AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (872.8 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Biological insights in non-small cell lung cancer

Rafael Rosell1,2( )Anisha Jain3Jordi Codony-Servat4Eloisa Jantus-Lewintre5Blake Morrison6Jordi Barretina Ginesta1María González-Cao2
Germans Trias i Pujol Research Institute, Badalona 08028, Spain
IOR, Hospital Quiron-Dexeus, Barcelona 08028, Spain
Department of Microbiology, JSS Academy of Higher Education & Research, Mysuru 570015, India
Pangaea Oncology, Hospital Quiron-Dexeus, Barcelona 08028, Spain
Department of Biotechnology, Universitat Politècnica de Valencia; Mixed Unit TRIAL (General University Hospital of Valencia Research Foundation and Príncipe Felipe Research Center), CIBERONC, Valencia 46014, Spain
Sumitomo Pharma Oncology, Inc., Cambridge, MA and Lehi, UT 84043, USA
Show Author Information

Abstract

Lung oncogenesis relies on intracellular cysteine to overcome oxidative stress. Several tumor types, including non-small cell lung cancer (NSCLC), upregulate the system xc- cystine/glutamate antiporter (xCT) through overexpression of the cystine transporter SLC7A11, thus sustaining intracellular cysteine levels to support glutathione synthesis.

Nuclear factor erythroid 2-related factor 2 (NRF2) serves as a master regulator of oxidative stress resistance by regulating SLC7A11, whereas Kelch-like ECH-associated protein (KEAP1) acts as a cytoplasmic repressor of the oxidative responsive transcription factor NRF2. Mutations in KEAP1/NRF2 and p53 induce SLC7A11 activation in NSCLC. Extracellular cystine is crucial in supplying the intracellular cysteine levels necessary to combat oxidative stress. Disruptions in cystine availability lead to iron-dependent lipid peroxidation, thus resulting in a type of cell death called ferroptosis. Pharmacologic inhibitors of xCT (either SLC7A11 or GPX4) induce ferroptosis of NSCLC cells and other tumor types. When cystine uptake is impaired, the intracellular cysteine pool can be sustained by the transsulfuration pathway, which is catalyzed by cystathionine-B-synthase (CBS) and cystathionine g-lyase (CSE). The involvement of exogenous cysteine/cystine and the transsulfuration pathway in the cysteine pool and downstream metabolites results in compromised CD8+ T cell function and evasion of immunotherapy, diminishing immune response and potentially reducing the effectiveness of immunotherapeutic interventions. Pyroptosis is a previously unrecognized form of regulated cell death. In NSCLCs driven by EGFR, ALK, or KRAS, selective inhibitors induce pyroptotic cell death as well as apoptosis. After targeted therapy, the mitochondrial intrinsic apoptotic pathway is activated, thus leading to the cleavage and activation of caspase-3. Consequently, gasdermin E is activated, thus leading to permeabilization of the cytoplasmic membrane and cell-lytic pyroptosis (indicated by characteristic cell membrane ballooning). Breakthroughs in KRAS G12C allele-specific inhibitors and potential mechanisms of resistance are also discussed herein.

References

1

Jaiyesimi IA, Owen DH, Ismaila N, Blanchard E, Celano P, Florez N, et al. Therapy for stage Ⅳ non-small-cell lung cancer without driver alterations: ASCO living guideline, version 2022.3. J Clin Oncol. 2023; Jco2202783.

2

Rodríguez-Abreu D, Powell SF, Hochmair MJ, Gadgeel S, Esteban E, Felip E, et al. Pemetrexed plus platinum with or without pembrolizumab in patients with previously untreated metastatic nonsquamous NSCLC: protocol-specified final analysis from KEYNOTE-189. Ann Oncol. 2021; 32: 881–95.

3

Zhou C, Wang Z, Sun Y, Cao L, Ma Z, Wu R, et al. Sugemalimab vs. placebo, in combination with platinum-based chemotherapy, as first-line treatment of metastatic non-small-cell lung cancer (GEMSTONE-302): interim and final analyses of a double-blind, randomised, phase 3 clinical trial. Lancet Oncol. 2022; 23: 220–33.

