AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Bronchoalveolar lavage fluid assessment facilitates precision medicine for lung cancer

Hantao Zhang1,2,*Dan Deng2,*Shujun Li2Jing Ren3Wei Huang2Dan Liu3Weiya Wang1 ( )
Department of Pathology, West China Hospital, Sichuan University, Chengdu 610000, China
West China Biobank, West China Hospital, Sichuan University, Chengdu 610000, China
Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610000, China

*These authors contributed equally to this work.

Show Author Information

Abstract

Lung cancer is the most common and fatal malignant disease worldwide and has the highest mortality rate among tumor-related causes of death. Early diagnosis and precision medicine can significantly improve the survival rate and prognosis of lung cancer patients. At present, the clinical diagnosis of lung cancer is challenging due to a lack of effective non-invasive detection methods and biomarkers, and treatment is primarily hindered by drug resistance and high tumor heterogeneity. Liquid biopsy is a method for detecting circulating biomarkers in the blood and other body fluids containing genetic information from primary tumor tissues. Bronchoalveolar lavage fluid (BALF) is a potential liquid biopsy medium that is rich in a variety of bioactive substances and cell components. BALF contains information on the key characteristics of tumors, including the tumor subtype, gene mutation type, and tumor environment, thus BALF may be used as a diagnostic supplement to lung biopsy. In this review, the current research on BALF in the diagnosis, treatment, and prognosis of lung cancer is summarized. The advantages and disadvantages of different components of BALF, including cells, cell-free DNA, extracellular vesicles, and microRNA are introduced. In particular, the great potential of extracellular vesicles in precision diagnosis and detection of drug-resistant for lung cancer is highlighted. In addition, the performance of liquid biopsies with different body fluid sources in lung cancer detection are compared to facilitate more selective studies involving BALF, thereby promoting the application of BALF for precision medicine in lung cancer patients in the future.

References

1

Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023; 73: 17-48.

2

Maomao C, He L, Dianqin S, Siyi H, Xinxin Y, Fan Y, et al. Current cancer burden in China: epidemiology, etiology, and prevention. Cancer Biol Med. 2022; 19: 1121-38.

3

Oudkerk M, Liu S, Heuvelmans MA, Walter JE, Field JK. Lung cancer LDCT screening and mortality reduction - evidence, pitfalls and future perspectives. Nat Rev Clin Oncol. 2021; 18: 135-51.

4

Li C, Wang H, Jiang Y, Fu W, Liu X, Zhong R, et al. Advances in lung cancer screening and early detection. Cancer Biol Med. 2022; 19: 591-608.

5

Boumahdi S, de Sauvage FJ. The great escape: tumour cell plasticity in resistance to targeted therapy. Nat Rev Drug Discov. 2020; 19: 39-56.

6

Wang M, Herbst RS, Boshoff C. Toward personalized treatment approaches for non-small-cell lung cancer. Nat Med. 2021; 27: 1345-56.

7

Rudin CM, Brambilla E, Faivre-Finn C, Sage J. Small-cell lung cancer. Nat Rev Dis Primers. 2021; 7: 3.

8

Zhang C, Wang H. Accurate treatment of small cell lung cancer: current progress, new challenges and expectations. Biochim Biophys Acta Rev Cancer. 2022; 1877: 188798.

9

Heitzer E, Haque IS, Roberts CES, Speicher MR. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat Rev Genet. 2019; 20: 71-88.

10

Ignatiadis M, Sledge GW, Jeffrey SS. Liquid biopsy enters the clinic - implementation issues and future challenges. Nat Rev Clin Oncol. 2021; 18: 297-312.

11

Rolfo C, Mack P, Scagliotti GV, Aggarwal C, Arcila ME, Barlesi F, et al. Liquid biopsy for advanced NSCLC: a consensus statement from the international association for the study of lung cancer. J Thorac Oncol. 2021; 16: 1647-62.

12

Davidson KR, Ha DM, Schwarz MI, Chan ED. Bronchoalveolar lavage as a diagnostic procedure: a review of known cellular and molecular findings in various lung diseases. J Thorac Dis. 2020; 12: 4991-5019.

13

Domagala-Kulawik J. The relevance of bronchoalveolar lavage fluid analysis for lung cancer patients. Expert Rev Respir Med. 2020; 14: 329-37.

