AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home iEnergy Article
PDF (3.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Eco-friendly gas insulating medium for next-generation SF6-free equipment

Yi Li1,2Shuangshuang Tian1Linlin Zhong3Geng Chen4Song Xiao2Yann Cressault5Yuwei Fu6Yu Zheng2Christophe Preve7Zhaolun Cui8Yin Zhang1Fanchao Ye1Daniel Piccoz7Gang Wang7Yalong Li1Youping Tu4Wenjun Zhou2Ju Tang2Xiaoxing Zhang1( )
Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan 430068, China
School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China
School of Electrical Engineering, Southeast University, Nanjing 210096, China
State Key Laboratory of Alternate Electric Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
LAPLACE (Laboratoire Plasma et Conversion d'Energie), Université de Toulouse, Toulouse 31013, France
Department of Electrical Engineering, Xi’an University of Technology, Xi’an 710048, China
Schneider Electric, Reuil-Malmaison 92500, France
School of Electric Power Engineering, South China University of Technology, Guangzhou 510006, China
Show Author Information

Abstract

Gas-insulated equipment (GIE) that utilizes the most potent greenhouse gas sulfur hexafluoride (SF6) as insulation and arc-quenching medium has been widely used in the power industry. Seeking eco-friendly insulating gas with advanced performance for next-generation SF6-free GIE is significant for the “net-zero” goal and sustainable development. In this paper, the utilization, emission, and reduction policies of SF6 around the world were summarized first. Then, we systematically reviewed the latest progress in comprehensive performance evaluation of eco-friendly insulating gas in terms of molecular design, dielectric insulation, arc-quenching, stability and decomposition, materials compatibility, biosafety, etc. Further, the representative applications of eco-friendly insulating gas in medium-voltage, high-voltage GIE as well as relevant maintenance-related technologies were highlighted. Accordingly, the existing challenges and future perspectives were proposed, presenting a roadmap to hopefully steer the development of eco-friendly insulating gas and GIE.

References

[1]

Zeng, F. P., Wu, S. Y., Lei, Z. C., Li, C., Tang, J., Yao, Q., Miao, Y. L. (2020). SF6 fault decomposition feature component extraction and triangle fault diagnosis method. IEEE Transactions on Dielectrics and Electrical Insulation, 27: 581–589.

[2]

Ryan, H. M., Lightle, D., Milne, D. (1985). Factors influencing dielectric performance of SF6 insulated GIS. IEEE Transactions on Power Apparatus and Systems, PAS-104: 1526–1535.

[3]
Hu, L., Ottinger, D., Bogle, S., Montzka, S., DeCola, P., Dlugokencky, E., Andrews, A., Thoning, K., Sweeney, C., Dutton, G., et al. (2022). Declining, seasonal-varying emissions of sulfur hexafluoride from the United States point to a new mitigation opportunity. Available at: https://doi.org/10.5194/egusphere-2022-862, 2022.
[4]

Ahmad Raza, T., Kamran, M., Khallidoon, M. U., Akhtar, M. N. (2022). Potential of eco-friendly gases to substitute SF6 for electrical HV applications as insulating medium: A review. Turkish Journal of Electrical Power and Energy Systems, 2: 94–102.

[5]

Dervos, C. T., Vassiliou, P. (2000). Sulfur hexafluoride (SF6): Global environmental effects and toxic byproduct formation. Journal of the Air & Waste Management Association, 50: 137–141.

[6]

Fang, X. K., Hu, X., Janssens-Maenhout, G., Wu, J., Han, J. R., Su, S. S., Zhang, J. B., Hu, J. X. (2013). Sulfur hexafluoride (SF6) emission estimates for China: An inventory for 1990–2010 and a projection to 2020. Environmental Science & Technology, 47: 3848–3855.

[7]
Global Monitoring Laboratory Earth System Research Laboratories. (2022). Sulfur hexafluoride (SF6) - Combined Dataset Available at: https://www.esrl.noaa.gov/gmd/hats/combined/SF6.html.
[8]
Zhou, S., Teng, F., Tong, Q. (2018). Mitigating sulfur hexafluoride (SF6) emission from electrical equipment in China. Sustainability, 10: 2402.
[9]

Devins, J. C. (1980). Replacement gases for SF6. IEEE Transactions on Electrical Insulation, EI-15: 81–86.

[10]

Rabie, M., Franck, C. M. (2018). Assessment of eco-friendly gases for electrical insulation to replace the most potent industrial greenhouse gas SF6. Environmental Science & Technology, 52: 369–380.