4

Jaiyesimi IA, Owen DH, Ismaila N, Blanchard E, Celano P, Florez N, et al. Therapy for stage Ⅳ non-small-cell lung cancer with driver alterations: ASCO living guideline, version 2022.3. J Clin Oncol. 2023; 41: e31–e41.

5

de Langen AJ, Johnson ML, Mazieres J, Dingemans AC, Mountzios G, Pless M, et al. Sotorasib vs. docetaxel for previously treated non-small-cell lung cancer with KRAS(G12C) mutation: a randomised, open-label, phase 3 trial. Lancet. 2023; 401: 733–46.

6

Tamiya Y, Matsumoto S, Zenke Y, Yoh K, Ikeda T, Shibata Y, et al. Large-scale clinico-genomic profile of non-small cell lung cancer with KRAS G12C: results from LC-SCRUM-Asia study. Lung Cancer. 2023; 176: 103–11.

7

Ruiz-Patiño A, Rodríguez J, Cardona AF, Ávila J, Archila P, Carranza H, et al. P.G12C KRAS mutation prevalence in non-small cell lung cancer: contribution from interregional variability and population substructures among Hispanics. Transl Oncol. 2022; 15: 101276.

8

Gijtenbeek RGP, Damhuis RAM, van der Wekken AJ, Hendriks LEL, Groen HJM, van Geffen WH. Overall survival in advanced epidermal growth factor receptor mutated non-small cell lung cancer using different tyrosine kinase inhibitors in The Netherlands: a retrospective, nationwide registry study. Lancet Reg Health Eur. 2023; 27: 100592.

9

Nwosu ZC, Song MG, di Magliano MP, Lyssiotis CA, Kim SE. Nutrient transporters: connecting cancer metabolism to therapeutic opportunities. Oncogene. 2023; 42: 711–24.

10

Zhang L, Hobeika CS, Khabibullin D, Yu D, Filippakis H, Alchoueiry M, et al. Hypersensitivity to ferroptosis in chromophobe RCC is mediated by a glutathione metabolic dependency and cystine import via solute carrier family 7 member 11. Proc Natl Acad Sci. 2022; 119: e2122840119.

11

Lee J, Roh JL. Targeting GPX4 in human cancer: Implications of ferroptosis induction for tackling cancer resilience. Cancer Lett. 2023; 559: 216119.

12

Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 2019; 575: 688–92.

13

Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee H, et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature. 2021; 593: 586–90.

14

Soula M, Weber RA, Zilka O, Alwaseem H, La K, Yen F, et al. Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat Chem Biol. 2020; 16: 1351–60.

15

Lei G, Zhang Y, Hong T, Zhang X, Liu X, Mao C, et al. Ferroptosis as a mechanism to mediate p53 function in tumor radiosensitivity. Oncogene. 2021; 40: 3533–47.

16

Hadian K, Stockwell BR. SnapShot: ferroptosis. Cell. 2020; 181: 1188–1188.e1.

17

Nilsson MB, Sun H, Robichaux J, Pfeifer M, McDermott U, Travers J, et al. A YAP/FOXM1 axis mediates EMT-associated EGFR inhibitor resistance and increased expression of spindle assembly checkpoint components. Sci Transl Med. 2020; 12: eaaz4589.

18

Zhang W, Qian W, Gu J, Gong M, Zhang W, Zhang S, et al. Mutant p53 driven-LINC00857, a protein scaffold between FOXM1 and deubiquitinase OTUB1, promotes the metastasis of pancreatic cancer. Cancer Lett. 2023; 552: 215976.

19

Su W, Wang L, Zhao H, Hu S, Zhou Y, Guo C, et al. LINC00857 interacting with YBX1 to regulate apoptosis and autophagy via MET and phosphor-AMPKa signaling. Mol Ther Nucleic Acids. 2020; 22: 1164–75.

20

Guo T, Zhao S, Wang P, Xue X, Zhang Y, Yang M, et al. YB-1 regulates tumor growth by promoting MACC1/c-Met pathway in human lung adenocarcinoma. Oncotarget. 2017; 8: 48110–25.

21

Stein U, Walther W, Arlt F, Schwabe H, Smith J, Fichtner I, et al. MACC1, a newly identified key regulator of HGF-MET signaling, predicts colon cancer metastasis. Nat Med. 2009; 15: 59–67.

