ed Engl. 2015; 54: 11760-4.

50

Kondo M, Kikumoto H, Osimitz TG, Cohen SM, Lake BG, Yamada T. An evaluation of the human relevance of the liver tumors observed in female mice treated with permethrin based on mode of action. Toxicol Sci. 2020; 175: 50-63.

51

do Amaral DF, Guerra V, Motta AGC, de Melo E Silva D, Rocha TL. Ecotoxicity of nanomaterials in amphibians: a critical review. Sci Total Environ. 2019; 686: 332-44.

52

Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc Natl Acad Sci USA. 2001; 98: 8554-9.

53

Bondeson DP, Mares A, Smith IE, Ko E, Campos S, Miah AH, et al. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat Chem Biol. 2015; 11: 611-7.

54

Fisher SL, Phillips AJ. Targeted protein degradation and the enzymology of degraders. Curr Opin Chem Biol. 2018; 44: 47-55.

55

Smalley JP, Adams GE, Millard CJ, Song Y, Norris JKS, Schwabe JWR, et al. PROTAC-mediated degradation of class Ⅰ histone deacetylase enzymes in corepressor complexes. Chem Commun (Camb). 2020; 56: 4476-9.

56

Wan YC, Yan CX, Gao H, Liu TT. Small-molecule PROTACs: novel agents for cancer therapy. Future Med Chem. 2020; 12: 915-38.

57

Schneekloth AR, Pucheault M, Tae HS, Crews CM. Targeted intracellular protein degradation induced by a small molecule: en route to chemical proteomics. Bioorg Med Chem Lett. 2008; 18: 5904-8.

58

Hines J, Gough JD, Corson TW, Crews CM. Posttranslational protein knockdown coupled to receptor tyrosine kinase activation with phosphoPROTACs. Proc Natl Acad Sci USA. 2013; 110: 8942-7.

59

Jiang YH, Deng QW, Zhao H, Xie MS, Chen LJ, Yin F, et al. Development of stabilized peptide-based PROTACs against estrogen receptor α. ACS Chem Biol. 2018; 13: 628-35.

60

Buckley DL, Raina K, Darricarrere N, Hines J, Gustafson JL, Smith IE, et al. HaloPROTACS: use of small molecule PROTACs to induce degradation of halotag fusion proteins. ACS Chem Biol. 2015; 10: 1831-7.

61

Tovell H, Testa A, Maniaci C, Zhou H, Prescott AR, Macartney T, et al. Rapid and reversible knockdown of endogenously tagged endosomal proteins via an optimized HaloPROTAC degrader. ACS Chem Biol. 2019; 14: 882-92.

62

Zorba A, Nguyen C, Xu Y, Starr J, Borzilleri K, Smith J, et al. Delineating the role of cooperativity in the design of potent PROTACs for BTK. Proc Natl Acad Sci USA. 2018; 115: E7285-E92.

63

Jiang F, Wei QY, Li HL, Li HM, Cui Y, Ma Y, et al. Discovery of novel small molecule induced selective degradation of the bromodomain and extra-terminal (BET) bromodomain protein BRD4 and BRD2 with cellular potencies. Bioorg Med Chem. 2020; 28: 115181.

64

Bassi ZI, Fillmore MC, Miah AH, Chapman TD, Maller C, Roberts EJ, et al. Modulating PCAF/GCN5 immune cell function through a PROTAC approach. ACS Chem Biol. 2018; 13: 2862-7.

65

Maniaci C, Hughes SJ, Testa A, Chen W, Lamont DJ, Rocha S, et al. Homo-PROTACs: bivalent small-molecule dimerizers of the VHL E3 ubiquitin ligase to induce self-degradation. Nat Commun. 2017; 8: 830.

66

Steinebach C, Lindner S, Udeshi ND, Mani DC, Kehm H, Köpff S, et al. Homo-PROTACs for the chemical knockdown of cereblon. ACS Chem Biol. 2018; 13: 2771-82.

67

Bondeson DP, Smith BE, Burslem GM, Buhimschi AD, Hines J, Jaime-Figueroa S, et al. Lessons in PROTAC design from selective degradation with a promiscuous warhead. Cell Chem Biol. 2018; 25: 78-87.e5.