[11]

Franck, C. M., Chachereau, A., Pachin, J. (2021). SF6-free gas-insulated switchgear: Current status and future trends. IEEE Electrical Insulation Magazine, 37: 7–16.

[12]

Beroual, A., Haddad, A. M. (2017). Recent advances in the quest for a new insulation gas with a low impact on the environment to replace sulfur hexafluoride (SF6) gas in high-voltage power network applications. Energies, 10: 1216.

[13]
Zhang, B. Y., Xiong, J. Y., Chen, L., Li, X. W., Murphy, A. B. (2020). Fundamental physicochemical properties of SF6-alternative gases: A review of recent progress. Journal of Physics D: Applied Physics, 53: 173001.
[14]
Li, X. W., Zhao, H., Murphy, A. B. (2018). SF6-alternative gases for application in gas-insulated switchgear. Journal of Physics D: Applied Physics, 51: 153001.
[15]
Xiao, S., Shi, S. Y., Li, Y., Ye, F. C., Li, Y. L., Tian, S. S., Tang, J., Zhang, X. X. (2021). Review on decomposition characteristics of eco-friendly gas insulating medium for high voltage gas insulated equipment. Journal of Physics D: Applied Physics, 54: 373002.
[16]

Yang, Y., Gao, K. L., Ding, L. J., Bi, J. G., Yuan, S., Yan, X. L. (2021). Review of the decomposition characteristics of eco-friendly insulation gas. High Voltage, 6: 733–749.

[17]

Pan, B. F., Wang, G. M., Shi, H. M., Shen, J. H., Ji, H. K., Kil, G. S. (2020). Green gas for grid as an eco-friendly alternative insulation gas to SF6: A review. Applied Sciences, 10: 2526.

[18]

Owens, J., Xiao, A., Bonk, J., DeLorme, M., Zhang, A. (2021). Recent development of two alternative gases to SF6 for high voltage electrical power applications. Energies, 14: 5051.

[19]

Tu, Y. P., Chen, G., Wang, C., Shao, Y. M., Tong, Y. J., Li, C. Y., Ma, G. M., Shahsavarian, T. (2020). Feasibility of C3F7 CN/CO2 gas mixtures in high-voltage DC GIL: A review on recent advances. High Voltage, 5: 377–386.

[20]

Chen, G., Tu, Y. P., Wang, C., Wang, J., Yuan, Z. K., Ma, G. M., Wang, J., Qi, B., Li, C. Y. (2019). Environment-friendly insulating gases for HVDC gas-insulated transmission lines. CSEE Journal of Power and Energy Systems, 7: 510–529.

[21]
Parthiban, A., Gopal, A. A. R., Siwayanan, P., Chew, K. W. (2021). Disposal methods, health effects and emission regulations for sulfur hexafluoride and its by-products. Journal of Hazardous Materials, 417: 126107.
[22]
Wang, X. H., Gao, Q. Q., Fu, Y. W., Yang, A. J., Rong, M. Z., Wu, Y., Niu, C. P., Murphy, A. B. (2016). Dominant particles and reactions in a two-temperature chemical kinetic model of a decaying SF6 arc. Journal of Physics D: Applied Physics, 49: 105502.
[23]
Mahdi, A. S., Abdul-Malek, Z., Arshad, R. N. (2022). SF6 decomposed component analysis for partial discharge diagnosis in GIS: A review. IEEE Access, 10: 27270–27288.
[24]

Malik, N. H., Qureshi, A. H. (1979). A review of electrical breakdown in mixtures of SF6 and other gases. IEEE Transactions on Electrical Insulation, EI-14: 1–13.

[25]

Maiss, M., Brenninkmeijer, C. A. M. (1998). Atmospheric SF6:   trends, sources, and prospects. Environmental Science & Technology, 32: 3077–3086.

[26]

Fang, X., Thompson, R. L., Saito, T., Yokouchi, Y., Kim, J., Li, S., Kim, K. R., Park, S., Graziosi, F., Stohl, A. (2014). Sulfur hexafluoride (SF6) emissions in East Asia determined by inverse modeling. Atmospheric Chemistry and Physics, 14: 4779–4791.

[27]

Simmonds, P. G., Rigby, M., Manning, A. J., Park, S., Stanley, K. M., McCulloch, A., Henne, S., Graziosi, F., Maione, M., Arduini, J., Reimann, S., Vollmer, M. K., Mühle, J., O'Doherty, S., Young, D., Krummel, P. B., Fraser, P. J., Weiss, R. F., Salameh, P. K., Harth, C. M., Park, M. K., Park, H., Arnold, T., Rennick, C., Steele, L. P., Mitrevski, B., Wang, R. H. J., Prinn, R. G. (2020). The increasing atmospheric burden of the greenhouse gas sulfur hexafluoride (SF6). Atmospheric Chemistry and Physics, 20: 7271–7290.