22

Shibata T, Tokunaga E, Hattori S, Watari K, Murakami Y, Yamashita N, et al. Y-box binding protein YBX1 and its correlated genes as biomarkers for poor outcomes in patients with breast cancer. Oncotarget. 2018; 9: 37216–28.

23

Rosell R, Cardona AF, Arrieta O, Aguilar A, Ito M, Pedraz C, et al. Coregulation of pathways in lung cancer patients with EGFR mutation: therapeutic opportunities. Br J Cancer. 2021; 125: 1602–611.

24

Zhang KR, Zhang YF, Lei HM, Tang YB, Ma CS, Lv QM, et al. Targeting AKR1B1 inhibits glutathione de novo synthesis to overcome acquired resistance to EGFR-targeted therapy in lung cancer. Sci Transl Med. 2021; 13: eabg6428.

25

Chaib I, Karachaliou N, Pilotto S, Codony Servat J, Cai X, Li X, et al. Co-activation of STAT3 and YES-associated protein 1 (YAP1) pathway in EGFR-mutant NSCLC. J Natl Cancer Inst. 2017; 109: djx014.

26

Wu J, Minikes AM, Gao M, Bian H, Li Y, Stockwell BR, et al. Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling. Nature. 2019; 572: 402–6.

27

Viswanathan VS, Ryan MJ, Dhruv HD, Gill S, Eichhoff OM, Seashore-Ludlow B, et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature. 2017; 547: 453–7.

28

Minikes AM, Song Y, Feng Y, Yoon C, Yoon SS, Jiang X. E-cadherin is a biomarker for ferroptosis sensitivity in diffuse gastric cancer. Oncogene. 2023; 42: 848–57.

29

Gujral TS, Kirschner MW. Hippo pathway mediates resistance to cytotoxic drugs. Proc Natl Acad Sci U S A. 2017; 114: E3729–38.

30

Zhu J, Berisa M, Schwörer S, Qin W, Cross JR, Thompson CB. Transsulfuration activity can support cell growth upon extracellular cysteine limitation. Cell Metab. 2019; 30: 865–76.e5.

31

Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012; 483: 603–7.

32

Szabo C. Gasotransmitters in cancer: from pathophysiology to experimental therapy. Nat Rev Drug Discov. 2016; 15: 185–203.

33

Chen S, Bu D, Zhu J, Yue T, Guo S, Wang X, et al. Endogenous hydrogen sulfide regulates xCT stability through persulfidation of OTUB1 at cysteine 91 in colon cancer cells. Neoplasia. 2021; 23: 461–72.

34

Yue T, Zuo S, Bu D, Zhu J, Chen S, Ma Y, et al. Aminooxyacetic acid (AOAA) sensitizes colon cancer cells to oxaliplatin via exaggerating apoptosis induced by ros. J Cancer. 2020; 11: 1828–38.

35

Yue T, Li J, Zhu J, Zuo S, Wang X, Liu Y, et al. Hydrogen sulfide creates a favorable immune microenvironment for colon cancer. Cancer Res. 2023; 83: 595–612.

36

He F, Antonucci L, Karin M. NRF2 as a regulator of cell metabolism and inflammation in cancer. Carcinogenesis. 2020; 41: 405–16.

37

Li HJ, Ke FY, Lin CC, Lu MY, Kuo YH, Wang YP, et al. ENO1 promotes lung cancer metastasis via HGFR and WNT signaling-driven epithelial-to-mesenchymal transition. Cancer Res. 2021; 81: 4094–109.

38

Koraishy FM, Silva C, Mason S, Wu D, Cantley LG. Hepatocyte growth factor (Hgf) stimulates low density lipoprotein receptor-related protein (Lrp) 5/6 phosphorylation and promotes canonical Wnt signaling. J Biol Chem. 2014; 289: 14341–50.

39

Stransky L, Cotter K, Forgac M. The function of V-ATPases in cancer. Physiol Rev. 2016; 96: 1071–91.

40

Fujita-Sato S, Galeas J, Truitt M, Pitt C, Urisman A, Bandyopadhyay S, et al. Enhanced MET translation and signaling sustains K-Ras-driven proliferation under anchorage-independent growth conditions. Cancer Res. 2015; 75: 2851–62.

