AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Research progress of quantum artificial intelligence in smart city

Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai University, Shanghai 200444, China
School of Information Engineering, Ganzhou Key Laboratory of Cloud Computing and Big Data Research, Gannan University of Science and Technology, Ganzhou 341000, China
Show Author Information

Abstract

The rapid accumulation of big data in the Internet era has gradually decelerated the progress of Artificial Intelligence (AI). As Moore’s Law approaches its limit, it is imperative to break the constraints that are holding back artificial intelligence. Quantum computing and artificial intelligence have been advancing along the highway of human civilization for many years, emerging as new engines driving economic and social development. This article delves into the integration of quantum computing and artificial intelligence in both research and application. It introduces the capabilities of both universal quantum computers and special-purpose quantum computers that leverage quantum effects. The discussion further explores how quantum computing enhances classical artificial intelligence from four perspectives: quantum supervised learning, quantum unsupervised learning, quantum reinforcement learning, and quantum deep learning. In an effort to address the limitations of smart cities, this article explores the formidable potential of quantum artificial intelligence in the realm of smart cities. It does so by examining aspects such as intelligent transportation, urban operation assurance, urban planning, and information communication, showcasing a plethora of practical achievements in the process. In the foreseeable future, Quantum Artificial Intelligence (QAI) is poised to bring about revolutionary development to smart cities. The urgency lies in developing quantum artificial intelligence algorithms that are compatible with quantum computers, constructing an efficient, stable, and adaptive hybrid computing architecture that integrates quantum and classical computing, preparing quantum data as needed, and advancing controllable qubit hardware equipment to meet actual demands. The ultimate goal is to shape the next generation of artificial intelligence that possesses common sense cognitive abilities, robustness, excellent generalization capabilities, and interpretability.

References

[1]
M. Singh, C. Dhara, A. Kumar, S. S. Gill, and S. Uhlig, Quantum artificial intelligence for the science of climate change, arXiv preprint arXiv: 2108.10855, 2021.
[2]

T. Paul, Quantum computation and quantum information, Math. Struct. Comput. Sci., vol. 17, no. 6, p. 1115, 2007.

[3]

C. H. Cho, C. Y. Chen, K. C. Chen, T. W. Huang, M. C. Hsu, N. P. Cao, B. Zeng, S. G. Tan, and C. R. Chang, Quantum computation: Algorithms and applications, Chin. J. Phys., vol. 72, pp. 248–269, 2021.

[4]
D. Deutsch and R. Jozsa, Rapid solution of problems by quantum computation, Technical report, University of Bristol, Bristol, UK, 1992.
[5]
P. W. Shor, Algorithms for quantum computation: Discrete logarithms and factoring, in Proc. 35th Annual Symp. on Foundations of Computer Science, Santa Fe, NM, USA, 1994, pp. 124–134.
[6]

L. K. Grover, Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev. Lett., vol. 79, no. 2, pp. 325–328, 1997.

[7]

T. Kaur, M. Kaur, Arvind, and B. Arora, Generating sustained coherence in a quantum memory for retrieval at times of quantum revival, Atoms, vol. 10, no. 3, p. 81, 2022.

[8]
M. Bashkansky, A. T. Black, J. M. Kwolek, and A. Kuzmich, Quantum memory, in Wiley Encyclopedia of Electrical and Electronics Engineering, B. Kurzman, ed. Hoboken, NJ, USA: American Cancer Society, 2021, pp. 1–17.
[9]

D. Deutsch, Quantum theory, the Church–Turing principle and the universal quantum computer, Proc. R. Soc. Lond. A Math. Phys. Sci., vol. 400, no. 1818, pp. 97–117, 1985.

[10]

J. Mielczarek, Prelude to simulations of loop quantum gravity on adiabatic quantum computers, Front. Astron. Space Sci., vol. 8, p. 571282, 2021.

