AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Performance analysis of a low-complexity nonorthogonal multiple access scheme in visible light communication downlinks using pulse modulations

Jian Song and Hongming Zhang are with Beijing National Research Center for Information Science and Technology (BNRist), Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
Key Laboratory of Digital TV System of Guangdong Province and Shenzhen City, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
Beijing National Research Center for Information Science and Technology (BNRist), and Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
Show Author Information

Abstract

Although Successive Interference Cancellation (SIC) decoding is widely adopted in Nonorthogonal Multiple Access (NOMA) schemes for the recovery of user data at acceptable complexity, the imperfect SIC would cause Error Propagation (EP), which can severely degrade system performance. In this work, we propose an SIC-free NOMA scheme in pulse modulation based Visible Light Communication (VLC) downlinks, including two types of users with different data rate requirements. Low bit-rate users adopt on-off keying, whereas high bit-rate ones use Multiple Pulse Position Modulation (MPPM). The soft decision decoding scheme is exploited by high bit-rate users to decode MPPM signals, which could fundamentally eliminate the detrimental effect of EP; the scheme is also easier and faster to execute compared with the conventional SIC decoding scheme. Expressions of the symbol error rate and achievable data rate for two types of users are derived. Results of the Monte Carlo simulation are provided to confirm the correctness of theoretical results.

