AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (6.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

An intelligent wireless transmission toward 6G

Ping Zhang1Lihua Li1( )Kai Niu2Yaxian Li1Guangyan Lu1Zhaoyuan Wang1
State Key Laboratory of Networking and Switching Technology, and the School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
Key Laboratory of Universal Wireless Communications, Ministry of Education, and the School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China
Show Author Information

Abstract

With the deployment and commercial application of 5G, researchers start to think of 6G, which could meet more diversified and deeper intelligent communication requirements. In this paper, a four physical elements, i.e., man, machine, object, and genie, featured 6G concept is introduced. Genie is explained as a new element toward 6G. This paper focuses on the genie realization as an intelligent wireless transmission toward 6G, including sematic information theory, end-to-end artificial intelligence (AI) joint transceiver design, intelligent wireless transmission block design, and user-centric intelligent access. A comprehensive state-of-the-art of each key technology is presented and main questions as well as some novel suggestions are given. Genie will work comprehensively in 6G wireless communication and other major industrial vertical, while its realization is concrete and step by step. It is realized that genie-based wireless communication link works with high intelligence and performs better than that controlled manually.

References

1

Z. E. Ankarali, B. Peköz, and H. Arslan, Flexible radio access beyond 5G: A future projection on waveform, numerology, and frame design principles, IEEE Access, vol. 5, pp. 18295–18309, 2017.

2

H. Tataria, M. Shafi, A. F. Molisch, M. Dohler, H. Sjöland, and F. Tufvesson, 6G wireless systems: Vision, requirements, challenges, insights, and opportunities, Proc. IEEE, vol. 109, no. 7, pp. 1166–1199, 2021.

3

K. David and H. Berndt, 6G vision and requirements: Is there any need for beyond 5G, IEEE Vehicul. Technol. Mag., vol. 13, no. 3, pp. 72–80, 2018.

4

L. Zhang, Y. C. Liang, and D. Niyato, 6G visions: Mobile ultra-broadband, super internet-of-things, and artificial intelligence, China Commun., vol. 16, no. 8, pp. 1–14, 2019.

5

G. Y. Liu, Y. H. Huang, N. Li, J. Dong, J. Jin, Q. X. Wang, and N. Li, Vision, Requirements and network architecture of 6G mobile network beyond 2030, China Commun., vol. 17, no. 9, pp. 92–104, 2020.

6

M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi, Toward 6G networks: Use cases and technologies, IEEE Commun. Mag., vol. 58, no. 3, pp. 55–61, 2020.

7

W. Saad, M. Bennis, and M. Z. Chen, A vision of 6G wireless systems: Applications, trends, technologies, and open research problems, IEEE Netw., vol. 34, no. 3, pp. 134–142, 2020.

8

A. Dogra, R. K. Jha, and S. Jain, A survey on beyond 5G network with the advent of 6G: Architecture and emerging technologies, IEEE Access, vol. 9, pp. 67512–67547, 2020.

9

B. F. Ji, Y. N. Wang, K. Song, C. G. Li, H. Wen, V. G. Menon, and S. Mumtaz, A survey of computational intelligence for 6G: Key technologies, applications and trends, IEEE Trans. Indus. Inf., vol. 17, no. 10, pp. 7145–7154, 2021.

10

X. H. You, C. X. Wang, J. Huang, X. Q. Gao, Z. C. Zhang, M. Wang, Y. M. Huang, C. Zhang, Y. X. Jiang, J. H. Wang, et al., Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts, Sci. China Inf. Sci., vol. 64, no. 1, p. 110301, 2021.

11

S. F. Han, T. Xie, C. L. I, L. Chai, Z. M. Liu, Y. F. Yuan, and C. F. Cui, Artificial-intelligence-enabled air interface for 6G: Solutions, challenges, and standardization impacts, IEEE Commun. Mag., vol. 58, no. 10, pp. 73–79, 2020.

12

R. Shafin, L. J. Liu, V. Chandrasekhar, H. Chen, J. Reed, and J. C. Zhang, Artificial intelligence-enabled cellular networks: A critical path to beyond-5G and 6G, IEEE Wirel. Commun., vol. 27, no. 2, pp. 212–217, 2020.

13

M. T. Lin and Y. P. Zhao, Artificial intelligence-empowered resource management for future wireless communications: A survey, China Commun., vol. 17, no. 3, pp. 58–77, 2020.