68

Gadd MS, Testa A, Lucas X, Chan KH, Chen W, Lamont DJ, et al. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat Chem Biol. 2017; 13: 514-21.

69

Clague MJ, Heride C, Urbé S. The demographics of the ubiquitin system. Trends Cell Biol. 2015; 25: 417-26.

70

Zhou B, Hu JT, Xu FM, Chen Z, Bai LC, Fernandez-Salas E, et al. Discovery of a small-molecule degrader of bromodomain and extra-terminal (BET) proteins with picomolar cellular potencies and capable of achieving tumor regression. J Med Chem. 2018; 61: 462-81.

71

Burslem GM, Smith BE, Lai AC, Jaime-Figueroa S, McQuaid DC, Bondeson DP, et al. The advantages of targeted protein degradation over inhibition: an RTK case study. Cell Chem Biol. 2018; 25: 67-77.

72

Burslem GM, Schultz AR, Bondeson DP, Eide CA, Savage Stevens SL, Druker BJ, et al. Targeting BCR-ABL1 in chronic myeloid leukemia by PROTAC-mediated targeted protein degradation. Cancer Res. 2019; 79: 4744-53.

73

Zhao QJ, Ren CW, Liu LY, Chen JJ, Shao YB, Sun N, et al. Discovery of SIAIS178 as an effective BCR-ABL degrader by recruiting Von Hippel-Lindau (VHL) E3 ubiquitin ligase. J Med Chem. 2019; 62: 9281-98.

74

Lai AC, Toure M, Hellerschmied D, Salami J, Jaime-Figueroa S, Ko E, et al. Modular PROTAC design for the degradation of oncogenic BCR-ABL. Angew Chem Int Ed Engl. 2016; 55: 807-10.

75

Zhang H, Zhao HY, Xi XX, Liu YJ, Xin M, Mao S, et al. Discovery of potent epidermal growth factor receptor (EGFR) degraders by proteolysis targeting chimera (PROTAC). Eur J Med Chem. 2020; 189: 112061.

76

Kargbo RB. Treatment of cancer and alzheimer’s disease by PROTAC degradation of EGFR. ACS Med Chem Lett. 2019; 10: 1098-9.

77

Crew AP, Raina K, Dong H, Qian Y, Wang J, Vigil D, et al. Identification and characterization of Von Hippel-Lindaurecruiting proteolysis targeting chimeras (PROTACs) of TANK-binding kinase 1. J Med Chem. 2018; 61: 583-98.

78

Rana S, Bendjennat M, Kour S, King HM, Kizhake S, Zahid M, et al. Selective degradation of CDK6 by a palbociclib based PROTAC. Bioorg Med Chem Lett. 2019; 29: 1375-9.

79

Bian JL, Ren J, Li YR, Wang JB, Xu X, Feng YF, et al. Discovery of Wogonin-based PROTACs against CDK9 and capable of achieving antitumor activity. Bioorg Chem. 2018; 81: 373-81.

80

Robb CM, Contreras JI, Kour S, Taylor MA, Abid M, Sonawane YA, et al. Chemically induced degradation of CDK9 by a proteolysis targeting chimera (PROTAC). Chem. Commun (Camb). 2017; 53: 7577-80.

81

Zhang C, Han XR, Yang X, Jiang B, Liu J, Xiong Y, et al. Proteolysis targeting chimeras (PROTACs) of anaplastic lymphoma kinase (ALK). Eur J Med Chem. 2018; 151: 304-14.

82

Kang CH, Lee DH, Lee CO, Du Ha J, Park CH, Hwang JY. Induced protein degradation of anaplastic lymphoma kinase (ALK) by proteolysis targeting chimera (PROTAC). Biochem Biophys Res Commun. 2018; 505: 542-7.

83

Tovell H, Testa A, Zhou H, Shpiro N, Crafter C, Ciulli A, et al. Design and characterization of SGK3-PROTAC1, an isoform specific SGK3 kinase PROTAC degrader. ACS Chem Biol. 2019; 14: 2024-34.