[11]

G. E. Santoro and E. Tosatti, Optimization using quantum mechanics: Quantum annealing through adiabatic evolution, J. Phys. A Math. Theor., vol. 41, p. 209801, 2008.

[12]

R. Nembrini, M. F. Dacrema, and P. Cremonesi, Feature selection for recommender systems with quantum computing, Entropy, vol. 23, no. 8, p. pp. 970, 2021.

[13]

D. Willsch, M. Willsch, H. De Raedt, and K. Michielsen, Support vector machines on the D-Wave quantum annealer, Comput. Phys. Commun., vol. 248, p. 107006, 2020.

[14]

J. J. Berwald, The mathematics of quantum-enabled applications on the D-wave quantum computer, Notices Am. Math. Soc., vol. 66, no. 6, p. 1, 2019.

[15]

K. Kitai, J. Guo, S. Ju, S. Tanaka, K. Tsuda, J. Shiomi, and R. Tamura, Designing metamaterials with quantum annealing and factorization machines, Phys. Rev. Res., vol. 2, no. 1, p. 013319, 2020.

[16]
S. N. Genin, I. G. Ryabinkin, and A. F. Izmaylov, Quantum chemistry on quantum annealers, arXiv preprint arXiv: 1901.04715, 2019.
[17]

M. Klar, P. Schworm, X. Wu, M. Glatt, and J. C. Aurich, Quantum Annealing based factory layout planning, Manuf. Lett., vol. 32, pp. 59–62, 2022.

[18]
M. Fernández-Campoamor, C. O’Meara, G. Cortiana, V. Peric, and J. Bernabé-Moreno, Community detection in electrical grids using quantum annealing, arXiv preprint arXiv: 2112.08300, 2021.
[19]
P. Bickert, C. Grozea, R. Hans, M. Koch, C. Riehn, and A. Wolf, Optimising rolling stock planning including maintenance with constraint programming and quantum annealing, arXiv preprint arXiv: 2109.07212, 2021.
[20]
V. K. Mulligan, H. Melo, H. I. Merritt, S. Slocum, B. D. Weitzner, A. M. Watkins, P. D. Renfrew, C. Pelissier, P. S. Arora, and R. Bonneau, Designing peptides on a quantum computer, https://www.biorxiv.org/content/10.1101/752485v2.full.pdf, 2019.
[21]

M. Schuld, I. Sinayskiy, and F. Petruccione, An introduction to quantum machine learning, Contemp. Phys., vol. 56, no. 2, pp. 172–185, 2015.

[22]

V. Kulkarni, M. Kulkarni, and A. Pant, Quantum computing methods for supervised learning, Quantum Mach. Intell., vol. 3, no. 2, p. 23, 2021.

[23]
S. Lloyd, M. Mohseni, and P. Rebentrost, Quantum algorithms for supervised and unsupervised machine learning, arXiv preprint arXiv: 1307.0411, 2013.
[24]

L. Alchieri, D. Badalotti, P. Bonardi, and S. Bianco, An introduction to quantum machine learning: From quantum logic to quantum deep learning, Quantum Mach. Intell., vol. 3, no. 2, p. 28, 2021.

[25]

V. Havlíček, A. D. Córcoles, K. Temme, A. W. Harrow, A. Kandala, J. M. Chow, and J. M. Gambetta, Supervised learning with quantum-enhanced feature spaces, Nature, vol. 567, no. 7747, pp. 209–212, 2019.

[26]
N. A. Nghiem, S. Y. C. Chen, and T. C. Wei, A unified framework for quantum supervised learning, arXiv preprint arXiv: 2010.13186, 2020.
[27]

Y. Liu, S. Arunachalam, and K. Temme, A rigorous and robust quantum speed-up in supervised machine learning, Nat. Phys., vol. 17, pp. 1013–1017, 2021.