14

J. K. Zhu, M. Zhao, S. H. Zhang, and W. Y. Zhou, Exploring the road to 6G: ABC—foundation for intelligent mobile networks, China Commun., vol. 17, no. 6, pp. 51–67, 2020.

15

P. Zhang, K. Niu, H. Tian, G. F. Nie, X. Q. Qin, Q. Wei, and J. Zhang, Technology prospect of 6G mobile communications, J. Commun., vol. 40, no. 1, pp. 140–148, 2019.

16
W. Weaver, Recent contributions to the mathematical theory of communication, in The Mathematical Theory of Communication, C. E. Shannon and W. Weaver, Eds. Urbana, FL, USA: University of Illinois Press, 1949.
17

C. E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J., vol. 27, no. 3, pp. 379–423, 1948.

18

R. Carnap and Y. Bar-Hillel, An outline of a theory of semantic information, J. Symb. Logic, vol. 19, no. 3, pp. 230–232, 1954.

19

Y. Bar-Hillel and R. Carnap, Semantic information, Br. J. Philos. Sci., vol. 4, no. 14, pp. 147–157, 1953.

20

J. Barwise and J. Perry, Situations and attitudes, J. Philos., vol. 78, no. 11, pp. 668–691, 1981.

21

L. Floridi, Outline of a theory of strongly semantic information, Minds Mach., vol. 14, no. 2, pp. 197–221, 2004.

22

S. D’Alfonso, On quantifying semantic information, Information, vol. 2, no. 1, pp. 61–101, 2011.

23

A. De Luca and S. Termini, A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory, Inf. Control, vol. 20, no. 4, pp. 301–312, 1972.

24

A. De Luca and S. Termini, Entropy of L-fuzzy sets, Inf. Control, vol. 24, no. 1, pp. 55–73, 1974.

25

W. L. Wu, General information source and general information entropy, J. Beijing Univ. Posts Telecommun., no. 1, pp. 29–41, 1982.

26
K. Niu, J. Dai, P. Zhang, S. Yao, S. Wang, 6G-oriented semantic communications, Mobile Communications, (in Chinese), vol. 45, no. 4, pp. 85–90, 2021.
27

H. Q. Xie, Z. J. Qin, G. Y. Li, and B. H. Juang, Deep learning enabled semantic communication systems, IEEE Trans. Signal Process., vol. 69, pp. 2663–2675, 2021.

28
N. Farsad, M. Rao, and A. Goldsmith, Deep learning for joint source-channel coding of text, in Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Calgary, Canada, 2018, pp. 2326–2330.https://doi.org/10.1109/ICASSP.2018.8461983
29

E. Bourtsoulatze, D. B. Kurka, and D. Gündüz, Deep joint source-channel coding for wireless image transmission, IEEE Trans. Cogn. Commun. Netw., vol. 5, no. 3, pp. 567–579, 2019.

30
M. Jankowski, D. Gündüz, and K. Mikolajczyk, Deep joint source-channel coding for wireless image retrieval, presented at 2020 IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Barcelona, Spain, 2020, pp. 5070–5074.https://doi.org/10.1109/ICASSP40776.2020.9054078
31

D. B. Kurka and D. Gündüz, DeepJSCC-f: deep joint source-channel coding of images with feedback, IEEE J. Select. Areas Infor. Theory, vol. 1, no. 1, pp. 178–193, 2020.

32

T. O’Shea and J. Hoydis, An introduction to deep learning for the physical layer, IEEE Trans. Cogn. Commun. Netw., vol. 3, no. 4, pp. 563–575, 2017.

33

H. Ye, G. Y. Li, and B. H. Juang, Power of deep learning for channel estimation and signal detection in OFDM systems, IEEE Wirel. Commun. Lett., vol. 7, no. 1, pp. 114–117, 2018.

34

N. Wu, X. D. Wang, B. Lin, and K. Y. Zhang, A CNN-based end-to-end learning framework toward intelligent communication systems, IEEE Access, vol. 7, pp. 110197–110204, 2019.

35

B. H. Zhu, J. T. Wang, L. Z. He, and J. Song, Joint transceiver optimization for wireless communication PHY using neural network, IEEE J. Sel. Areas Commun., vol. 37, no. 6, pp. 1364–1373, 2019.