84

Chen H, Chen FH, Liu NN, Wang XY, Gou SH. Chemically induced degradation of CK2 by proteolysis targeting chimeras based on a ubiquitin-proteasome pathway. Bioorg Chem. 2018; 81: 536-44.

85

Vollmer S, Cunoosamy D, Lv HF, Feng HX, Li X, Nan ZY, et al. Design, synthesis, and biological evaluation of MEK PROTACs. J Med Chem. 2020; 63: 157-62.

86

Lebraud H, Wright DJ, Johnson CN, Heightman TD. Protein degradation by in-cell self-assembly of proteolysis targeting chimeras. ACS Cent Sci. 2016; 2: 927-34.

87

Burslem GM, Song J, Chen X, Hines J, Crews CM. Enhancing antiproliferative activity and selectivity of a FLT-3 inhibitor by proteolysis targeting chimera conversion. J Am Chem Soc. 2018; 140: 16428-32.

88

Li WL, Gao CM, Zhao L, Yuan ZG, Chen YZ, Jiang YY. Phthalimide conjugations for the degradation of oncogenic PI3K. Eur J Med Chem. 2018; 151: 237-47.

89

You I, Erickson EC, Donovan KA, Eleuteri NA, Fischer ES, Gray NS, et al. Discovery of an AKT degrader with prolonged inhibition of downstream signaling. Cell Chem Biol. 2020; 27: 66-73.e7.

90

Buhimschi AD, Armstrong HA, Toure M, Jaime-Figueroa S, Chen TL, Lehman AM, et al. Targeting the C481S ibrutinib-resistance mutation in Bruton’s tyrosine kinase using PROTAC-mediated degradation. Biochemistry. 2018; 57: 3564-75.

91

Sun YH, Ding N, Song YQ, Yang ZM, Liu WL, Zhu J, et al. Degradation of Bruton’s tyrosine kinase mutants by PROTACs for potential treatment of ibrutinib-resistant non-Hodgkin lymphomas. Leukemia. 2019; 33: 2105-10.

92

Sun YH, Zhao XW, Ding N, Gao HY, Wu Y, Yang YQ, et al. PROTAC-induced BTK degradation as a novel therapy for mutated BTK C481S induced ibrutinib-resistant B-cell malignancies. Cell Res. 2018; 28: 779-81.

93

Cromm PM, Samarasinghe KTG, Hines J, Crews CM. Addressing kinase-independent functions of fak via PROTAC-mediated degradation. J Am Chem Soc. 2018; 140: 17019-26.

94

Nunes J, McGonagle GA, Eden J, Kiritharan G, Touzet M, Lewell X, et al. Targeting IRAK4 for degradation with PROTACs. ACS Med Chem Lett. 2019; 10: 1081-5.

95

Qin C, Hu Y, Zhou B, Fernandez-Salas E, Yang CY, Liu L, et al. Discovery of QCA570 as an exceptionally potent and efficacious proteolysis targeting chimera (PROTAC) degrader of the bromodomain and extra-terminal (BET) proteins capable of inducing complete and durable tumor regression. J Med Chem. 2018; 61: 6685-704.

96

Zengerle M, Chan KH, Ciulli A. Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem Biol. 2015; 10: 1770-7.

97

Lu J, Qian YM, Altieri M, Dong HQ, Wang J, Raina K, et al. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem Biol. 2015; 22: 755-63.

98

Hines J, Lartigue S, Dong H, Qian Y, Crews CM. MDM2-recruiting PROTAC offers superior, synergistic antiproliferative activity via simultaneous degradation of BRD4 and stabilization of p53. Cancer Res. 2019; 79: 251-62.

99

Zoppi V, Hughes SJ, Maniaci C, Testa A, Gmaschitz T, Wieshofer C, et al. Iterative design and optimization of initially inactive proteolysis targeting chimeras (PROTACs) identify VZ185 as a potent, fast, and selective von Hippel-Lindau (VHL) based dual degrader probe of BRD9 and BRD7. J Med Chem. 2019; 62: 699-726.