[28]

F. Neukart, D. Von Dollen, and C. Seidel, Quantum-assisted cluster analysis on a quantum annealing device, Front. Phys., vol. 6, p. 55, 2018.

[29]

K. Moshkbar-Bakhshayesh and E. Pourjafarabadi, Unsupervised classification of NPPs transients based on online dynamic quantum clustering, Eur. Phys. J. Plus, vol. 134, no. 10, p. 483, 2019.

[30]

P. Shrivastava, K. K. Soni, and A. Rasool, Classical equivalent quantum unsupervised learning algorithms, Procedia Comput. Sci., vol. 167, pp. 1849–1860, 2020.

[31]
Y. Deville and A. Deville, Single-preparation unsupervised quantum machine learning: Concepts and applications, arXiv preprint arXiv: 2101.01442v1, 2021.
[32]

M. Schmitt and Z. Lenarčič, From observations to complexity of quantum states via unsupervised learning, Phys. Rev. B, vol. 106, no. 4, pp. 1–7, 2022.

[33]

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., Mastering the game of Go with deep neural networks and tree search, Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[34]

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, et al., Mastering the game of Go without human knowledge, Nature, vol. 550, no. 7676, pp. 354–359, 2017.

[35]
A. Levit, D. Crawford, N. Ghadermarzy, J. S. Oberoi, E. Zahedinejad, and P. Ronagh, Free energy-based reinforcement learning using a quantum processor, arXiv preprint arXiv: 1706.00074, 2017.
[36]
R. Ayanzadeh, M. Halem, and T. Finin, Reinforcement quantum annealing: A quantum-assisted learning automata approach, arXiv preprint arXiv: 2001.00234, 2020.
[37]
N. M. P. Neumann, P. B. U. L. de Heer, I. Chiscop, and F. Phillipson, Multi-agent reinforcement learning using simulated quantum annealing, in Proc. Int. Conf. Computational Science (ICCS), Amsterdam, the Netherlands, 2020, pp. 562–575.
[38]

K. S. Shenoy, D. Y. Sheth, B. K. Behera, and P. K. Panigrahi, Demonstration of a measurement-based adaptation protocol with quantum reinforcement learning on the IBM Q experience platform, Quantum Inf. Process., vol. 19, no. 5, p. 161, 2020.

[39]

V. Saggio, B. E. Asenbeck, A. Hamann, T. Strömberg, P. Schiansky, V. Dunjko, N. Friis, N. C. Harris, M. Hochberg, D. Englund, et al., Experimental quantum speed-up in reinforcement learning agents, Nature, vol. 591, no. 7849, pp. 229–233, 2021.

[40]
M. R. Minar and J. Naher, Recent advances in deep learning: An overview, arXiv preprint arXiv: 1807.08169, 2018.
[41]

N. Wiebe, A. Kapoor, and K. M. Svore, Quantum deep learning, Quantum Inf. Comput., vol. 16, nos. 7&8, pp. 541–587, 2016.

[42]
J. Sleeman, J. Dorband, and M. Halem, A hybrid quantum enabled RBM advantage: Convolutional autoencoders for quantum image compression and generative learning, in Proc. Quantum Information Science, Sensing, and Computation XII, Virtual, 2020, p. 113910B.
[43]
R. Majumder, S. M. Khan, F. Ahmed, Z. Khan, F. Ngeni, G. Comert, J. Mwakalonge, D. Michalaka, and M. Chowdhury, Hybrid classical-quantum deep learning models for autonomous vehicle traffic image classification under adversarial attack, arXiv preprint arXiv: 2108.01125, 2021.
[44]

A. Akshay and F. You, Quantum computing based hybrid deep learning for fault diagnosis in electrical power systems, Appl. Energy, vol. 303, p. 117628, 2021.

[45]

C. F. Higham and A. Bedford, Quantum deep learning by sampling neural nets with a quantum annealer, Sci. Rep., vol. 13, no. 1, p. 3939, 2023.