41

Breindel JL, Haskins JW, Cowell EP, Zhao M, Nguyen DX, Stern DF. EGF receptor activates MET through MAPK to enhance non-small cell lung carcinoma invasion and brain metastasis. Cancer Res. 2013; 73: 5053–65.

42

DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature. 2011; 475: 106–9.

43

Liu N, Lin X, Huang C. Activation of the reverse transsulfuration pathway through NRF2/CBS confers erastin-induced ferroptosis resistance. Br J Cancer. 2020; 122: 279–92.

44

Dodson M, Castro-Portuguez R, Zhang DD. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 2019; 23: 101107.

45

Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R, et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology. 2016; 63: 173–84.

46

Takahashi N, Cho P, Selfors LM, Kuiken HJ, Kaul R, Fujiwara T, et al. 3D culture models with CRISPR screens reveal hyperactive NRF2 as a prerequisite for spheroid formation via regulation of proliferation and ferroptosis. Mol Cell. 2020; 80: 828–44.e6.

47

Romero R, Sayin VI, Davidson SM, Bauer MR, Singh SX, LeBoeuf SE, et al. Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis. Nat Med. 2017; 23: 1362–8.

48

Hamada S, Shimosegawa T, Taguchi K, Nabeshima T, Yamamoto M, Masamune A. Simultaneous K-ras activation and Keap1 deletion cause atrophy of pancreatic parenchyma. Am J Physiol Gastrointest Liver Physiol. 2018; 314: G65–74.

49

Brasó-Maristany F, Filosto S, Catchpole S, Marlow R, Quist J, Francesch-Domenech E, et al. PIM1 kinase regulates cell death, tumor growth and chemotherapy response in triple-negative breast cancer. Nat Med. 2016; 22: 1303–1313.

50

Cao L, Wang F, Li S, Wang X, Huang D, Jiang R. PIM1 kinase promotes cell proliferation, metastasis and tumor growth of lung adenocarcinoma by potentiating the c-MET signaling pathway. Cancer Lett. 2019; 444: 116–26.

51

An N, Xiong Y, LaRue AC, Kraft AS, Cen B. Activation of Pim kinases is sufficient to promote resistance to MET small-molecule inhibitors. Cancer Res. 2015; 75: 5318–28.

52

Warfel NA, Sainz AG, Song JH, Kraft AS. PIM kinase inhibitors kill hypoxic tumor cells by reducing Nrf2 signaling and increasing reactive oxygen species. Mol Cancer Ther. 2016; 15: 1637–47.

53

Rosell R, Aguilar A, Pedraz C, Chaib I. Kras inhibitors, approved. Nat Cancer. 2021; 2: 1254–6.

54

Lignitto L, LeBoeuf SE, Homer H, Jiang S, Askenazi M, Karakousi TR, et al. Nrf2 activation promotes lung cancer metastasis by inhibiting the degradation of Bach1. Cell. 2019; 178: 316–29.e18.

55

Wiel C, Le Gal K, Ibrahim MX, Jahangir CA, Kashif M, Yao H, et al. BACH1 stabilization by antioxidants stimulates lung cancer metastasis. Cell. 2019; 178: 330–45.e22.

56

Sato M, Matsumoto M, Saiki Y, Alam M, Nishizawa H, Rokugo M, et al. BACH1 promotes pancreatic cancer metastasis by repressing epithelial genes and enhancing epithelial-mesenchymal transition. Cancer Res. 2020; 80: 1279–92.

57

Wang M, Mao C, Ouyang L, Liu Y, Lai W, Liu N, et al. Long noncoding RNA LINC00336 inhibits ferroptosis in lung cancer by functioning as a competing endogenous RNA. Cell Death Differ. 2019; 26: 2329–43.

58

Zheng L, Xu H, Di Y, Chen L, Liu J, Kang L, et al. ELK4 promotes the development of gastric cancer by inducing M2 polarization of macrophages through regulation of the KDM5A-PJA2-KSR1 axis. J Transl Med. 2021; 19: 342.

59

Kim JY, Welsh EA, Fang B, Bai Y, Kinose F, Eschrich SA, et al. Phosphoproteomics reveals MAPK inhibitors enhance MET- and EGFR-driven AKT signaling in KRAS-mutant lung cancer. Mol Cancer Res. 2016; 14: 1019–29.