36
H. H. Wu, Y. T. Zhang, X. Q. Zhao, N. B. Zhu, and M. Coates, End-to-end physical layer communication using bi-directional GRUs for ISI channels, presented at 2020 IEEE Globecom Workshops, Taipei, China, 2020, pp. 1–6.
37
T. Erpek, T. J. O’Shea, and T. C. Clancy, Learning a physical layer scheme for the MIMO interference channel, presented at 2018 IEEE Int. Conf. on Communications, Kansas City, MO, USA, 2018, pp. 1–5.https://doi.org/10.1109/ICC.2018.8422339
38
T. J. O’Shea, T. Erpek, and T. C. Clancy, Physical layer deep learning of encodings for the MIMO fading channel, presented at the 2017 55th Annu. Allerton Conf. on Communication, Control, and Computing, Monticello, IL, USA, 2017, pp. 76–80.https://doi.org/10.1109/ALLERTON.2017.8262721
39
T. J. Mu, X. H. Chen, L. Chen, H. R. Yin, and G. Wei, Spatial-time MIMO autoencoder for physical layer, presented at 2020 Int. Conf. on Wireless Communications and Signal Processing, Nanjing, China, 2020, pp. 143–148.
40

D. H. Wu, M. Nekovee, and Y. Wang, Deep learning-based Autoencoder for m-User wireless interference channel Physical layer design, IEEE Access, vol. 8, pp. 174679–174691, 2020.

41

V. Raj and S. Kalyani, Design of communication systems using deep learning: A variational inference perspective, IEEE Trans. Cognit. Commun. Netw., vol. 6, no. 4, pp. 1320–1334, 2020.

42
C. H. Lin, C. C. Wu, K. F. Chen, and T. S. Lee, A variational autoencoder-based secure transceiver design using deep learning, presented at 2020 IEEE Global Communications Conf., Taipei, China, 2020, pp. 1–7.https://doi.org/10.1109/GLOBECOM42002.2020.9348041
43

Z. J. Qin, H. Ye, G. Y. Li, and B. H. F. Juang, Deep learning in physical layer communications, IEEE Wirel. Commun., vol. 26, no. 2, pp. 93–99, 2019.

44
F. A. Aoudia and J. Hoydis, End-to-end learning of communications systems without a channel Model, presented at the 2018 52nd Asilomar Conf. on Signals, Systems, and Computers, Pacific Grove, CA, USA, 2018, pp. 298–303.https://doi.org/10.1109/ACSSC.2018.8645416
45
H. Ye, G. Y. Li, B. F. Juang, and K. Sivanesan, Channel agnostic end-to-end learning based communication systems with conditional GAN, presented at 2018 IEEE Globecom Workshops, Abu Dhabi, United Arab Emirates, 2018, pp. 1–5.https://doi.org/10.1109/GLOCOMW.2018.8644250
46

H. T. He, S. Jin, C. K. Wen, F. F. Gao, G. Y. Li, and Z. B. Xu, Model-driven deep learning for physical layer communications, IEEE Wirel. Commun., vol. 26, no. 5, pp. 77–83, 2019.

47

Y. F. He, H. T. He, C. K. Wen, and S. Jin, Model-driven deep learning for massive multiuser MIMO constant envelope precoding, IEEE Wirel. Commun. Lett., vol. 9, no. 11, pp. 1835–1839, 2020.

48
X. Ru, L. Wei, and Y. Y. Xu, Model-driven channel estimation for OFDM systems based on image super-resolution network, presented at the 2020 IEEE 5th Int. Conf. on Signal and Image Processing, Nanjing, China, 2020, pp. 804–808.https://doi.org/10.1109/ICSIP49896.2020.9339375
49

Y. H. Zhang, Y. F. Mu, Y. Liu, T. K. Zhang, and Y. Qian, Deep learning-based beamspace channel estimation in mmWave massive MIMO systems, IEEE Wirel. Commun. Lett., vol. 9, no. 12, pp. 2212–2215, 2020.

50

Y. Jin, J. Y. Zhang, B. Ai, and X. Zhang, Channel estimation for mmWave massive MIMO with convolutional blind denoising network, IEEE Commun. Lett., vol. 24, no. 1, pp. 95–98, 2020.

51

Y. D. Dong, H. X. Wang, and Y. D. Yao, Channel estimation for one-bit multiuser massive MIMO using conditional GAN, IEEE Commun. Lett., vol. 25, no. 3, pp. 854–858, 2021.

52

M. B. Mashhadi and D. Gündüz, Pruning the pilots: deep learning-based pilot design and channel estimation for MIMO-OFDM systems, IEEE Trans. Wirel. Commun., vol. 20, no. 10, pp. 6315–6328, 2021.