[46]

S. Wang, Z. Pei, C. Wang, and J. Wu, Shaping the future of the application of quantum computing in intelligent transportation system, Intelligent and Converged Networks, vol. 2, no. 4, pp. 259–276, 2021.

[47]

N. Wang, G. Guo, B. Wang, and C. Wang, Traffic clustering algorithm of urban data brain based on a hybrid-augmented architecture of quantum annealing and brain-inspired cognitive computing, Tsinghua Science and Technology, vol. 25, no. 6, pp. 813–825, 2020.

[48]

C. Wang, W. Zhang, and S. Wang, An asymptotically optimal public parking lot location algorithm based on intuitive reasoning, Intelligent and Converged Networks, vol. 3, no. 3, pp. 260–270, 2022.

[49]

H. Xiao, A. T. Chronopoulos, and Z. Zhang, An efficient security scheme for vehicular communication using a quantum secret sharing method, IEEE Trans. Veh. Technol., vol. 69, no. 1, pp. 1101–1105, 2020.

[50]

F. Zhang, T. Y. Wu, Y. Wang, R. Xiong, G. Ding, P. Mei, and L. Liu, Application of quantum genetic optimization of LVQ neural network in smart city traffic network prediction, IEEE Access, vol. 8, pp. 104555–104564, 2020.

[51]

V. S. Naresh, M. M. Nasralla, S. Reddi, and I. García-Magariño, Quantum diffie-hellman extended to dynamic quantum group key agreement for e-healthcare multi-agent systems in smart cities, Sensors, vol. 20, no. 14, p. 3940, 2020.

[52]
K. Das, S. Zaman, A. Shadhu, A. Banerjee, and F. S. Khan, Quantum annealing for solving a nurse-physician scheduling problem in COVID-19 clinics, https://vixra.org/pdf/2008.0193v1.pdf, 2020.
[53]

Z. Liu, J. Shang, and X. Hua, Smart city moving target tracking algorithm based on quantum genetic and particle filter, Wirel. Commun. Mob. Comput., vol. 2020, p. 8865298, 2020.

[54]

K. Y. Guo, X. Xiong, P. Jin, Q. Sun, and T. J. Jing, Electricity characteristic recognition study based on fuzzy clustering-quantum particle swarm algorithm, (in Chinese), Electr. Power Constr., vol. 36, no. 8, pp. 84–88, 2015.

[55]

W. Yao and Y. Ding, Smart city landscape design based on improved particle swarm optimization algorithm, Complexity, vol. 2020, p. 6693411, 2020.

[56]

A. S. Cacciapuoti, M. Caleffi, R. Van Meter, and L. Hanzo, When entanglement meets classical communications: Quantum teleportation for the quantum Internet, IEEE Trans. Commun., vol. 68, no. 6, pp. 3808–3833, 2020.

[57]

M. Wang, H. H. Jia, Z. Jiang, H. G. Zhang, and C. Wang, VBLAST system signal detection based on the Grover algorithm, Sci. Sin. Informationis, vol. 43, no. 2, pp. 197–203, 2013.

[58]
Y. Yang, F. Hu, Z. Jiang, and C. Wang, Signal detection of MIMO system based on quantum ant colony algorithm, in Proc. IEEE Int. Conf. Signal Processing, Communications and Computing (ICSPCC), Hong Kong, China, 2016, pp. 1–5.
[59]

E. Gibney, Chinese satellite is one giant step for the quantum Internet, Nature, vol. 535, no. 7613, pp. 478–479, 2016.

[60]

S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, et al., Satellite-to-ground quantum key distribution, Nature, vol. 549, pp. 43–47, 2017.

[61]

J. G. Ren, P. Xu, H. L. Yong, L. Zhang, S. K. Liao, J. Yin, W. Y. Liu, W. Q. Cai, M. Yang, L. Li, et al., Ground-to-satellite quantum teleportation, Nature, vol. 549, no. 7670, pp. 70–73, 2017.