60

Xue JY, Zhao Y, Aronowitz J, Mai TT, Vides A, Qeriqi B, et al. Rapid non-uniform adaptation to conformation-specific KRAS(G12C) inhibition. Nature. 2020; 577: 421–5.

61

Nilsson MB, Yang Y, Heeke S, Patel SA, Poteete A, Udagawa H, et al. CD70 is a therapeutic target upregulated in EMT-associated EGFR tyrosine kinase inhibitor resistance. Cancer Cell. 2023; 41: 340–55.e6.

62

El-Kenawi A, Berglund A, Estrella V, Zhang Y, Liu M, Putney RM, et al. Elevated methionine flux drives pyroptosis evasion in persister cancer cells. Cancer Res. 2023; 83: 720–34.

63

Santarpia M, Aguilar A, Chaib I, Cardona AF, Fancelli S, Laguia F, et al. Non-small-cell lung cancer signaling pathways, metabolism, and PD-1/PD-L1 antibodies. Cancers (Basel). 2020; 12: 1475.

64

Lu H, Zhang S, Wu J, Chen M, Cai MC, Fu Y, et al. Molecular targeted therapies elicit concurrent apoptotic and GSDME-dependent pyroptotic tumor cell death. Clin Cancer Res. 2018; 24: 6066–77.

65

Zhang L, Lu J, Zhou H, Du Z, Zhang G. Silencing of aquaporin 5 inhibits the growth of A549 lung cancer cells in vitro and in vivo. Int J Oncol. 2018; 52: 1643–50.

66

Zhang Z, Chen Z, Song Y, Zhang P, Hu J, Bai C. Expression of aquaporin 5 increases proliferation and metastasis potential of lung cancer. J Pathol. 2010; 221: 210–20.

67

Huang YH, Zhou XY, Wang HM, Xu H, Chen J, Lv NH. Aquaporin 5 promotes the proliferation and migration of human gastric carcinoma cells. Tumour Biol. 2013; 34: 1743–51.

68

Su L, Chen Y, Huang C, Wu S, Wang X, Zhao X, et al. Targeting Src reactivates pyroptosis to reverse chemoresistance in lung and pancreatic cancer models. Sci Transl Med. 2023; 15: eabl7895.

69

Ichihara E, Westover D, Meador CB, Yan Y, Bauer JA, Lu P, et al. SFK/FAK signaling attenuates osimertinib efficacy in both drug-sensitive and drug-resistant models of EGFR-mutant lung cancer. Cancer Res. 2017; 77: 2990–3000.

70

Karachaliou N, Chaib I, Cardona AF, Berenguer J, Bracht JWP, Yang J, et al. Common co-activation of AXL and CDCP1 in EGFR-mutation-positive non-smallcell lung cancer associated with poor prognosis. EBioMedicine. 2018; 29: 112–27.

71

Gao SP, Mark KG, Leslie K, Pao W, Motoi N, Gerald WL, et al. Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. J Clin Invest. 2007; 117: 3846–56.

72

Yao Z, Fenoglio S, Gao DC, Camiolo M, Stiles B, Lindsted T, et al. TGF-beta IL-6 axis mediates selective and adaptive mechanisms of resistance to molecular targeted therapy in lung cancer. Proc Natl Acad Sci U S A. 2010; 107: 15535–40.

73

Patel SA, Nilsson MB, Yang Y, Le X, Tran H, Elamin YY, et al. IL-6 mediates suppression of T and NK cells function in EMT-associated TKI-resistant EGFR mutant NSCLC. Clin Cancer Res. 2023; 29: 1292–1304.

74

Arrieta O, Barrón F, Padilla MS, Avilés-Salas A, Ramírez-Tirado LA, Arguelles Jiménez MJ, et al. Effect of metformin plus tyrosine kinase inhibitors compared with tyrosine kinase inhibitors alone in patients with epidermal growth factor receptor-mutated lung adenocarcinoma: a phase 2 randomized clinical trial. JAMA Oncol. 2019; 5: e192553.

75

Nilsson MB, Sun H, Diao L, Tong P, Liu D, Li L, et al. Stress hormones promote EGFR inhibitor resistance in NSCLC: Implications for combinations with β-blockers. Sci Transl Med. 2017; 9: eaa04307.