References

[1]
D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, LED based indoor visible light communications: State of the art, IEEE Commun. Surveys Tutor., vol. 17, no. 3, pp. 1649-1678, 2015.
[2]
J. Y. Sung, C. W. Chow, and C. H. Yeh, Dimming-discrete-multi-tone (DMT) for simultaneous color control and high speed visible light communication, Opt. Express, vol. 22, no. 7, pp. 7538-7543, 2014.
[3]
J. Song, W. B. Ding, F. Yang, H. Yang, B. Y. Yu, and H. M. Zhang, An indoor broadband broadcasting system based on PLC and VLC, IEEE Trans. Broadcast., vol. 61, no. 2, pp. 299-308, 2015.
[4]
B. Y. Yu, H. M. Zhang, L. Wei, and J. Song, Subcarrier grouping OFDM for visible-light communication systems, IEEE Photon. J., vol. 7, no. 5, p. 7903812, 2015.
[5]
X. Huang, F. Yang, C. Y. Pan, and J. Song, Advanced ADO-OFDM with adaptive subcarrier assignment and optimized power allocation, IEEE Wirel. Commun. Lett., vol. 8, no. 4, pp. 1167-1170, 2019.
[6]
S. Z. Chen, Y. C. Liang, S. H. Sun, S. L. Kang, W. C. Cheng, and M. G. Peng, Vision, requirements, and technology trend of 6G: How to tackle the challenges of system coverage, capacity, user data-rate and movement speed, IEEE Wirel. Commun., vol. 27, no. 2, pp. 218-228, 2020.
[7]
M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi, Toward 6G networks: Use cases and technologies, IEEE Commun. Mag., vol. 58, no. 3, pp. 55-61, 2020.
[8]
H. L. Minh, D. O’Brien, G. Faulkner, L. B. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, 100-Mb/s NRZ visible light communications using a postequalized white LED, IEEE Photon. Technol. Lett., vol. 21, no. 15, pp. 1063-1065, 2009.
[9]
L. B. Zeng, D. C. O’Brien, H. Le Minh, G. E. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting, IEEE J. Selected Areas Commun., vol. 27, no. 9, pp. 1654-1662, 2009.
[10]
S. M. Feng, R. Zhang, W. Xu, and L. Hanzo, Multiple access design for ultra-dense VLC networks: Orthogonal vs non-orthogonal, IEEE Trans. Commun., vol. 67, no. 3, pp. 2218-2232, 2019.
[11]
L. L. Dai, B. C. Wang, Z. G. Ding, Z. C. Wang, S. Chen, and L. Hanzo, A survey of non-orthogonal multiple access for 5G, IEEE Commun. Surveys Tutor., vol. 20, no. 3, pp. 2294-2323, 2018.
[12]
R. Hoshyar, F. P. Wathan, and R. Tafazolli, Novel low-density signature for synchronous CDMA systems over AWGN channel, IEEE Trans. Signal Proc., vol. 56, no. 4, pp. 1616-1626, 2008.
[13]
H. Marshoud, S. Muhaidat, P. C. Sofotasios, S. Hussain, M. Ali Imran, and B. S. Sharif, Optical non-orthogonal multiple access for visible light communication, IEEE Wirel. Commun., vol. 25, no. 2, pp. 82-88, 2018.
[14]
H. R. Wang, F. S. Wang, and R. Li, Enhancing power allocation efficiency of NOMA aided-MIMO downlink VLC networks, Opt. Commun., vol. 454, p. 124497, 2020.
[15]
H. Marshoud, V. M. Kapinas, G. K. Karagiannidis, and S. Muhaidat, Non-orthogonal multiple access for visible light communications, IEEE Photon. Technol. Lett., vol. 28, no. 1, pp. 51-54, 2016.
[16]
C. Chen, W. D. Zhong, H. L. Yang, and P. F. Du, On the performance of MIMO-NOMA-based visible light communication systems, IEEE Photon. Technol. Lett., vol. 30, no. 4, pp. 307-310, 2018.
[17]
Z. H. Yang, W. Xu, and Y. R. Li, Fair non-orthogonal multiple access for visible light communication downlinks, IEEE Wirel. Commun. Lett., vol. 6, no. 1, pp. 66-69, 2017.
[18]
Y. Fu, Y. Hong, L. K. Chen, and C. W. Sung, Enhanced power allocation for sum rate maximization in OFDM-NOMA VLC systems, IEEE Photon. Technol. Lett., vol. 30, no. 13, pp. 1218-1221, 2018.
[19]
Q. Li, T. Shang, T. Tang, and Z. Y. Dong, Optimal power allocation scheme based on multi-factor control in indoor NOMA-VLC systems, IEEE Acc., vol. 7, pp. 82 878-82 887, 2019.
[20]
S. M. Feng, T. Bai, and L. Hanzo, Joint power allocation for the multi-user NOMA-downlink in a power-line-fed VLC network, IEEE Trans. Vehicul. Technol., vol. 68, no. 5, pp. 5185-5190, 2019.
[21]
B. J. Lin, W. P. Ye, X. Tang, and Z. Ghassemlooy, Experimental demonstration of bidirectional NOMA-OFDMA visible light communications, Opt. Express, vol. 25, no. 4, pp. 4348-4355, 2017.
[22]
H. Abumarshoud, H. Alshaer, and H. Haas, Dynamic multiple access configuration in intelligent lifi attocellular access points, IEEE Acc., vol. 7, pp. 62 126-62 141, 2019.
[23]
L. Yin, W. O. Popoola, X. P. Wu, and H. Haas, Performance evaluation of non-orthogonal multiple access in visible light communication, IEEE Trans. Commun., vol. 64, no. 12, pp. 5162-5175, 2016.
[24]
M. B. Janjua, D. B. Da Costa, and H. Arslan, User pairing and power allocation strategies for 3D VLC-NOMA systems, IEEE Wirel. Commun. Lett., vol. 9, no. 6, pp. 866-870, 2020.
[25]