14

Kalkanis A, Papadopoulos D, Testelmans D, Kopitopoulou A, Boeykens E, Wauters E. Bronchoalveolar lavage fluid-isolated biomarkers for the diagnostic and prognostic assessment of lung cancer. Diagnostics (Basel). 2022; 12: 2949.

15

Reynolds HY, Newball HH. Analysis of proteins and respiratory cells obtained from human lungs by bronchial lavage. J Lab Clin Med. 1974; 84: 559-73.

16

Cao C, Yu X, Zhu T, Jiang Q, Li Y, Li X. Diagnostic role of liquid-based cytology of bronchial lavage fluid in addition to bronchial brushing specimens in lung cancer. Tumori. 2021; 107: 325-28.

17

Han S, Yang W, Li H. A study of the application of fiberoptic bronchoscopy combined with liquid-based cytology test in the early diagnosis of lung cancer. Oncol Lett. 2018; 16: 5807-12.

18

Debeljak A, Mermolja M, Sorli J, Zupancic M, Zorman M, Remskar J. Bronchoalveolar lavage in the diagnosis of peripheral primary and secondary malignant lung tumors. Respiration. 1994; 61: 226-30.

19

Ma S, Yu X, Jin X, Qiu F, Chen X, Wang R, et al. The usefulness of liquid-based cytology of bronchoalveolar lavage fluid combined with bronchial brush specimens in lung cancer diagnosis. J Int Med Res. 2022; 50: 3000605221132708.

20

Zhong CH, Tong D, Zhou ZQ, Su ZQ, Luo YL, Xing J, et al. Performance evaluation of detecting circulating tumor cells and tumor cells in bronchoalveolar lavage fluid in diagnosis of peripheral lung cancer. J Thorac Dis. 2018; 10: S830-7.

21

Domagala-Kulawik J, Raniszewska A. How to evaluate the immune status of lung cancer patients before immunotherapy. Breathe (Sheff). 2017; 13: 291-6.

22

Osińska I, Stelmaszczyk-Emmel A, Polubiec-Kownacka M, Dziedzic D, Domagała-Kulawik J. CD4+/CD25(high)/FoxP3+/CD127-regulatory T cells in bronchoalveolar lavage fluid of lung cancer patients. Hum Immunol. 2016; 77: 912-5.

23

Kwiecien I, Stelmaszczyk-Emmel A, Polubiec-Kownacka M, Dziedzic D, Domagala-Kulawik J. Elevated regulatory T cells, surface and intracellular CTLA-4 expression and interleukin-17 in the lung cancer microenvironment in humans. Cancer Immunol Immunother. 2017; 66: 161-70.

24

Hu X, Gu Y, Zhao S, Hua S, Jiang Y. Increased IL-10+CD206+CD14+M2-like macrophages in alveolar lavage fluid of patients with small cell lung cancer. Cancer Immunol Immunother. 2020; 69: 2547-60.

25

Mansour MSI, Hejny K, Johansson F, Mufti J, Vidis A, Mager U, et al. Factors influencing concordance of PD-L1 expression between biopsies and cytological specimens in non-small cell lung cancer. Diagnostics (Basel). 2021; 11: 1927.

26

Masuhiro K, Tamiya M, Fujimoto K, Koyama S, Naito Y, Osa A, et al. Bronchoalveolar lavage fluid reveals factors contributing to the efficacy of PD-1 blockade in lung cancer. JCI Insight. 2022; 7: e157915.

27

Suresh K, Naidoo J, Lin CT, Danoff S. Immune checkpoint immunotherapy for non-small cell lung cancer: benefits and pulmonary toxicities. Chest. 2018; 154: 1416-23.

28

Suresh K, Naidoo J, Zhong Q, Xiong Y, Mammen J, de Flores MV, et al. The alveolar immune cell landscape is dysregulated in checkpoint inhibitor pneumonitis. J Clin Invest. 2019; 129: 4305-15.

29

Kwiecien I, Skirecki T, Polubiec-Kownacka M, Raniszewska A, Domagala-Kulawik J. Immunophenotype of T cells expressing programmed death-1 and cytotoxic T cell antigen-4 in early lung cancer: local vs. systemic immune response. Cancers (Basel). 2019; 11: 567.