[28]

Rigby, M., Prinn, R. G., O'Doherty, S., Miller, B. R., Ivy, D., Mühle, J., Harth, C. M., Salameh, P. K., Arnold, T., Weiss, R. F., Krummel, P. B., Steele, L. P., Fraser, P. J., Young, D., Simmonds, P. G. (2014). Recent and future trends in synthetic greenhouse gas radiative forcing. Geophysical Research Letters, 41: 2623–2630.

[29]
United States Environmental Protection Agency. (2022). Inventory of U.S. Greenhouse Gas Emissions and Sinks. https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks.
[30]

Widger, P., Haddad, A. (2018). Evaluation of SF6 leakage from gas insulated equipment on electricity networks in great Britain. Energies, 11: 2037.

[31]

Iwata, H., Okada, K. (2014). Greenhouse gas emissions and the role of the Kyoto Protocol. Environmental Economics and Policy Studies, 16: 325–342.

[32]

Johnston, J. (2008). Climate change confusion and the supreme court: The misguided regulation of greenhouse gas emissions under the clean air act. Notre Dame Law Rev, 84: 1–74.

[33]
EU. Regulation (EU) No 517/2014 of the European Parliament and of the Council of 16 April 2014 on fluorinated greenhouse gases and repealing Regulation (EC) No 842/2006; 2014.
[34]
EU. Regulation (EC) No 842/2006 of the European Parliament and of the Council of 17 May 2006 on certain fluorinated greenhouse gases; 2006.
[35]
GB/T 28537-2012, The use and handling of SF6 in high-voltage switchgear and controlgear.
[36]
GB/T-32151.2-2015, Requirements of the greenhouse gas emissions accounting and reporting. Part 2: Power grid enterprise.
[37]

Rotmans, J., Den Elzen, M. G. J. (1992). A model-based approach to the calculation of global warming potentials (GWP). International Journal of Climatology, 12: 865–874.

[38]
Myhre, G., Stordal, F. (1997). Role of spatial and temporal variations in the computation of radiative forcing and GWP. Journal of Geophysical Research Atmospheres, 102: 11181–11200.
[39]
Montzka, S. A., Reimann, S., Engel, A., Krüger, K., O’Doherty, S., Sturges, W. T., Blake, D., Dorf, M., Fraser, P., Froidevaux, L. et al. (2011). Ozone-depleting substances (ODSs) and related chemicals (chapter 1). Available at: https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=909747.
[40]

Claxton, T., Hossaini, R., Wild, O., Chipperfield, M. P., Wilson, C. (2019). On the regional and seasonal ozone depletion potential of chlorinated very short-lived substances. Geophysical Research Letters, 46: 5489–5498.

[41]

Chu, F. Y. (1986). SF6 decomposition in gas-insulated equipment. IEEE Transactions on Electrical Insulation, EI-21: 693–725.

[42]

Zeng, F. P., Li, H. T., Cheng, H. T., Tang, J., Liu, Y. L. (2021). SF6 decomposition and insulation condition monitoring of GIE: A review. High Voltage, 6: 955–966.

[43]
Kessler F, Sarfert-Gast W, Ise M, et al. (2017). Interaction of low global warming potential gaseous dielectrics with materials of gas-insulated systems, In: Proceedings of the 20th International Symposium High Voltage Engineering, Buenos Aires, Argentina.
[44]

Rokunohe, T., Yagihashi, Y., Endo, F., Oomori, T. (2006). Fundamental insulation characteristics of air; N2, CO2, N2/O2, and SF6/N2 mixed gases. Electrical Engineering in Japan, 155: 9–17.

[45]

Guo, C., Zhang, Q. G., Wen, T. (2016). A method for synergistic effect evaluation of SF6/N2 gas mixtures. IEEE Transactions on Dielectrics and Electrical Insulation, 23: 211–215.

[46]
Zhao, S., Xiao, D. M. (2020). Research progress on synergistic effect between insulation gas mixtures. In Xiao, D. M., Sankaran, K. (Eds.) Modern Applications of Electrostatics and Dielectrics. London, UK: IntechOpen.
[47]
Deng, Y. K., Xiao, D. M. (2012). Analysis of the insulation characteristics of c-C4F8 and N2 gas mixtures by Boltzmann equation method. The European Physical Journal Applied Physics, 57: 20801.
[48]

Zhao, X. L., Jiao, J. T., Li, B., Xiao, D. M. (2016). The electronegativity analysis of c-C4F8 as a potential insulation substitute of SF6. Plasma Science and Technology, 18: 292–298.