100

Han X, Wang C, Qin C, Xiang WG, Fernandez-Salas E, Yang CY, et al. Discovery of ARD-69 as a highly potent proteolysis targeting chimera (PROTAC) degrader of androgen receptor (AR) for the treatment of prostate cancer. J Med Chem. 2019; 62: 941-64.

101

Wang Y, Jiang XY, Feng F, Liu WY, Sun H. Degradation of proteins by PROTACs and other strategies. Acta Pharm Sin B. 2020; 10: 207-38.

102

Salami J, Alabi S, Willard RR, Vitale NJ, Wang J, Dong H, et al. Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance. Commun Biol. 2018; 1: 100. Doi: 10.1038/s42003-018-0105-8.

103

Hu JT, Hu B, Wang ML, Xu FM, Miao B, Yang CY, et al. Discovery of ERD-308 as a highly potent proteolysis targeting chimera (PROTAC) degrader of estrogen receptor (ER). J Med Chem. 2019; 62: 1420-42.

104

Wang L, Guillen VS, Sharma N, Flessa K, Min J, Carlson KE, et al. New class of selective estrogen receptor degraders (SERDs): expanding the toolbox of PROTAC degrons. ACS Med Chem Lett. 2018; 9: 803-8.

105

Gechijian LN, Buckley DL, Lawlor MA, Reyes JM, Paulk J, Ott CJ, et al. Functional TRIM24 degrader via conjugation of ineffectual bromodomain and VHL ligands. Nat Chem Biol. 2018; 14: 405-12.

106

Sakamoto KM, Kim KB, Verma R, Ransick A, Stein B, Crews CM, et al. Development of protacs to target cancer-promoting proteins for ubiquitination and degradation. Mol Cell Proteomics. 2003; 2: 1350-8.

107

Zhang X, Thummuri D, He YH, Liu XG, Zhang PY, Zhou DH, et al. Utilizing PROTAC technology to address the on-target platelet toxicity associated with inhibition of BCL-X. Chem Commun (Camb). 2019; 55: 14765-8.

108

Schiedel M, Herp D, Hammelmann S, Swyter S, Lehotzky A, Robaa D, et al. Chemically induced degradation of sirtuin 2 (Sirt2) by a proteolysis targeting chimera (PROTAC) based on sirtuin rearranging ligands (SirReals). J Med Chem. 2018; 61: 482-91.

109

An ZX, Lv WX, Su S, Wu W, Rao Y. Developing potent PROTACs tools for selective degradation of HDAC6 protein. Protein Cell. 2019; 10: 606-9.

110

Hsu JH, Rasmusson T, Robinson J, Pachl F, Read J, Kawatkar S, et al. EED-targeted PROTACs degrade EED, EZH2, and SUZ12 in the PRC2 complex. Cell Chem Biol. 2020; 27: 41-6.

111

Lu MC, Liu T, Jiao Q, Ji JN, Tao MM, Liu YJ, et al. Discovery of a Keap1-dependent peptide PROTAC to knockdown Tau by ubiquitination-proteasome degradation pathway. Eur J Med Chem. 2018; 146: 251-9.

112

Farnaby W, Koegl M, Roy MJ, Whitworth C, Diers E, Trainor N, et al. BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design. Nat Chem Biol. 2019; 15: 672-80.

113

Zhao QY, Lan TL, Su S, Rao Y. Induction of apoptosis in MDA-MB-231 breast cancer cells by a PARP1-targeting PROTAC small molecule. Chem Commun (Camb) 2019; 55: 369-72.

114

Zhou HB, Bai LC, Xu RQ, Zhao YJ, Chen JY, McEachern D, et al. Structure-based discovery of SD-36 as a potent, selective, and efficacious PROTAC degrader of STAT3 protein. J Med Chem. 2019; 62: 11280-300.

115

Papatzimas JW, Gorobets E, Maity R, Muniyat MI, MacCallum JL, Neri P, et al. From inhibition to degradation: targeting the antiapoptotic protein myeloid cell leukemia 1 (MCL1). J Med Chem. 2019; 62: 5522-40.