30

Schneider T, Kimpfler S, Warth A, Schnabel PA, Dienemann H, Schadendorf D, et al. Foxp3(+) regulatory T cells and natural killer cells distinctly infiltrate primary tumors and draining lymph nodes in pulmonary adenocarcinoma. J Thorac Oncol. 2011; 6: 432-8.

31

Brcic L, Stanzer S, Krenbek D, Gruber-Moesenbacher U, Absenger G, Quehenberger F, et al. Immune cell landscape in therapy-naïve squamous cell and adenocarcinomas of the lung. Virchows Arch. 2018; 472: 589-98.

32

Li J, Chen P, Mao CM, Tang XP, Zhu LR. Evaluation of diagnostic value of four tumor markers in bronchoalveolar lavage fluid of peripheral lung cancer. Asia Pac J Clin Oncol. 2014; 10: 141-8.

33

Tian K, Li Z, Qin L. Detection of CEA and ProGRP levels in BALF of patients with peripheral lung cancer and their relationship with CT signs. Biomed Res Int. 2022; 2022: 4119912.

34

Wang H, Zhang X, Liu X, Liu K, Li Y, Xu H. Diagnostic value of bronchoalveolar lavage fluid and serum tumor markers for lung cancer. J Cancer Res Ther. 2016; 12: 355-8.

35

Nikliński J, Chyczewska E, Furman M, Kowal E, Kozłowski M. Value of CEA and SCC-Ag in bronchoalveolar lavage (BAL) and serum of patients with lung carcinoma. Neoplasma. 1992; 39: 283-5.

36

Pina TC, Zapata IT, Hernández FC, López JB, Paricio PP, Hernández PM. Tumour markers in serum, bronchoalveolar lavage and biopsy cytosol in lung carcinoma: what environment lends the optimum diagnostic yield? Clin Chim Acta. 2001; 305: 27-34.

37

de Diego A, Compte L, Sanchis J, Enguidanos MJ, Marco V. Usefulness of carcinoembryonic antigen determination in bronchoalveolar lavage fluid. A comparative study among patients with peripheral lung cancer, pneumonia, and healthy individuals. Chest. 1991; 100: 1060-3.

38

Pothal S, Patil KP, Manjhi R, Dutta P. Diagnostic efficacy of broncho-alveolar lavage carcino-embronic antigen in carcinoma of lung. J Family Med Prim Care. 2019; 8: 1725-9.

39

Duffy MJ, O’Byrne K. Tissue and blood biomarkers in lung cancer: a review. Adv Clin Chem. 2018; 86: 1-21.

40

Ledermann JA. Serum neurone-specific enolase and other neuroendocrine markers in lung cancer. Eur J Cancer. 1994; 30a: 574-6.

41

Prados MC, Alvarez-Sala R, Blasco R, Chivato T, García Satué JL, García Río FJ, et al. The clinical value of neuron-specific enolase as a tumor marker in bronchoalveolar lavage. Cancer. 1994; 74: 1552-5.

42

Dowlati A, Bury T, Corhay JL, Weber T, Mendes P, Radermecker M. High neuron specific enolase levels in bronchoalveolar lavage fluid of patients with lung carcinoma: diagnostic value, relation to serum neuron specific enolase, and staging. Cancer. 1996; 77: 2039-43.

43

Wieskopf B, Demangeat C, Purohit A, Stenger R, Gries P, Kreisman H, et al. Cyfra 21-1 as a biologic marker of non-small cell lung cancer. Evaluation of sensitivity, specificity, and prognostic role. Chest. 1995; 108: 163-9.

44

Cremades MJ, Menéndez R, Pastor A, Llopis R, Aznar J. Diagnostic value of cytokeratin fragment 19 (CYFRA 21-1) in bronchoalveolar lavage fluid in lung cancer. Respir Med. 1998; 92: 766-71.

45

Cao C, Sun SF, Lv D, Chen ZB, Ding QL, Deng ZC. Utility of VEGF and sVEGFR-1 in bronchoalveolar lavage fluid for differential diagnosis of primary lung cancer. Asian Pac J Cancer Prev. 2013; 14: 2443-6.

46

Ohta Y, Ohta N, Tamura M, Wu J, Tsunezuka Y, Oda M, et al. Vascular endothelial growth factor expression in airways of patients with lung cancer: a possible diagnostic tool of responsive angiogenic status on the host side. Chest. 2002; 121: 1624-7.