53

X. H. Wei, C. Hu, and L. L. Dai, Deep learning for beamspace channel estimation in millimeter-wave massive MIMO systems, IEEE Trans. Commun., vol. 69, no. 1, pp. 182–193, 2021.

54

J. Pan, H. G. Shan, R. P. Li, Y. X. Wu, W. H. Wu, and T. Q. S. Quek, Channel estimation based on deep learning in vehicle-to-everything environments, IEEE Commun. Lett., vol. 25, no. 6, pp. 1891–1895, 2021.

55
M. B. Fischer, S. Dörner, S. Cammerer, T. Shimizu, B. Cheng, H. S. Lu, and S. ten Brink, Wiener filter versus recurrent neural network-based 2D-channel estimation for V2X communications, arXiv preprint arXiv: 2102.03163, 2021.https://doi.org/10.1109/IV48863.2021.9575620
56
ETSI, 3GPP TS 38.211 v16.5. 0 Physical channels and modulation, ETSI, 2021, pp. 71–73.
57
A. Le Ha, T. Van Chien, T. H. Nguyen, W. Choi, and V. D. Nguyen, Deep learning-aided 5G channel estimation, presented at the 2021 15th Int. Conf. on Ubiquitous Information Management and Communication, Seoul, Republic of Korea, 2021, pp. 1–7.
58

M. Honkala, D. Korpi, and J. M. J. Huttunen, DeepRx: fully convolutional deep learning receiver, IEEE Trans. Wirel. Commun., vol. 20, no. 6, pp. 3925–3940, 2021.

59

S. Y. Wang, R. G. Yao, T. A. Tsiftsis, N. I. Miridakis, and N. Qi, Signal detection in uplink time-varying OFDM systems using RNN with bidirectional LSTM, IEEE Wirel. Commun. Lett., vol. 9, no. 11, pp. 1947–1951, 2020.

60
N. Samuel, T. Diskin, and A. Wiesel, Deep MIMO detection, presented at the 2017 IEEE 18th Int Workshop on Signal Processing Advances in Wireless Communications, Sapporo, Japan, 2017, pp. 1–5.https://doi.org/10.1109/SPAWC.2017.8227772
61

N. Samuel, T. Diskin, and A. Wiesel, Learning to detect, IEEE Trans. Signal Process., vol. 67, no. 10, pp. 2554–2564, 2019.

62
H. T. He, C. K. Wen, S. Jin, and G. Y. Li, A model-driven deep learning network for MIMO detection, presented at 2018 IEEE Global Conf. on Signal and Information Proc., Anaheim, CA, USA, 2018, pp. 584–588.
63

H. T. He, C. K. Wen, S. Jin, and G. Y. Li, Model-driven deep learning for MIMO detection, IEEE Trans. Signal Process., vol. 68, pp. 1702–1715, 2020.

64

M. Khani, M. Alizadeh, J. Hoydis, and P. Fleming, Adaptive neural signal detection for massive MIMO, IEEE Trans. Wirel. Commun., vol. 19, no. 8, pp. 5635–5648, 2020.

65

N. T. Nguyen and K. Lee, Deep learning-aided tabu search detection for large MIMO systems, IEEE Trans. Wirel. Commun., vol. 19, no. 6, pp. 4262–4275, 2020.

66

N. T. Nguyen, K. Lee, and H. Y. Dai, Application of deep learning to sphere decoding for large MIMO systems, IEEE Trans. Wirel. Commun., vol. 20, no. 10, pp. 6787–6803, 2021.

67
Y. Wang, W. Liu, and L. Q. Fang, Adaptive modulation and coding technology in 5G system, presented at 2020 Int. Wireless Commun. and Mobile Computing, Limassol, Cyprus, 2020, pp. 159–164.https://doi.org/10.1109/IWCMC48107.2020.9148457
68
A. Al Amin, D. Basak, T. Khadem, M. D. Hossen, and M. S. Islam, Analysis of modulation and coding scheme for 5th generation wireless communication system, presented at 2016 Int. Conf. on Computing, Communication and Automation, Greater Noida, India, 2016, pp. 1545–1549.https://doi.org/10.1109/CCAA.2016.7813968
69
X. M. Wang, H. W. Li, and Q. Wu, Optimizing adaptive coding and modulation for satellite network with ML-based CSI prediction, presented at 2019 IEEE Wireless Communications and Networking Conf., Marrakesh, Morocco, 2019, pp. 1–6.https://doi.org/10.1109/WCNC.2019.8885616
70
Z. C. Zhu and A. K. Nandi, Automatic Modulation Classification: Principles, Algorithms and Applications, Chichester, West Sussex, UK: Wiley, 2015.https://doi.org/10.1002/9781118906507
71
Q. Ma, Research on adaptive coding and modulation technology based on machine learning, BS dissertation, Beijing University of Posts and Telecommunications, Beijing, China, 2021, pp. 69–73.
72
ETSI, 3GPP TS 38.211 v16.5. 0 Physical channels and modulation, ETSI, 2021, pp. 94–95.
73