116

Li YB, Yang JL, Aguilar A, McEachern D, Przybranowski S, Liu L, et al. Discovery of MD-224 as a first-in-class, highly potent, and efficacious proteolysis targeting chimera murine double minute 2 degrader capable of achieving complete and durable tumor regression. J Med Chem. 2019; 62: 448-66.

117

Liu JR, Yu CW, Hung PY, Hsin LW, Chern JW. High-selective HDAC6 inhibitor promotes HDAC6 degradation following autophagy modulation and enhanced antitumor immunity in glioblastoma. Biochem Pharmacol. 2019; 163: 458-71.

118

Dorand RD, Nthale J, Myers JT, Barkauskas DS, Avril S, Chirieleison SM, et al. Cdk5 disruption attenuates tumor PD-L1 expression and promotes antitumor immunity. Science. 2016; 353: 399-403.

119

Kataoka K, Shiraishi Y, Takeda Y, Sakata S, Matsumoto M, Nagano S, et al. Aberrant PD-L1 expression through 3′-UTR disruption in multiple cancers. Nature. 2016; 534: 402-6.

120

Kortlever RM, Sodir NM, Wilson CH, Burkhart DL, Pellegrinet L, Brown Swigart L, et al. Myc cooperates with ras by programming inflammation and immune suppression. Cell. 2017; 171: 1301-15.e14.

121

Zhang JF, Bu X, Wang HZ, Zhu YS, Geng Y, Nihira NT, et al. Author correction: cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature. 2019; 571: E10.

122

Lim SO, Li CW, Xia W, Cha JH, Chan LC, Wu Y, et al. Deubiquitination and stabilization of PD-L1 by CSN5. Cancer Cell. 2016; 30: 925-39.

123

Cha JH, Yang WH, Xia W, Wei Y, Chan LC, Lim SO, et al. Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1. Mol Cell. 2018; 71: 606-20.e7.

124

Mezzadra R, Sun C, Jae LT, Gomez-Eerland R, de Vries E, Wu W, et al. Identification of CMTM6 and CMTM4 as PD-L1 protein regulators. Nature. 2017; 549: 106-10.

125

Koh YW, Han JH, Haam S, Jung J, Lee HW. Increased CMTM6 can predict the clinical response to PD-1 inhibitors in non-small cell lung cancer patients. Oncoimmunology. 2019; 8: e1629261.

126

Zhang N, Dou YY, Liu L, Zhang X, Liu XJ, Zeng QX, et al. SA-49, a novel aloperine derivative, induces MITF-dependent lysosomal degradation of PD-L1. EBioMedicine. 2019; 40: 151-62.

127

Peng L, Yang Q, Xu XX, Du YL, Wu Y, Shi XF, et al. Huntingtin-interacting protein 1-related protein plays a critical role in dendritic development and excitatory synapse formation in hippocampal neurons. Front Mol Neurosci. 2017; 10: 186.

128

Skruzny M, Brach T, Ciuffa R, Rybina S, Wachsmuth M, Kaksonen M. Molecular basis for coupling the plasma membrane to the actin cytoskeleton during clathrin-mediated endocytosis. Proc Natl Acad Sci USA. 2012; 109: E2533-42.

129

Wang HB, Yao H, Li CS, Shi HB, Lan J, Li ZL, et al. HIP1R targets PD-L1 to lysosomal degradation to alter T cell-mediated cytotoxicity. Nat Chem Biol. 2019; 15: 42-50.

130

Romero Y, Wise R, Zolkiewska A. Proteolytic processing of PD-L1 by ADAM proteases in breast cancer cells. Cancer Immunol Immunother. 2020; 69: 43-55.

131

Dvela-Levitt M, Kost-Alimova M, Emani M, Kohnert E, Thompson R, Sidhom EH, et al. Small molecule targets TMED9 and promotes lysosomal degradation to reverse proteinopathy. Cell. 2019; 178: 521-35.e23.

132

Banik SM, Pedram K, Wisnovsky S, Riley NM, Bertozzi CR. Lysosometargeting chimeras (LYTACs) for the degradation of secreted and membrane proteins. ChemRxiv. 2019; 1-68.