47

Zhao X, Sun X, Li XL. Expression and clinical significance of STAT3, P-STAT3, and VEGF-C in small cell lung cancer. Asian Pac J Cancer Prev. 2012; 13: 2873-7.

48

Cao C, Chen ZB, Sun SF, Yu YM, Ding QL, Deng ZC. Evaluation of VEGF-C and tumor markers in bronchoalveolar lavage fluid for lung cancer diagnosis. Sci Rep. 2013; 3: 3473.

49

Lv D, Tan L, Zhang Q, Ma H, Zhang Y, Zhang Q, et al. Vascular endothelial growth factor-D (VEGF-D) is elevated in bronchoalveolar lavage fluid of patients with lung squamous carcinoma. Clin Lab. 2019; 65: 125-30.

50

Domagała-Kulawik J, Hoser G, Safianowska A, Grubek-Jaworska H, Chazan R. Elevated TGF-beta1 concentration in bronchoalveolar lavage fluid from patients with primary lung cancer. Arch Immunol Ther Exp (Warsz). 2006; 54: 143-7.

51

Jakubowska K, Naumnik W, Niklińska W, Chyczewska E. Clinical significance of HMGB-1 and TGF-β level in serum and BALF of advanced non-small cell lung cancer. Adv Exp Med Biol. 2015; 852: 49-58.

52

Naumnik W, Płońska I, Ossolińska M, Nikliński J, Naumnik B. Prognostic value of osteoprotegerin and sRANKL in bronchoalveolar lavage fluid of patients with advanced non-small cell lung cancer. Adv Exp Med Biol. 2018; 1047: 1-6.

53

Naumnik W, Panek B, Ossolińska M, Naumnik B. B cell-attracting chemokine-1 and progranulin in bronchoalveolar lavage fluid of patients with advanced non-small cell lung cancer: new prognostic factors. Adv Exp Med Biol. 2019; 1150: 11-6.

54

Naumnik W, Naumnik B, Niewiarowska K, Ossolinska M, Chyczewska E. Novel cytokines: IL-27, IL-29, IL-31 and IL-33. Can they be useful in clinical practice at the time diagnosis of lung cancer? Exp Oncol. 2012; 34: 348-53.

55

Naumnik W, Naumnik B, Niewiarowska K, Ossolinska M, Chyczewska E. Angiogenic axis angiopoietin-1 and angiopoietin-2/Tie-2 in non-small cell lung cancer: a bronchoalveolar lavage and serum study. Adv Exp Med Biol. 2013; 788: 341-8.

56

Kopiński P, Wandtke T, Dyczek A, Wędrowska E, Roży A, Senderek T, et al. Increased levels of interleukin 27 in patients with early clinical stages of non-small cell lung cancer. Pol Arch Intern Med. 2018; 128: 105-14.

57

Xiong W, Ding W, Xu M, Pudasaini B, Sun J, Zhao Y. The screening role of a biomarker panel in BALF among patients with cancersuspected pulmonary nodules less than 8 mm. Clin Respir J. 2020; 14: 829-38.

58

Oumeraci T, Schmidt B, Wolf T, Zapatka M, Pich A, Brors B, et al. Bronchoalveolar lavage fluid of lung cancer patients: mapping the uncharted waters using proteomics technology. Lung Cancer. 2011; 72: 136-8.

59

Pastor MD, Nogal A, Molina-Pinelo S, Meléndez R, Salinas A, González De la Peña M, et al. Identification of proteomic signatures associated with lung cancer and COPD. J Proteomics. 2013; 89: 227-37.

60

Li QK, Shah P, Li Y, Aiyetan PO, Chen J, Yung R, et al. Glycoproteomic analysis of bronchoalveolar lavage (BAL) fluid identifies tumor-associated glycoproteins from lung adenocarcinoma. J Proteome Res. 2013; 12: 3689-96.

61

Uribarri M, Hormaeche I, Zalacain R, Lopez-Vivanco G, Martinez A, Nagore D, et al. A new biomarker panel in bronchoalveolar lavage for an improved lung cancer diagnosis. J Thorac Oncol. 2014; 9: 1504-12.