G. Nauryzbayev, M. Abdallah, and H. Elgala, On the performance of NOMA-enabled spectrally and energy efficient OFDM (SEE-OFDM) for indoor visible light communications, in Proc. 2018 IEEE 87th Vehicular Technology Conf. (VTC Spring), Porto, Portugal, 2018.
[26]
G. Nauryzbayev, M. Abdallah, and H. Elgala, Outage of SEE-OFDM VLC-NOMA networks, IEEE Photon. Technol. Lett., vol. 31, no. 2, pp. 121-124, 2019.
[27]
H. Y. Li, Z. T. Huang, Y. Xiao, S. Zhan, and Y. F. Ji, A power and spectrum efficient NOMA scheme for VLC network based on hierarchical pre-distorted LACO-OFDM, IEEE Acc., vol. 7, pp. 48 565-48 571, 2019.
[28]
J. Shi, J. He, K. Q. Wu, and J. Ma, Enhanced performance of asynchronous multi-cell VLC system using OQAM/OFDM-NOMA, J. Lightw. Technol., vol. 37, no. 20, pp. 5212-5220, 2019.
[29]
A. Adnan, Y. Liu, C. W. Chow, and C. H. Yeh, Demonstration of non-hermitian symmetry (NHS) IFFT/FFT size efficient OFDM non-orthogonal multiple access (NOMA) for visible light communication, IEEE Photon. J., vol. 12, no. 3, p. 7201405, 2020.
[30]
A. Adnan, Y. Liu, C. W. Chow, and C. H. Yeh, Analysis of non-hermitian symmetry (NHS) IFFT/FFT size efficient OFDM for multiple-client non-orthogonal multiple access (NOMA) visible light communication (VLC) system, Opt. Commun., vol. 472, p. 125991, 2020.
[31]
X. Zhao, H. B. Chen, and J. Y. Sun, On physical-layer security in multiuser visible light communication systems with non-orthogonal multiple access, IEEE Acc., vol. 6, pp. 34 004-34 017, 2018.
[32]
Y. B. Yang, C. Chen, W. Zhang, X. Deng, P. F. Du, H. L. Yang, W. D. Zhong, and L. Y. Chen, Secure and private NOMA VLC using OFDM with two-level chaotic encryption, Opt. Express, vol. 26, no. 26, pp. 34 031-34 042, 2018.
[33]
B. J. Lin, Z. Ghassemlooy, X. Tang, Y. W. Li, and M. Zhang, Experimental demonstration of optical MIMO NOMA-VLC with single carrier transmission, Opt. Commun., vol. 402, pp. 52-55, 2017.
[34]
H. Marshoud, P. C. Sofotasios, S. Muhaidat, G. K. Karagiannidis, and B. S. Sharif, On the performance of visible light communication systems with non-orthogonal multiple access, IEEE Trans. Wirel. Commun., vol. 16, no. 10, pp. 6350-6364, 2017.
[35]
X. D. Liu, Z. Z. Chen, Y. H. Wang, F. H. Zhou, Y. S. Luo, and R. Q. Hu, BER analysis of NOMA-enabled visible light communication systems with different modulations, IEEE Trans. Vehicul. Technol., vol. 68, no. 11, pp. 10 807-10 821, 2019.
[36]
H. Y. Li, Z. T. Huang, Y. Xiao, S. Zhan, and Y. F. Ji, Solution for error propagation in a NOMA-based VLC network: Symmetric superposition coding, Opt. Express, vol. 25, no. 24, pp. 29 856-29 863, 2017.
[37]
C. Chen, W. D. Zhong, H. L. Yang, P. F. Du, and Y. B. Yang, Flexible-rate SIC-free NOMA for downlink VLC based on constellation partitioning coding, IEEE Wirel. Commun. Lett., vol. 8, no. 2, pp. 568-571, 2019.
[38]
J. Shi, J. He, Y. Hong, and L. K. Chen, Performance-enhanced NOMA-VLC using subcarrier pairwise coding, Opt. Commun., vol. 450, pp. 141-146, 2019.
[39]
T. Cao, H. Zhang, and J. Song, BER performance analysis for downlink non-orthogonal multiple access with error propagation mitigated method in visible light communications, under review.
[40]
Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling with Matlab®. Bellingham, WA, USA: CRC Press, 2019.
[41]
IEEE Standard for Local and Metropolitan Area Networks-Part 15.7: Short-Range Optical Wireless Communications, IEEE Std 802.15.7-2018, 2019.
[42]
Z. Y. Wang, H. Y. Yu, and D. M. Wang, Channel and bit adaptive power control strategy for uplink NOMA VLC systems, Appl. Sci., vol. 9, no. 2, p. 220, 2019.
[43]
Z. Ghassemlooy, L. N. Alves, S. Zvanovec, and M. Ali Khalighi, Visible light communications: Theory and applications, Boca Raton, FL, USA: CRC Press, 2017.
[44]
D. Zhou, T. Cao, Y. T. Yang, J. X. Zhang, P. Wang, and B. S. Yang, Symbol error rate performance analysis of soft-decision decoded MPPM free space optical system over exponentiated Weibull fading channels, Chin. Opt. Lett., vol. 15, no. 5, p. 050602, 2017.
[45]
T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed. New York, NY, USA: John Wiley & Sons, 2006.
[46]
A. Papoulis, Probability, Random Variables, and Stochastic Processes. New York, NY, USA: McGraw-Hill, 1991.
Intelligent and Converged Networks
Pages 50-65
Cite this article:
Song J, Cao T, Zhang H. Performance analysis of a low-complexity nonorthogonal multiple access scheme in visible light communication downlinks using pulse modulations. Intelligent and Converged Networks, 2021, 2(1): 50-65. https://doi.org/10.23919/ICN.2020.0024

839

Views

60

Downloads

7

Crossref

10

Scopus

Altmetrics

Received: 03 November 2020
Accepted: 08 December 2020
Published: 12 May 2021
© ITU and TUP 2021

This work is available under the CC BY-NC-ND 3.0 IGO license: https://creativecommons.org/licenses/by-nc-nd/3.0/igo/.

Return