76

Luo M-Y, Zhou Y, Gu W-M, Wang C, Shen N-X, Dong J-K, et al. Metabolic and nonmetabolic functions of PSAT1 coordinate signaling cascades to confer EGFR inhibitor resistance and drive progression in lung adenocarcinoma. Cancer Res. 2022; 82: 3516–31.

77

Chan Y-C, Chang Y-C, Chuang H-H, Yang Y-C, Lin Y-F, Huang M-S, et al. Overexpression of PSAT1 promotes metastasis of lung adenocarcinoma by suppressing the IRF1-IFNγ axis. Oncogene. 2020; 39: 2509–22.

78

Razidlo GL, Burton KM, McNiven MA. Interleukin-6 promotes pancreatic cancer cell migration by rapidly activating the small GTPase CDC42. J Biol Chem. 2018; 293: 11143–53.

79

DeNicola GM, Chen P-H, Mullarky E, Sudderth JA, Hu Z, Wu D, et al. NRF2 regulates serine biosynthesis in non-small cell lung cancer. Nat Genet. 2015; 47: 1475–81.

80

Simanshu DK, Nissley DV, McCormick F. RAS proteins and their regulators in human disease. Cell. 2017; 170: 17–33.

81

Jones GG, del Río IB, Sari S, Sekerim A, Young LC, Hartig N, et al. SHOC2 phosphatase-dependent RAF dimerization mediates resistance to MEK inhibition in RAS-mutant cancers. Nat Commun. 2019; 10: 2532.

82

Terai H, Hamamoto J, Emoto K, Masuda T, Manabe T, Kuronuma S, et al. SHOC2 is a critical modulator of sensitivity to EGFR-TKIS in non-small cell lung cancer cells. Mol Cancer Res. 2021; 19: 317–28.

83

Boned Del Río I, Young LC, Sari S, Jones GG, Ringham-Terry B, Hartig N, et al. SHOC2 complex-driven RAF dimerization selectively contributes to ERK pathway dynamics. Proc Natl Acad Sci U S A. 2019; 116: 13330–9.

84

Santarpia M, Ciappina G, Spagnolo CC, Squeri A, Passalacqua MI, Aguilar A, et al. Targeted therapies for KRAS-mutant non-small cell lung cancer: from preclinical studies to clinical development-a narrative review. Transl Lung Cancer Res. 2023; 12: 346–68.

85

Hong SY, Lu YC, Hsiao SH, Kao YR, Lee MH, Lin YP, et al. Stabilization of AURKA by the E3 ubiquitin ligase CBLC in lung adenocarcinoma. Oncogene. 2022; 41: 1907–17.

86

Yaeger R, Weiss J, Pelster MS, Spira AI, Barve M, Ou SI, et al. Adagrasib with or without cetuximab in colorectal cancer with mutated KRAS G12c. N Engl J Med. 2023; 388: 44–54.

87

Yaeger R, Mezzadra R, Sinopoli J, Bian Y, Marasco M, Kaplun E, et al. Molecular characterization of acquired resistance to KRASG12C-EGFR inhibition in colorectal cancer. Cancer Discov. 2023; 13: 41–55.

88

Khawaja H, Briggs R, Latimer CH, Rassel M, Griffin D, Hanson L, et al. Bcl-xL is a key mediator of apoptosis following KRASG12C inhibition in KRASG12C-mutant colorectal cancer. Mol Cancer Ther. 2023; 22: 135–49.

89

Bigenzahn JW, Collu GM, Kartnig F, Pieraks M, Vladimer GI, Heinz LX, et al. LZTR1 is a regulator of RAS ubiquitination and signaling. Science. 2018; 362: 1171–7.

90

Abe T, Umeki I, Kanno SI, Inoue SI, Niihori T, Aoki Y. LZTR1 facilitates polyubiquitination and degradation of RAS-gtpases. Cell Death Differ. 2020; 27: 1023–35.

91

Chen S, Vedula RS, Cuevas-Navarro A, Lu B, Hogg SJ, Wang E, et al. Impaired proteolysis of noncanonical RAS proteins drives clonal hematopoietic transformation. Cancer Discov. 2022; 12: 2434–53.

92

Ko A, Hasanain M, Oh YT, D’Angelo F, Sommer D, Frangaj B, et al. LZTR1 mutation mediates oncogenesis through stabilization of EGFR and AXL. Cancer Discov. 2023; 13: 702–23.

