AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Original Research | Open Access

Transplantation of mononuclear cells from bone marrow in a rat model of Huntington’s disease

Teresa Serrano1Paula Pierozan2Esteban Alberti1Lisette Blanco1Karelys de la Cuétara Bernal1María E González1Nancy Pavón1Lourdes Lorigados1María A Robinson-Agramonte1Jorge A Bergado1( )
International Center for Neurological Restoration (CIREN), La Habana, Cuba
Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
Show Author Information

Abstract

This article investigates the possible effects of transplantation of mononuclear bone marrow cells (mBMCs) to ameliorate or prevent the behavioral impairments and the cellular damage observed in a quinolinic acid (QA) model of Huntington’s disease. mBMCs were isolated using a standard procedure and implanted within the QA-lesioned striatum. Behavior was explored using motor (beam test) and memory (object recognition and Morris water maze) tests. Morphology was evaluated using conventional histology (cresyl violet), bisbenzimide (to evaluate cell vitality), and immunohystochemistry to identify neurons or glia. mBMC-transplanted animals showed improvements in motor coordination (beam test). Regarding memory, object recognition was significantly improved in transplanted animals, while spatial memory (Morris water maze test) was not severely affected by QA and, therefore, the results after transplantation were significant only in the probe-trial retention test. In samples taken from the animals that participated in the behavioral tests, a preserved morphology of striatal neurons and a reduced glial reaction indicated a possible neuroprotective effect of the transplanted mBMCs. A parallel study confirmed that the transplanted mBMCs have a long survival period (1 year follow-up). The results presented confirm the possibility that mBMC transplantation may be a viable therapeutic option for Huntington’s disease.

