AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home iEnergy Article
PDF (1.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

Significantly improved high-temperature energy storage performance of commercial BOPP films by utilizing ultraviolet grafting modification

Qingguo Chi1,2Tianqi Wang1,2Changhai Zhang1,2Hainan Yu1,2Xindong Zhao1,2Xu Yang1,2Qingquan Lei1,2Hong Zhao1,2( )Tiandong Zhang1,2( )
Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China
School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China
Show Author Information

Abstract

Commercial biaxially oriented polypropylene (BOPP) film capacitors have been widely applied in the fields of electrical and electronic engineering. However, due to the sharp increase in electrical conduction loss as the temperature rises, the energy storage performance of BOPP films seriously degrades at elevated temperatures. In this study, the grafting modification method is facile and suitable for large-scale industrial manufacturing and has been proposed to increase the high-temperature energy storage performance of commercial BOPP films for the first time. Specifically, acrylic acid (AA) as a polar organic molecular is used to graft onto the surface of commercial BOPP films by using ultraviolet irradiation (abbreviated as BOPP−AA). The results demonstrate that the AA grafting modification not only slightly increases the dielectric constant, but also significantly reduces the leakage current density at high-temperature, greatly improving the high-temperature energy storage performance. The modified BOPP−AA films display a discharged energy density of 1.32 J/cm3 with an efficiency of >90% at 370 kV/mm and 125 °C, which is 474% higher than that of the pristine BOPP films. This work manifests that utilizing ultraviolet grafting modification is a very efficient way to improve the high-temperature energy storage performance of commercial BOPP films as well as provides a hitherto unexplored opportunity for large-scalable production applications.

Electronic Supplementary Material

Download File(s)
374-382-SI.pdf (2.1 MB)

References

[1]

Ritamäki, M., Rytöluoto, I., Lahti, K. (2009). Performance metrics for a modern BOPP capacitor film. IEEE Transactions on Dielectrics and Electrical Insulation, 26: 1229–1237.

[2]

Zhang, T. D., Zhao, X. W., Zhang, C. H., Zhang, Y., Zhang, Y. Q., Feng, Y., Chi, Q. G., Chen, Q. G. (2021). Polymer nanocomposites with excellent energy storage performances by utilizing the dielectric properties of inorganic fillers. Chemical Engineering Journal, 408: 127314.

[3]

Li, S. T., Yin, G. L., Chen, G., Li, J. Y., Bai, S. N., Zhong, L. S., Zhang, Y., Lei, Q. Q. (2010). Short-term breakdown and long-term failure in nanodielectrics: A review. IEEE Transactions on Dielectrics and Electrical Insulation, 17: 1523–1535.

[4]

Ho, J. S., Greenbaum, S. G. (2018). Polymer capacitor dielectrics for high temperature applications. ACS Applied Materials & Interfaces, 10: 29189–29218.

[5]

Johnson, R. W., Evans, J. L., Jacobsen, P., Thompson, J. R., Christopher, M. (2004). The changing automotive environment: High-temperature electronics. IEEE Transactions on Electronics Packaging Manufacturing, 27: 164–176.

[6]

Zhang, T., Yang, L., Zhang, C., Feng, Y., Wang, J., Shen, Z., Chen, Q., Lei, Q., Chi, Q. (2022). Polymer dielectric films exhibiting superior high-temperature capacitive performance by utilizing an inorganic insulation interlayer. Materials Horizons, 9: 1273–1282.

[7]

Liu, B., Yang, M. H., Zhou, W. Y., Cai, H. W., Zhong, S. L., Zheng, M. S., Dang, Z. M. (2020). High energy density and discharge efficiency polypropylene nanocomposites for potential high-power capacitor. Energy Storage Materials, 27: 443–452.

[8]

Feng, M. J., Chi, Q. G., Feng, Y., Zhang, Y., Zhang, T. D., Zhang, C. H., Chen, Q. G., Lei, Q. Q. (2020). High energy storage density and efficiency in aligned nanofiber filled nanocomposites with multilayer structure. Composites Part B: Engineering, 198: 108206.

[9]

Yao, J., Hu, L., Zhou, M., You, F., Jiang, X., Gao, L., Wang, Q., Sun, Z., Wang, J. (2018). Synergistic enhancement of thermal conductivity and dielectric properties in Al2O3/BaTiO3/PP composites. Materials, 11: E1536.

[10]

Chi, Q., Zhou, Y., Feng, Y., Cui, Y., Zhang, Y., Zhang, T., Chen, Q. (2020). Excellent energy storage performance of polyetherimide filled by oriented nanofibers with optimized diameters. Materials Today Energy, 18: 100516.