133

Hong JH, Kaustov L, Coyaud E, Srikumar T, Wan J, Arrowsmith C, et al. KCMF1 (potassium channel modulatory factor 1) links RAD6 to UBR4 (ubiquitin N-recognin domain-containing E3 ligase 4) and lysosome-mediated degradation. Mol Cell Proteomics. 2015; 14: 674-85.

134

Dominguez-Brauer C, Hao Z, Elia AJ, Fortin JM, Nechanitzky R, Brauer PM, et al. Mule regulates the intestinal stem cell niche via the Wnt pathway and targets EphB3 for proteasomal and lysosomal degradation. Cell Stem Cell. 2016; 19: 205-16.

135

Zhou YF, Wang J, Deng MF, Chi B, Wei N, Chen JG, et al. The peptide-directed lysosomal degradation of CDK5 exerts therapeutic effects against stroke. Aging Dis. 2019; 10: 1140-5.

136

Fan X, Jin WY, Lu J, Wang J, Wang YT. Rapid and reversible knockdown of endogenous proteins by peptide-directed lysosomal degradation. Nat Neurosci. 2014; 17: 471-80.

137

Monypenny J, Milewicz H, Flores-Borja F, Weitsman G, Cheung A, Chowdhury R, et al. ALIX regulates tumor-mediated immunosuppression by controlling EGFR activity and PD-L1 presentation. Cell Rep. 2018; 24: 630-41.

138

Yang Y, Hsu JM, Sun L, Chan LC, Li CW, Hsu JL, et al. Palmitoylation stabilizes PD-L1 to promote breast tumor growth. Cell Res. 2019; 29: 83-6.

139

Koster KP, Yoshii A. Depalmitoylation by palmitoyl-protein thioesterase 1 in neuronal health and degeneration. Front Synaptic Neurosci. 2019; 11: 25.

140

Chen M, Andreozzi M, Pockaj B, Barrett MT, Ocal IT, McCullough AE, et al. Development and validation of a novel clinical fluorescence in situ hybridization assay to detect JAK2 and PD-L1 amplification: a fluorescence in situ hybridization assay for JAK2 and PD-L1 amplification. Mod Pathol. 2017; 30: 1516-26.

141

Gorinski N, Wojciechowski D, Guseva D, Abdel Galil D, Mueller FE, Wirth A, et al. DHHC7-mediated palmitoylation of the accessory protein barttin critically regulates the functions of ClC-K chloride channels. J Biol Chem. 2020; 295: 5970-83.

142

Runkle KB, Kharbanda A, Stypulkowski E, Cao XJ, Wang W, Garcia BA, et al. Inhibition of DHHC20-mediated EGFR palmitoylation creates a dependence on EGFR signaling. Mol Cell. 2016; 62: 385-96.

143

Tukachinsky H, Petrov K, Watanabe M, Salic A. Mechanism of inhibition of the tumor suppressor Patched by Sonic Hedgehog. Proc Natl Acad Sci USA. 2016; 113: E5866-E75.

144

Taguchi T, Misaki R. Palmitoylation pilots ras to recycling endosomes. Small GTPases. 2011; 2: 82-4.

145

Siddiqui MA, Singh S, Malhotra P, Chitnis CE. Plasmodium falciparum protein S-palmitoylation is responsive to external signals and plays a regulatory role in microneme secretion in merozoites. ACS Infect Dis. 2020; 6: 379-92.

Cancer Biology & Medicine
Pages 583-598
Cite this article:
Wang Y, Deng S, Xu J. Proteasomal and lysosomal degradation for specific and durable suppression of immunotherapeutic targets. Cancer Biology & Medicine, 2020, 17(3): 583-598. https://doi.org/10.20892/j.issn.2095-3941.2020.0066

71

Views

2

Downloads

7

Crossref

N/A

Web of Science

8

Scopus

Altmetrics

Received: 16 February 2018
Accepted: 30 April 2020
Published: 15 August 2020
©2020 Cancer Biology & Medicine.

Creative Commons Attribution-NonCommercial 4.0 International License

Return