62

Almatroodi SA, McDonald CF, Collins AL, Darby IA, Pouniotis DS. Quantitative proteomics of bronchoalveolar lavage fluid in lung adenocarcinoma. Cancer Genomics Proteomics. 2015; 12: 39-48.

63

Ortea I, Rodríguez-Ariza A, Chicano-Gálvez E, Arenas Vacas MS, Jurado Gámez B. Discovery of potential protein biomarkers of lung adenocarcinoma in bronchoalveolar lavage fluid by SWATH MS data-independent acquisition and targeted data extraction. J Proteomics. 2016; 138: 106-14.

64

Hmmier A, O’Brien ME, Lynch V, Clynes M, Morgan R, Dowling P. Proteomic analysis of bronchoalveolar lavage fluid (BALF) from lung cancer patients using label-free mass spectrometry. BBA Clin. 2017; 7: 97-104.

65

Zhou Y, Yang W, Ao M, Höti N, Gabrielson E, Chan DW, et al. Proteomic analysis of the air-way fluid in lung cancer. Detection of periostin in bronchoalveolar lavage (BAL). Front Oncol. 2020; 10: 1072.

66

Vu HM, Mohammad HB, Nguyen TNC, Lee JH, Do Y, Sung JY, et al. Quantitative proteomic analysis of bronchoalveolar lavage fluids from patients with small cell lung cancers. Proteomics Clin Appl. 2023; 17: e2300011.

67

Sim SY, Choi YR, Lee JH, Lim JM, Lee SE, Kim KP, et al. In-depth proteomic analysis of human bronchoalveolar lavage fluid toward the biomarker iscovery for lung cancers. Proteomics Clin Appl. 2019; 13: e1900028.

68

Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger KR, Yatabe Y, et al. International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society International Multidisciplinary Classification of Lung Adenocarcinoma. J Thorac Oncol. 2011; 6: 244-85.

69

Buttitta F, Felicioni L, Del Grammastro M, Filice G, Di Lorito A, Malatesta S, et al. Effective assessment of EGFR mutation status in bronchoalveolar lavage and pleural fluids by next-generation sequencing. Clin Cancer Res. 2013; 19: 691-8.

70

Park S, Hur JY, Lee KY, Lee JC, Rho JK, Shin SH, et al. Assessment of EGFR mutation status using cell-free DNA from bronchoalveolar lavage fluid. Clin Chem Lab Med. 2017; 55: 1489-95.

71

Yanev N, Mekov E, Valev D, Yankov G, Milanov V, Bichev S, et al. EGFR mutation status yield from bronchoalveolar lavage in patients with primary pulmonary adenocarcinoma compared to a venous blood sample and tissue biopsy. PeerJ. 2021; 9: e11448.

72

Zeng D, Wang C, Mu C, Su M, Mao J, Huang J, et al. Cell-free DNA from bronchoalveolar lavage fluid (BALF): a new liquid biopsy medium for identifying lung cancer. Ann Transl Med. 2021; 9: 1080.

73

Nair VS, Hui AB, Chabon JJ, Esfahani MS, Stehr H, Nabet BY, et al. Genomic profiling of bronchoalveolar lavage fluid in lung cancer. Cancer Res. 2022; 82: 2838-47.

74

Topaloglu O, Hoque MO, Tokumaru Y, Lee J, Ratovitski E, Sidransky D, et al. Detection of promoter hypermethylation of multiple genes in the tumor and bronchoalveolar lavage of patients with lung cancer. Clin Cancer Res. 2004; 10: 2284-8.

75

Ren M, Wang C, Sheng D, Shi Y, Jin M, Xu S. Methylation analysis of SHOX2 and RASSF1A in bronchoalveolar lavage fluid for early lung cancer diagnosis. Ann Diagn Pathol. 2017; 27: 57-61.

76

Zhang C, Yu W, Wang L, Zhao M, Guo Q, Lv S, et al. DNA methylation analysis of the SHOX2 and RASSF1A panel in bronchoalveolar lavage fluid for lung cancer diagnosis. J Cancer. 2017; 8: 3585-91.

77

Ahrendt SA, Chow JT, Xu LH, Yang SC, Eisenberger CF, Esteller M, et al. Molecular detection of tumor cells in bronchoalveolar lavage fluid from patients with early stage lung cancer. J Natl Cancer Inst. 1999; 91: 332-9.

78

Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009; 361: 947-57.