[11]

Mashhadzadeh, A. H., Fereidoon, A., Ahangari, M. G. (2017). Atomistic modeling of interfacial interaction between polyvinyl chloride and polypropylene with Boron-Nitride monolayer sheet: A density functional theory study. Superlattices and Microstructures, 111: 23–31.

[12]

Liu, D. Y., Wu, L. Y., Wu, K., Xu, S. M., Sui, G. P., Jing, M. F., Zhao, J., Wei, Y., Fu, Q. (2019). Largely enhanced energy density of polypropylene based nanocomposites via synergistic hybrid fillers and high shear extrusion assisted dispersion. Composites Part A: Applied Science and Manufacturing, 119: 134–144.

[13]

Feng, Y., Zhou, Y. H., Zhang, T. D., Zhang, C. H., Zhang, Y. Q., Zhang, Y., Chen, Q. G., Chi, Q. G. (2020). Ultrahigh discharge efficiency and excellent energy density in oriented core-shell nanofiber-polyetherimide composites. Energy Storage Materials, 25: 180–192.

[14]

Pourrahimi, A. M., Kumara, S., Palmieri, F., Yu, L., Lund, A., Hammarström, T., Hagstrand, P. O., Scheblykin, I. G., Fabiani, D., Xu, X., et al. (2021). Repurposing poly(3-hexylthiophene) as a conductivity-reducing additive for polyethylene-based high-voltage insulation. Advanced Materials, 33: e2100714.

[15]

Zheng, M. S., Zheng, Y. T., Zha, J. W., Yang, Y., Han, P., Wen, Y. Q., Dang, Z. M. (2018). Improved dielectric, tensile and energy storage properties of surface rubberized BaTiO3/polypropylene nanocomposites. Nano Energy, 48: 144–151.

[16]

Zhou, Y., Li, Q., Dang, B., Yang, Y., Shao, T., Li, H., Hu, J., Zeng, R., He, J., Wang, Q. (2018). A scalable, high-throughput, and environmentally benign approach to polymer dielectrics exhibiting significantly improved capacitive performance at high temperatures. Advanced Materials, 30: e1805672.

[17]

Yan, Q., Xu, W. Y., Rånby, B. (1991). Photoinitiated crosslinking of low density polyethylene I: Reaction and kinetics. Polymer Engineering and Science, 31: 1561–1566.

[18]

Qu, B. J., Rånby, B. (1993). Photocross-linking of low-density polyethylene. I. Kinetics and reaction parameters. Journal of Applied Polymer Science, 48: 701–709.

[19]

Balart, J., Fombuena, V., Boronat, T., Reig, M. J., Balart, R. (2012). Surface modification of polypropylene substrates by UV photografting of methyl methacrylate (MMA) for improved surface wettability. Journal of Materials Science, 47: 2375–2383.

[20]

Li, H., Feng, X. L., Zhang, K. (2021). Study of the classical cassie theory and Wenzel theory used in nanoscale. Journal of Bionic Engineering, 18: 398–408.

[21]

Smith, B. C. (2021). The infrared spectra of polymers III: Hydrocarbon polymers. Spectroscopy, 36: 22–25.

[22]

Dai, S. J., Luo, C., Zhang, C., Wang, H., Zhang, Y., Yuan, L. F. (2021). Determination of small-amount polypropylene in imported recycled polyethylene/polypropylene blends by Fourier transform infrared spectroscopy. E3S Web of Conferences, 261: 02067.

[23]

Neßlinger, V., Orive, A. G., Meinderink, D., Grundmeier, G. (2022). Combined in situ attenuated total reflection-Fourier transform infrared spectroscopy and single molecule force studies of poly(acrylic acid) at electrolyte/oxide interfaces at acidic pH. Journal of Colloid and Interface Science, 615: 563–576.

[24]

Pope, C. G. (1997). X-ray diffraction and the Bragg equation. Journal of Chemical Education, 74: 129.

[25]

Liu, H. L., du, B. X., Xiao, M., Tanaka, T. (2021). High-temperature performance of dielectric breakdown in BOPP capacitor film based on surface grafting. IEEE Transactions on Dielectrics and Electrical Insulation, 28: 1264–1272.

[26]

Liu, H. L., du, B. X., Xiao, M. (2021). Improved energy density and charge discharge efficiency of polypropylene capacitor film based on surface grafting. IEEE Transactions on Dielectrics and Electrical Insulation, 28: 1539–1546.

[27]

Chen, J. Y., Li, B. W., Sun, Y., Zhang, P. X., Shen, Z. H., Zhang, X., Nan, C. W., Zhang, S. J. (2021). Greatly enhanced breakdown strength and energy density in ultraviolet-irradiated polypropylene. IET Nanodielectrics, 4: 223–228.