References

1.
Sieck BC, Smith MM, Duff K, Paulsen JS, Beglinger LJ. Symptom validity test performance in the Huntington disease clinic. Arch Clin Neuropsychol. 2013;28(2):135-143.
2.
Rikani AA, Choudhry Z, Choudhry AM, et al. The mechanism of degeneration of striatal neuronal subtypes in Huntington disease. Ann Neurosci. 2014;21(3):112-114.
3.
Deng YP, Wong T, Wan JY, Reiner A. Differential loss of thalamostriatal and corticostriatal input to striatal projection neuron types prior to overt motor symptoms in the Q140 knock-in mouse model of Huntington’s disease. Front Syst Neurosci. 2014;8:198.
4.
Videnovic A. Treatment of huntington disease. Curr Treat Options Neurol. 2013;15(4):424-438.
5.
Désaméricq G, Youssov K, Charles P et al. Guidelines for clinical pharmacological practices in Huntington’s disease. Rev Neurol. 2016;172(8-9):423-432.
6.
Brouillet E, Conde F, Beal MF, Hantraye P. Replicating Huntington’s disease phenotype in experimental animals. Prog Neurobiol. 1999;59(5):427-468.
7.
Choi KA, Hwang I, Park HS, Oh SI, Kang S, Hong S. Stem cell therapy and cellular engineering for treatment of neuronal dysfunction in Huntington’s disease. Biotechnol J. 2014;9(7):882-894.
8.
Beal MF, Kowall NW, Ellison DW, Mazurek MF, Swartz KJ, Martin JB. Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature. 1986;321(6066):168-171.
9.
Ferrante RJ, Kowall NW, Cipolloni PB, Storey E, Beal MF. Excitotoxin lesions in primates as a model for Huntington’s disease: histopathologic and neurochemical characterization. Exp Neurol. 1993;119(1):46-71.
10.
Mahmood A, Lu D, Yi L, Chen JL, Chopp M. Intracranial bone marrow transplantation after traumatic brain injury improving functional outcome in adult rats. J Neurosurg. 2001;94(4):589-595.
11.
Zhao LR, Duan WM, Reyes M, Keene CD, Verfaillie CM, Low WC. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol. 2002;174(1):11-20.
12.
Sánchez TS, Lezcano LB, Amador EA, et al. Establishment of the conditions for the bone marrow cells transplants in a model of Huntington’s disease and functional effect on the motor behavior. Rev Colomb Biotecnol. 2011;2:107-126.
13.
Serrano ST, Alberti Amador E, Lorigados Pedre L, Blanco Lezcano L, Diaz Armesto I, Bergado JA. BDNF in quinolinic acid lesioned rats after bone marrow cells transplant. Neurosci Lett. 2014;559:147-151.
14.
Böyum A. Separation of leukocytes from blood and bone marrow. J Clin Lab Invest. 1968;21:77-84.
15.
Serrano-Sánchez T, Alberti-Amador E, Lorigados-Pedre L, íaz-Armesto ID, Blanco-Lezcano L, Vallejo-Morales A. Immunophenotype characterization of rat bone marrow cell. Rev Biotecnología Aplicada. 2005;22(3):234-236.
16.
Blanco Lezcano L, Lorigados Pedre L, Ferandez Verdecia CI, Serrano Sánchez T, Pavón Fuentes N, Francis Turner L. Modify beam transversal test to evaluate hemiparkinsonian rats. Acta Biológica Colombiana. 2010;15(2):189-202.
17.
Ennaceur A. One-trial object recognition in rats and mice: methodological and theoretical issues. Behav Brain Res. 2010;215(2):244-254.
18.
Morris RG, Hagan JJ, Rawlins JN. Allocentric spatial learning by hippocampectomised rats: a further test of the “spatial mapping” and “working memory” theories of hippocampal function. Q J Exp Psychol B. 1986;38(4):365-395.
19.
Ehara A, Ueda S. Application of Fluoro-Jade C in acute and chronic neurodegeneration models: utilities and staining differences. Acta Histochem Cytochem. 2009;42(6):171-179.
20.
Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates: Hard Cover Edition. Cambridge, MA: Elsevier; 2006.
21.
Soleimani M, Abbasnia E, Fathi M, Sahraei H, Fathi Y, Kaka G. The effects of low-level laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts--an in vitro study. Lasers Med Sci. 2012;27(2):423-430.
22.
Qi X, Shao M, Peng H, Bi Z, Su Z, Li H. In vitro differentiation of bone marrow stromal cells into neurons and glial cells and differential protein expression in a two-compartment bone marrow stromal cell/neuron co-culture system. J Clin Neurosci. 2010;17(7):908-913.
23.
Abada YS, Nguyen HP, Schreiber R, Ellenbroek B. Assessment of motor function, sensory motor gating and recognition memory in a novel BACHD transgenic rat model for Huntington disease. PLoS One. 2013;8(7):e68584.
24.
Garcia Ruiz PJ, Gomez TE, Sanchez Bernados V, Rojo A, Fontan A, de Garcia YJ. Bradykinesia in Huntington’s disease. Clin Neuropharmacol. 2000;23(1):50-52.
25.
Lane EL, Cheetham SC, Jenner P. Repeated administration of the monoamine reuptake inhibitor BTS 74 398 induces ipsilateral circling in the 6-hydroxydopamine lesioned rat without sensitizing motor behaviours. Eur J Neurosci. 2005;21(1):179-186.
26.
Brundin P, Strecker RE, Londos E, Bjorklund A. Dopamine neurons grafted unilaterally to the nucleus accumbens affect drug-induced circling and locomotion. Exp Brain Res. 1987;69(1):183-194.
27.
Bueno-Nava A, Gonzalez-Pina R, Alfaro-Rodriguez A, et al. Recovery of motor deficit, cerebellar serotonin and lipid peroxidation levels in the cortex of injured rats. Neurochem Res. 2010;35(1538):1545.
28.
Havekes R, Abel T, Van der Zee EA. The cholinergic system and neostriatal memory functions. Behav Brain Res. 2011;221(2):412-423.
29.
Rossato JI, Zinn CG, Furini C, et al. A link between the hippocampal and the striatal memory systems of the brain. An Acad Bras Cienc. 2006;78(3):515-523.
30.
Scimeca JM, Badre D. Striatal contributions to declarative memory retrieval. Neuron. 2012;75(3):380-392.
31.
Kordower JH, Chen EY, Winkler C, et al. Grafts of EGF-responsive neural stem cells derived from GFAP-hNGF transgenic mice: trophic and tropic effects in a rodent model of Huntington’s disease. J Comp Neurol. 1997;387(1):96-113.
32.
Bazzett T, Legnard E, Bauter MR, Albin RL. Time-course analysis and comparison of acute and chronic intrastriatal quinolinic acid administration on forelimb reaching deficits in the rat. Exp Neurol. 1999;158(1):126-134.
33.
Guyot MC, Hantraye P, Dolan R, Palfi S, Maziere M, Brouillet E. Quantifiable bradykinesia, gait abnormalities and Huntington’s disease-like striatal lesions in rats chronically treated with 3-nitropropionic acid. Neuroscience. 1997;79(1):45-56.
34.
Velloso NA, Dalmolin GD, Gomes GM, et al. Spermine improves recognition memory deficit in a rodent model of Huntington’s disease. Neurobiol Learn Mem. 2009;92(4):574-580.
35.
Lescaudron L. Autologous adult bone marrow stem cell transplantation in an animal model of Huntington’s disease: behavioural and morphological outcomes. J Neurosci. 2003;113(7):945-956.
36.
Laroni A, de Rosbo NK, Uccelli A. Mesenchymal stem cells for the treatment of neurological diseases: immunoregulation beyond neuroprotection. Immunol Lett. 2015;168(2):183-190.
37.
Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. 2002;2(7):489-501.
38.
Clelland CD, Barker RA, Watts C. Cell therapy in Huntington disease. Neurosurg Focus. 2008;24(3-4):E9.
39.
Vaquero J, Bonilla C, Otero L, Aguayo C, Oya S, Urita M. Angiogenesis and vasculogenesis induced by intralesional adult mesenchymal stem cell transplantation in an experimental spinal cord injury model. Trauma Fund MAPFRE. 2008;19:206-211.
Journal of Neurorestoratology
Pages 95-105
Cite this article:
Serrano T, Pierozan P, Alberti E, et al. Transplantation of mononuclear cells from bone marrow in a rat model of Huntington’s disease. Journal of Neurorestoratology, 2016, 4(1): 95-105. https://doi.org/10.2147/JN.S118435

513

Views

9

Downloads

2

Crossref

2

Web of Science

0

Scopus

Altmetrics

Published: 13 December 2016
© 2016 The Author(s).

© 2016 Serrano et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms. php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Return