1
Keay, M., Rhys, J., Robinson, D. (2013). Electricity market reform in Britain: Central planning versus free markets. In Evolution of Global Electricity Markets, Sioshansi, F. P. Ed. San Diego, CA, USA: Academic Press, 31–57.
2
Nudell, T. R., Annaswamy, A. M., Lian, J. M., Kalsi, K., D’Achiardi, D. (2018). Electricity markets in the United States: A brief history, current operations, and trends. In Smart Grid Control, Stoustrup, J., Annaswamy, A., Chakrabortty, A., et al. Eds. Cham: Springer International Publishing.
12
Zhang, X. (2010). Restructured Electric Power Systems. Hoboken, NJ, USA: John Wiley & Sons, Inc.
21
Guo, H. Y., Chen, Q. X., Xia, Q., Zhang, J. L., Li, M., Zou, P. (2017). Evaluating the impacts of VPPs on the joint energy and ancillary service markets equilibrium. In: Proceedings of the 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, USA.
26
Fang, X. C., Hou, Y. H., Liu, K., Guo, H. Y., Chen, Q. X. (2019). Strategic behaviors of wind generators in a stochastic joint power market equilibrium. In: Proceedings of the 2019 IEEE Power & Energy Society General Meeting, Atlanta, GA, USA.
56
Biggar, D. R., Hesamzadeh, M. R. (2014). The smart grid and efficient pricing of distribution networks. In The Economics of Electricity Markets, Biggar, D. R., Hesamzadeh, M. R. Eds. Wiley.
57
Lu, Z. L., Bai, L. Q., Wang, J. X., Wei, J. D., Xiao, Y. P., Chen, Y. (2022). Peer-to-peer joint electricity and carbon trading based on carbon-aware distribution locational marginal pricing. IEEE Transactions on Power Systems, https://doi.org/10.1109/TPWRS.2022.3167780.
62
Fan, S., Xiao, J. C., Li, Z. Y., He, G. Y. (2021). Characterization and trading of energy level and energy shift considering virtual power plant. Journal of Modern Power Systems and Clean Energy, https://doi.org/10.35833/MPCE.2021.000192.
75
Chakraborty, P., Baeyens, E., Khargonekar, P. P., Poolla, K. (2016). A cooperative game for the realized profit of an aggregation of renewable energy producers. In: Proceedings of the 2016 IEEE 55th Conference on Decision and Control, Las Vegas, NV, USA.
111
Gao, H., Zhang, F., Xiang, Y. M., Ye, S. Y., Liu, X. N., Liu, J. Y. (2021). Bounded rationality based multi-VPP trading in local energy market: A dynamic game approach with different trading targets. CSEE Journal of Power and Energy Systems, https://doi.org/10.17775/CSEEJPES.2021.01600.
125
Tang, Q. H., Guo, H. Y., Chen, Q. X. (2022). Multi-market bidding behavior analysis of energy storage system based on inverse reinforcement learning. IEEE Transactions on Power Systems, https://doi.org/10.1109/TPWRS.2022.3150518.
131
Zhong, W. F., Xie, K., Liu, Y., Xie, S. L., Xie, L. H. (2022). Nash mechanisms for market design based on distribution locational marginal prices. IEEE Transactions on Power Systems, https://doi.org/10.1109/TPWRS.2022.3152517.
136
Ye, Y. J., Papadaskalopoulos, D., Yuan, Q., Tang, Y., Strbac, G. (2022). Multi-agent deep reinforcement learning for coordinated energy trading and flexibility services provision in local electricity markets. IEEE Transactions on Smart Grid, https://doi.org/10.1109/TSG.2022.3149266.
146
Liu, Y. K., Zhang, D. X., Deng, C. Y., Wang, X. Y. (2020). Deep reinforcement learning approach for autonomous agents in consumer-centric electricity market. In: Proceedings of the 2020 5th IEEE International Conference on Big Data Analytics, Xiamen, China.
150
Fraunholz, C., Keles, D., Fichtner, W. (2019). Agent-based generation and storage expansion planning in interconnected electricity markets. In: Proceedings of the 2019 16th International Conference on the European Energy Market (EEM), Ljubljana, Slovenia.