79

Zhou C, Wu YL, Chen G, Feng J, Liu XQ, Wang C, et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2011; 12: 735-42.

80

Arcila ME, Oxnard GR, Nafa K, Riely GJ, Solomon SB, Zakowski MF, et al. Rebiopsy of lung cancer patients with acquired resistance to EGFR inhibitors and enhanced detection of the T790M mutation using a locked nucleic acid-based assay. Clin Cancer Res. 2011; 17: 1169-80.

81

Pérez-Barrios C, Sánchez-Herrero E, Garcia-Simón N, Barquín M, Clemente MB, Provencio M, et al. ctDNA from body fluids is an adequate source for EGFR biomarker testing in advanced lung adenocarcinoma. Clin Chem Lab Med. 2021; 59: 1221-9.

82

Macías M, Alegre E, Alkorta-Aranburu G, Patiño-García A, Mateos B, Andueza MP, et al. The dynamic use of EGFR mutation analysis in cell-free DNA as a follow-up biomarker during different treatment lines in non-small-cell lung cancer patients. Dis Markers. 2019; 2019: 7954921.

83

Kneip C, Schmidt B, Seegebarth A, Weickmann S, Fleischhacker M, Liebenberg V, et al. SHOX2 DNA methylation is a biomarker for the diagnosis of lung cancer in plasma. J Thorac Oncol. 2011; 6: 1632-8.

84

Li P, Liu S, Du L, Mohseni G, Zhang Y, Wang C. Liquid biopsies based on DNA methylation as biomarkers for the detection and prognosis of lung cancer. Clin Epigenetics. 2022; 14: 118.

85

Dietrich D, Kneip C, Raji O, Liloglou T, Seegebarth A, Schlegel T, et al. Performance evaluation of the DNA methylation biomarker SHOX2 for the aid in diagnosis of lung cancer based on the analysis of bronchial aspirates. Int J Oncol. 2012; 40: 825-32.

86

Schneider KU, Dietrich D, Fleischhacker M, Leschber G, Merk J, Schäper F, et al. Correlation of SHOX2 gene amplification and DNA methylation in lung cancer tumors. BMC Cancer. 2011; 11: 102.

87

Ilse P, Biesterfeld S, Pomjanski N, Fink C, Schramm M. SHOX2 DNA methylation is a tumour marker in pleural effusions. Cancer Genomics Proteomics. 2013; 10: 217-23.

88

Deng Q, Su B, Ji X, Fang Q, Zhou S, Zhou C. Predictive value of unmethylated RASSF1A on disease progression in non-small cell lung cancer patients receiving pemetrexed-based chemotherapy. Cancer Biomark. 2020; 27: 313-23.

89

Kim JO, Gazala S, Razzak R, Guo L, Ghosh S, Roa WH, et al. Non-small cell lung cancer detection using microRNA expression profiling of bronchoalveolar lavage fluid and sputum. Anticancer Res. 2015; 35: 1873-80.

90

Li H, Jiang Z, Leng Q, Bai F, Wang J, Ding X, et al. A prediction model for distinguishing lung squamous cell carcinoma from adenocarcinoma. Oncotarget. 2017; 8: 50704-14.

91

Dutkowska A, Antczak A, Domańska-Senderowska D, Brzeziańska-Lasota E. Expression of selected miRNA, RARβ and FHIT genes in BALf of squamous cell lung cancer (squamous-cell carcinoma, SCC) patients: a pilot study. Mol Biol Rep. 2019; 46: 6593-7.

92

Rahbarghazi R, Jabbari N, Sani NA, Asghari R, Salimi L, Kalashani SA, et al. Tumor-derived extracellular vesicles: reliable tools for Cancer diagnosis and clinical applications. Cell Commun Signal. 2019; 17: 73.

93

Carnino JM, Lee H, Jin Y. Isolation and characterization of extracellular vesicles from Broncho-alveolar lavage fluid: a review and comparison of different methods. Respir Res. 2019; 20: 240.

94

Hur JY, Kim HJ, Lee JS, Choi CM, Lee JC, Jung MK, et al. Extracellular vesicle-derived DNA for performing EGFR genotyping of NSCLC patients. Mol Cancer. 2018; 17: 15.