[28]

Han, C. C., Zhang, X. H., Chen, D., Ma, Y. H., Zhao, C. W., Yang, W. T. (2020). Enhanced dielectric properties of sandwich-structured biaxially oriented polypropylene by grafting hyper-branched aromatic polyamide as surface layers. Journal of Applied Polymer Science, 137: 48990.

[29]

Li, Q., Yao, F. Z., Liu, Y., Zhang, G. Z., Wang, H., Wang, Q. (2018). High-temperature dielectric materials for electrical energy storage. Annual Review of Materials Research, 48: 219–243.

[30]

Li, H., Zhou, Y., Liu, Y., Li, L., Liu, Y., Wang, Q. (2021). Dielectric polymers for high-temperature capacitive energy storage. Chemical Society Reviews, 50: 6369–6400.

[31]

Liu, G., Feng, Y., Zhang, T. D., Zhang, C. H., Chi, Q. G., Zhang, Y. Q., Zhang, Y., Lei, Q. Q. (2021). High-temperature all-organic energy storage dielectric with the performance of self-adjusting electric field distribution. Journal of Materials Chemistry A, 9: 16384–16394.

[32]

Zhang, T. D., Yang, L. Y., Ruan, J. Y., Zhang, C. H., Chi, Q. G. (2021). Improved high-temperature energy storage performance of PEI dielectric films by introducing an SiO2 insulating layer. Macromolecular Materials and Engineering, 306: 2100514.

[33]

Liu, G., Zhang, T. D., Feng, Y., Zhang, Y. Q., Zhang, C. H., Zhang, Y., Wang, X. B., Chi, Q. G., Chen, Q. G., Lei, Q. Q. (2020). Sandwich-structured polymers with electrospun boron nitrides layers as high-temperature energy storage dielectrics. Chemical Engineering Journal, 389: 124443.

[34]

Pan, H., Zhang, Q. H., Wang, M., Lan, S., Meng, F. Q., Ma, J., Gu, L., Shen, Y., Yu, P., Lin, Y. H., et al. (2018). Enhancements of dielectric and energy storage performances in lead-free films with sandwich architecture. Journal of the American Ceramic Society, 102: 936–943.

[35]

Zhang, B., Liu, J., Ren, M., Wu, C., Moran, T. J., Zeng, S., Chavez, S. E., Hou, Z., Li, Z., LaChance, A. M., et al. (2021). Reviving the “Schottky” barrier for flexible polymer dielectrics with a superior 2D nanoassembly coating. Advanced Materials, 33: e2101374.

[36]

Zhou, Y., Yuan, C., Wang, S. J., Zhu, Y. J., Cheng, S., Yang, X., Yang, Y., Hu, J., He, J. L., Li, Q. (2020). Interface-modulated nanocomposites based on polypropylene for high-temperature energy storage. Energy Storage Materials, 28: 255–263.

[37]

Cheng, L., Liu, W. F., Liu, X. W., Liu, C. M., Li, S. T., Xing, Z. L. (2019). Online degradation of biaxial-orientated polypropylene film from HVDC filter capacitors. IEEE Transactions on Dielectrics and Electrical Insulation, 26: 26–33.

[38]

Chen, J., Shen, Z. H., Kang, Q., Qian, X. S., Li, S. T., Jiang, P. K., Huang, X. Y. (2022). Chemical adsorption on 2D dielectric nanosheets for matrix free nanocomposites with ultrahigh electrical energy storage. Science Bulletin, 67: 609–618.

[39]

Cui, Z. Q., Sun, J. X., Niu, X. N., Chen, J. M., Ma, W. L., Chi, L. F. (2016). Photo-generated charge behaviors in all-polymer solar cells studied by Kelvin probe force microscopy. Organic Electronics, 39: 38–42.

[40]

Rabuffi, M., Picci, G. (2002). Status quo and future prospects for metallized polypropylene energy storage capacitors. IEEE Transactions on Plasma Science, 30: 1939–1942.

iEnergy
Pages 374-382
Cite this article:
Chi Q, Wang T, Zhang C, et al. Significantly improved high-temperature energy storage performance of commercial BOPP films by utilizing ultraviolet grafting modification. iEnergy, 2022, 1(3): 374-382. https://doi.org/10.23919/IEN.2022.0046

1248

Views

102

Downloads

16

Crossref

16

Scopus

Altmetrics

Received: 08 September 2022
Revised: 22 October 2022
Accepted: 27 October 2022
Published: 20 September 2022
© The author(s)

Copyright: by the author(s). The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return