[62]

M. Caleffi, D. Chandra, D. Cuomo, S. Hassanpour, and A. S. Cacciapuoti, The rise of the quantum Internet, Computer, vol. 53, no. 6, pp. 67–72, 2020.

[63]

A. S. Cacciapuoti, M. Caleffi, F. Tafuri, F. S. Cataliotti, S. Gherardini, and G. Bianchi, Quantum Internet: Networking challenges in distributed quantum computing, IEEE Netw., vol. 34, no. 1, pp. 137–143, 2020.

[64]
M. I. G. Cid, L. O. Martín, and V. M. Ayuso, Madrid quantum network: A first step to quantum Internet, in Proc. 16th Int. Conf. Availability, Reliability and Security, Vienna, Austria, 2021, pp. 1–7.
[65]

S. Wehner, D. Elkouss, and R. Hanson, Quantum Internet: A vision for the road ahead, Science, vol. 362, no. 6412, p. eaam9288, 2018.

[66]

F. Y. Fan, G. W. Yang, Q. Q. Le, F. M. Lv, and C. Zhao, Optimized coverage algorithm of wireless video sensor network based on quantum genetic algorithm, J. Commun., vol. 36, no. 6, p. 11, 2015.

[67]

L. Gyongyosi and S. Imre, Adaptive routing for quantum memory failures in the quantum Internet, Quantum Inf. Process., vol. 18, no. 2, p. 52, 2019.

[68]

L. Gyongyosi and S. Imre, Entanglement access control for the quantum Internet, Quantum Inf. Process., vol. 18, no. 4, pp. 1–17, 2019.

[69]

L. Gyongyosi, Dynamics of entangled networks of the quantum Internet, Sci. Rep., vol. 10, no. 1, p. 12909, 2020.

[70]

K. Goodenough, D. Elkouss, and S. Wehner, Optimizing repeater schemes for the quantum Internet, Phys. Rev. A, vol. 103, no. 3, p. 032610, 2021.

[71]

M. Pant, H. Krovi, D. Towsley, L. Tassiulas, L. Jiang, P. Basu, D. Englund, and S. Guha, Routing entanglement in the quantum Internet, npj Quantum Inf., vol. 5, p. 25, 2019.

[72]
S. Shi and C. Qian, Modeling and designing routing protocols in quantum networks, arXiv preprint arXiv: 1909.09329, 2019.
[73]
K. Chakraborty, F. Rozpedek, A. Dahlberg, and S. Wehner, Distributed routing in a quantum Internet, arXiv preprint arXiv: 1907.11630, 2019.
[74]

F. Hahn, A. Pappa, and J. Eisert, Quantum network routing and local complementation, npj Quantum Inf., vol. 5, p. 76, 2019.

[75]

A. Bapat, A. M. Childs, A. V. Gorshkov, S. King, E. Schoute, and H. Shastri, Quantum routing with fast reversals, Quantum, vol. 5, p. 37551360, 2021.

[76]

X. Li, J. Xin, G. Li, X. M. Lu, and L. F. Wei, Quantum routings for single photons with different frequencies, Opt. Express, vol. 29, no. 6, pp. 8861–8871, 2021.

Intelligent and Converged Networks
Pages 116-133
Cite this article:
Wang S, Wang N, Ji T, et al. Research progress of quantum artificial intelligence in smart city. Intelligent and Converged Networks, 2024, 5(2): 116-133. https://doi.org/10.23919/ICN.2024.0009

177

Views

13

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 06 July 2023
Revised: 17 October 2023
Accepted: 03 March 2024
Published: 30 June 2024
© All articles included in the journal are copyrighted to the ITU and TUP.

This work is available under the CC BY-NC-ND 3.0 IGO license:https://creativecommons.org/licenses/by-nc-nd/3.0/igo/

Return