95

Hur JY, Lee JS, Kim IA, Kim HJ, Kim WS, Lee KY. Extracellular vesicle-based EGFR genotyping in bronchoalveolar lavage fluid from treatment-naive non-small cell lung cancer patients. Transl Lung Cancer Res. 2019; 8: 1051-60.

96

Kim IA, Hur JY, Kim HJ, Kim WS, Lee KY. Extracellular vesicle-based bronchoalveolar lavage fluid liquid biopsy for EGFR mutation testing in advanced non-squamous NSCLC. Cancers (Basel). 2022; 14: 2744.

97

Rodríguez M, Silva J, López-Alfonso A, López-Muñiz MB, Peña C, Domínguez G, et al. Different exosome cargo from plasma/bronchoalveolar lavage in non-small-cell lung cancer. Genes Chromosomes Cancer. 2014; 53: 713-24.

98

Kim JE, Eom JS, Kim WY, Jo EJ, Mok J, Lee K, et al. Diagnostic value of microRNAs derived from exosomes in bronchoalveolar lavage fluid of early-stage lung adenocarcinoma: a pilot study. Thorac Cancer. 2018; 9: 911-5.

99

Yu Y, Abudula M, Li C, Chen Z, Zhang Y, Chen Y. Icotinib-resistant HCC827 cells produce exosomes with mRNA MET oncogenes and mediate the migration and invasion of NSCLC. Respir Res. 2019; 20: 217.

100

Speth JM, Penke LR, Bazzill JD, Park KS, de Rubio RG, Schneider DJ, et al. Alveolar macrophage secretion of vesicular SOCS3 represents a platform for lung cancer therapeutics. JCI Insight. 2019; 4: e131340.

101

Carvalho AS, Moraes MCS, Hyun Na C, Fierro-Monti I, Henriques A, Zahedi S, et al. Is the proteome of bronchoalveolar lavage extracellular vesicles a marker of advanced lung cancer? Cancers (Basel). 2020; 12: 3450.

102

Lee SE, Park HY, Hur JY, Kim HJ, Kim IA, Kim WS, et al. Genomic profiling of extracellular vesicle-derived DNA from bronchoalveolar lavage fluid of patients with lung adenocarcinoma. Transl Lung Cancer Res. 2021; 10: 104-16.

103

Carvalho AS, Cuco CM, Lavareda C, Miguel F, Ventura M, Almeida S, et al. Bronchoalveolar lavage proteomics in patients with suspected lung cancer. Sci Rep. 2017; 7: 42190.

104

Lindon JC, Holmes E, Nicholson JK. Metabonomics and its role in drug development and disease diagnosis. Expert Rev Mol Diagn. 2004; 4: 189-99.

105

Chen Y, Ma Z, Li A, Li H, Wang B, Zhong J, et al. Metabolomic profiling of human serum in lung cancer patients using liquid chromatography/hybrid quadrupole time-of-flight mass spectrometry and gas chromatography/mass spectrometry. J Cancer Res Clin Oncol. 2015; 141: 705-18.

106

Maeda J, Higashiyama M, Imaizumi A, Nakayama T, Yamamoto H, Daimon T, et al. Possibility of multivariate function composed of plasma amino acid profiles as a novel screening index for non-small cell lung cancer: a case control study. BMC Cancer. 2010; 10: 690.

107

Carrola J, Rocha CM, Barros AS, Gil AM, Goodfellow BJ, Carreira IM, et al. Metabolic signatures of lung cancer in biofluids: NMR-based metabonomics of urine. J Proteome Res. 2011; 10: 221-30.

108

O’Shea K, Cameron SJ, Lewis KE, Lu C, Mur LA. Metabolomicbased biomarker discovery for non-invasive lung cancer screening: a case study. Biochim Biophys Acta. 2016; 1860: 2682-7.

109

Callejón-Leblic B, García-Barrera T, Grávalos-Guzmán J, Pereira-Vega A, Gómez-Ariza JL. Metabolic profiling of potential lung cancer biomarkers using bronchoalveolar lavage fluid and the integrated direct infusion/gas chromatography mass spectrometry platform. J Proteomics. 2016; 145: 197-206.

110

Callejón-Leblic B, García-Barrera T, Pereira-Vega A, Gómez-Ariza JL. Metabolomic study of serum, urine and bronchoalveolar lavage fluid based on gas chromatography mass spectrometry to delve into the pathology of lung cancer. J Pharm Biomed Anal. 2019; 163: 122-9.