M. Elwekeil, S. B. Jiang, T. B. Wang, and S. L. Zhang, Deep convolutional neural networks for link adaptations in MIMO-OFDM wireless systems, IEEE Wirel. Commun. Lett., vol. 8, no. 3, pp. 665–668, 2019.

74
S. Kojima, K. Maruta, and C. J. Ahn, High-precision SNR estimation by CNN using PSD image for adaptive modulation and coding, presented at the 2020 IEEE 91st Vehicular Technology Conf., Antwerp, Belgium, 2020, pp. 1–5.https://doi.org/10.1109/VTC2020-Spring48590.2020.9129413
75

I. Ahmad and K. Chang, Effective SNR mapping and link adaptation strategy for next-generation underwater acoustic communications networks: A cross-layer approach, IEEE Access, vol. 7, pp. 44150–44164, 2019.

76

H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson, and T. L. Marzetta, Cell-free massive MIMO versus small cells, IEEE Trans. Wirel. Commun., vol. 16, no. 3, pp. 1834–1850, 2017.

77

S. Buzzi and C. D’Andrea, Cell-free massive MIMO: User-centric approach, IEEE Wirel. Commun. Lett., vol. 6, no. 6, pp. 706–709, 2017.

78

J. Y. Zhang, S. F. Chen, Y. Lin, J. K. Zheng, B. Ai, and L. Hanzo, Cell-free massive MIMO: A new next-generation paradigm, IEEE Access, vol. 7, pp. 99878–99888, 2019.

79

H. Q. Ngo, L. N. Tran, T. Q. Duong, M. Matthaiou, and E. G. Larsson, On the total energy efficiency of cell-free massive MIMO, IEEE Trans. Green Commun. Netw., vol. 2, no. 1, pp. 25–39, 2018.

80

H. T. Dao and S. Kim, Power allocation and user-AP connection in distributed massive MIMO systems, IEEE Commun. Lett., vol. 25, no. 2, pp. 565–569, 2021.

81
L. Sanguinetti, A. Zappone, and M. Debbah, Deep learning power allocation in massive MIMO, presented at the 2018 52nd Asilomar Conf. on Signals, Systems, and Computers, Pacific Grove, CA, USA, 2018, pp. 1257–1261.https://doi.org/10.1109/ACSSC.2018.8645343
82

T. Van Chien, E. Björnson, and E. G. Larsson, Joint power allocation and load balancing optimization for energy-efficient cell-free massive MIMO networks, IEEE Trans. Wirel. Commun., vol. 19, no. 10, pp. 6798–6812, 2020.

83
A. Zappone, M. Di Renzo, M. Debbah, T. T. Lam, and X. W. Qian, Model-aided wireless artificial intelligence: Embedding expert knowledge in deep neural networks towards wireless systems optimization, arXiv preprint arXiv: 1808.01672, 2018.
84

A. Zappone, M. Di Renzo, and M. Debbah, Wireless networks design in the era of deep learning: Model-based, AI-based, or both, IEEE Trans. Commun., vol. 67, no. 10, pp. 7331–7376, 2019.

85

Y. Al-Eryani, M. Akrout, and E. Hossain, Multiple access in cell-free networks: Outage performance, dynamic clustering, and deep reinforcement learning-based design, IEEE J. Select. Areas Commun., vol. 39, no. 4, pp. 1028–1042, 2021.

Intelligent and Converged Networks
Pages 244-257
Cite this article:
Zhang P, Li L, Niu K, et al. An intelligent wireless transmission toward 6G. Intelligent and Converged Networks, 2021, 2(3): 244-257. https://doi.org/10.23919/ICN.2021.0017

1163

Views

56

Downloads

19

Crossref

20

Scopus

Altmetrics

Received: 13 September 2021
Accepted: 29 September 2021
Published: 01 September 2021
© All articles included in the journal are copyrighted to the ITU and TUP.

This work is available under the CC BY-NC-ND 3.0 IGO license: https://creativecommons.org/licenses/by-nc-nd/3.0/igo/

Return