93

Lay JD, Hong CC, Huang JS, Yang YY, Pao CY, Liu CH, et al. Sulfasalazine suppresses drug resistance and invasiveness of lung adenocarcinoma cells expressing AXL. Cancer Res. 2007; 67: 3878–87.

94

Gusenbauer S, Vlaicu P, Ullrich A. HGF induces novel EGFR functions involved in resistance formation to tyrosine kinase inhibitors. Oncogene. 2013; 32: 3846–56.

95

Yang Y, Zhang H, Huang S, Chu Q. KRAS mutations in solid tumors: characteristics, current therapeutic strategy, and potential treatment exploration. J Clin Med. 2023; 12: 709.

96

Debaugnies M, Rodríguez-Acebes S, Blondeau J, Parent MA, Zocco M, Song Y, et al. RHOJ controls EMT-associated resistance to chemotherapy. Nature. 2023; 616: 168–75.

97

Wan PK, Tong KC, Lok CN, Zhang C, Chang XY, Sze KH, et al. Platinum(Ⅱ) N-heterocyclic carbene complexes arrest metastatic tumor growth. Proc Natl Acad Sci U S A. 2021; 118: e2025806118.

98

Vaughan L, Tan C-T, Chapman A, Nonaka D, Mack NA, Smith D, et al. HUWE1 ubiquitylates and degrades the RAC activator TIAM1 promoting cell-cell adhesion disassembly, migration, and invasion. Cell Rep. 2015; 10: 88–102.

99

Yang D, Cheng D, Tu Q, Yang H, Sun B, Yan L, et al. HUWE1 controls the development of non-small cell lung cancer through down-regulation of p53. Theranostics. 2018; 8: 3517–29.

100

Kao SH, Wu HT, Wu KJ. Ubiquitination by HUWE1 in tumorigenesis and beyond. J Biomed Sci. 2018; 25: 67.

101

Yi J, Lu G, Li L, Wang X, Cao L, Lin M, et al. DNA damage-induced activation of CUL4B targets HUWE1 for proteasomal degradation. Nucleic Acids Res. 2015; 43: 4579–90.

102

Bid HK, Roberts RD, Manchanda PK, Houghton PJ. RAC1: an emerging therapeutic option for targeting cancer angiogenesis and metastasis. Mol Cancer Ther. 2013; 12: 1925–34.

103

Bera K, Kiepas A, Godet I, Li Y, Mehta P, Ifemembi B, et al. Extracellular fluid viscosity enhances cell migration and cancer dissemination. Nature. 2022; 611: 365–73.

104

Li J, Zhang JT, Jiang X, Shi X, Shen J, Feng F, et al. The cystic fibrosis transmembrane conductance regulator as a biomarker in non-small cell lung cancer. Int J Oncol. 2015; 46: 2107–15.

105

Middleton PG, Mall MA, Dřevínek P, Lands LC, McKone EF, Polineni D, et al. Elexacaftor-tezacaftor-ivacaftor for cystic fibrosis with a single Phe508del allele. N Engl J Med. 2019; 381: 1809–19.

106

Clunes LA, Davies CM, Coakley RD, Aleksandrov AA, Henderson AG, Zeman KL, et al. Cigarette smoke exposure induces CFTR internalization and insolubility, leading to airway surface liquid dehydration. FASEB J. 2012; 26: 533–45.

107

Erfinanda L, Zou L, Gutbier B, Kneller L, Weidenfeld S, Michalick L, et al. Loss of endothelial CFTR drives barrier failure and edema formation in lung infection and can be targeted by CFTR potentiation. Sci Transl Med. 2022; 14: eabg8577.

Cancer Biology & Medicine
Pages 500-518
Cite this article:
Rosell R, Jain A, Codony-Servat J, et al. Biological insights in non-small cell lung cancer. Cancer Biology & Medicine, 2023, 20(7): 500-518. https://doi.org/10.20892/j.issn.2095-3941.2023.0108

47

Views

1

Downloads

2

Crossref

10

Web of Science

12

Scopus

Altmetrics

Received: 04 April 2023
Accepted: 05 June 2023
Published: 28 June 2023
©2023 Cancer Biology & Medicine.

Creative Commons Attribution-NonCommercial 4.0 International License

Return