111

Brüssow H. Problems with the concept of gut microbiota dysbiosis. Microb Biotechnol. 2020; 13: 423-34.

112

Lee SH, Sung JY, Yong D, Chun J, Kim SY, Song JH, et al. Characterization of microbiome in bronchoalveolar lavage fluid of patients with lung cancer comparing with benign mass like lesions. Lung Cancer. 2016; 102: 89-95.

113

Yan X, Yang M, Liu J, Gao R, Hu J, Li J, et al. Discovery and validation of potential bacterial biomarkers for lung cancer. Am J Cancer Res. 2015; 5: 3111-22.

114

Jang HJ, Choi JY, Kim K, Yong SH, Kim YW, Kim SY, et al. Relationship of the lung microbiome with PD-L1 expression and immunotherapy response in lung cancer. Respir Res. 2021; 22: 322.

115

Jin J, Gan Y, Liu H, Wang Z, Yuan J, Deng T, et al. Diminishing microbiome richness and distinction in the lower respiratory tract of lung cancer patients: a multiple comparative study design with independent validation. Lung Cancer. 2019; 136: 129-35.

116

Zheng L, Sun R, Zhu Y, Li Z, She X, Jian X, et al. Lung microbiome alterations in NSCLC patients. Sci Rep. 2021; 11: 11736.

117

Patnaik SK, Cortes EG, Kannisto ED, Punnanitinont A, Dhillon SS, Liu S, et al. Lower airway bacterial microbiome may influence recurrence after resection of early-stage non-small cell lung cancer. J Thorac Cardiovasc Surg. 2021; 161: 419-29.e16.

118

Bingula R, Filaire E, Molnar I, Delmas E, Berthon JY, Vasson MP, et al. Characterisation of microbiota in saliva, bronchoalveolar lavage fluid, non-malignant, peritumoural and tumour tissue in non-small cell lung cancer patients: a cross-sectional clinical trial. Respir Res. 2020; 21: 129.

119

Lee JH, Chang JH. Diagnostic utility of serum and pleural fluid carcinoembryonic antigen, neuron-specific enolase, and cytokeratin 19 fragments in patients with effusions from primary lung cancer. Chest. 2005; 128: 2298-303.

120

Darlington P, Kullberg S, Eklund A, Grunewald J. Lung CD4+ Vα2.3+ T-cells in sarcoidosis cohorts with Löfgren’s syndrome. Respir Res. 2020; 21: 61.

121

Sohn JW. Acute eosinophilic pneumonia. Tuberc Respir Dis (Seoul). 2013; 74: 51-5.

122

Mukae H, Ishimoto H, Yanagi S, Ishii H, Nakayama S, Ashitani J, et al. Elevated BALF concentrations of alpha- and beta-defensins in patients with pulmonary alveolar proteinosis. Respir Med. 2007; 101: 715-21.

123

Singh G, Martin Rumende C, Sharma SK, Rengganis I, Amin Z, Loho T, et al. Low BALF CD4 T cells count is associated with extubation failure and mortality in critically ill covid-19 pneumonia. Ann Med. 2022; 54: 1894-905.

124

Zareba L, Szymanski J, Homoncik Z, Czystowska-Kuzmicz M. EVs from BALF-mediators of inflammation and potential biomarkers in lung diseases. Int J Mol Sci. 2021; 22: 3651.

125

Yu W, Hurley J, Roberts D, Chakrabortty SK, Enderle D, Noerholm M, et al. Exosome-based liquid biopsies in cancer: opportunities and challenges. Ann Oncol. 2021; 32: 466-77.

Cancer Biology & Medicine
Pages 230-251
Cite this article:
Zhang H, Deng D, Li S, et al. Bronchoalveolar lavage fluid assessment facilitates precision medicine for lung cancer. Cancer Biology & Medicine, 2024, 21(3): 230-251. https://doi.org/10.20892/j.issn.2095-3941.2023.0381

146

Views

6

Downloads

1

Crossref

3

Web of Science

3

Scopus

Altmetrics

Received: 27 September 2023
Accepted: 24 November 2023
Published: 29 December 2023
©2024 The Authors.

Creative Commons Attribution-NonCommercial 4.0 International License

Return