[49]

Takahashi, K., Tachibana, K. (2001). Solid particle production in fluorocarbon plasmas. I. Correlation with polymer film deposition. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 19: 2055–2060.

[50]

Xiao, S., Tian, S. S., Zhang, X. X., Cressault, Y., Tang, J., Deng, Z. T., Li, Y. (2018). The influence of O2 on decomposition characteristics of c-C4F8/N2 environmental friendly insulating gas. Processes, 6: 174.

[51]

Xiao, S., Zhang, X. X., Tang, J., Liu, S. Q. (2018). A review on SF6 substitute gases and research status of CF3I gases. Energy Reports, 4: 486–496.

[52]

Chen, L. J., Widger, P., Kamarudin, M., Griffiths, H., Haddad, A. (2016). CF3I gas mixtures: Breakdown characteristics and potential for electrical insulation. IEEE Transactions on Power Delivery, 32: 1089–1097.

[53]
Widger, P., Haddad, A. (2017). Solid by-products of a CF3I–CO2 insulating gas mixtures on electrodes after lightning impulse breakdown. Journal of Physics Communications, 1: 025010.
[54]

Kamarudin, M. S., Haddad, A., Kok, B. C., Jamail, N. A. M. (2017). Pressurized CF3I-CO2 gas mixture under lightning impulse and its solid by-products. International Journal of Electrical and Computer Engineering, 7: 3088.

[55]

Preve, C., Lahaye, G., Richaud, M., Maladen, R., Penelon, T., Galas, S. (2017). Hazard study of medium-voltage switchgear with SF6 alternative gas in electrical room. CIRED - Open Access Proceedings Journal, 2017: 198–201.

[56]
Kieffel, Y. (2016). Characteristics of g3 - an alternative to SF6. In Proceedings of the 2016 IEEE International Conference on Dielectrics (ICD). Montpellier, France.
[57]
Mantilla, J. D., Gariboldi, N., Grob, S., Claessens, M. (2014). Investigation of the insulation performance of a new gas mixture with extremely low GWP. In: Proceedings of the 2014 IEEE Electrical Insulation Conference (EIC). Philadelphia, PA, USA.
[58]
Hyrenbach, M., Hintzen, T., Müller, P., Owens, J. (2015). Alternative gas insulation in medium-voltage switchgear. In: Proceedings of the 23rd International Conference on Electricity Distribution, Lyon, France.
[59]

Tian, S. S., Zhang, X. X., Xiao, S., Zhang, J., Chen, Q., Li, Y. (2019). Application of C6F12O/CO2 mixture in 10kV medium-voltage switchgear. IET Science, Measurement & Technology, 13: 1225–1230.

[60]

Nair, V. (2021). HFO refrigerants: A review of present status and future prospects. International Journal of Refrigeration, 122: 156–170.

[61]

Rabie, M., Franck, C. M. (2018). Comparison of gases for electrical insulation: Fundamental concepts. IEEE Transactions on Dielectrics and Electrical Insulation, 25: 649–656.

[62]

Xiao, S., Han, P., Li, Y., Li, Z., Ye, F. C., Li, Y. L., Tang, J., Xia, Y. L., Zhang, X. X. (2021). Insulation performance and electrical field sensitivity properties of HFO-1336mzz(E)/CO2: A new eco-friendly gas insulating medium. IEEE Transactions on Dielectrics and Electrical Insulation, 28: 1938–1948.

[63]

Katsuyuki, T. (2016). Measurements of vapor pressure and saturated liquid density for HFO–1234ze(E) and HFO–1234ze(Z). Journal of Chemical & Engineering Data, 61: 1645–1648.

[64]

Tanaka, K., Ishikawa, J., Kontomaris, K. K. (2017). Thermodynamic properties of HFO-1336mzz(E) (trans-1, 1, 1, 4, 4, 4-hexafluoro-2-butene) at saturation conditions. International Journal of Refrigeration, 82: 283–287.

[65]

Zhang, C. H., Shi, H. X., Cheng, L., Zhao, K., Xie, X. Y., Ma, H. B. (2016). First principles based computational scheme for designing new SF6 replacements. IEEE Transactions on Dielectrics and Electrical Insulation, 23: 2572–2578.

[66]

Rabie, M., Dahl, D. A., Donald, S. M. A., Reiher, M., Franck, C. M. (2013). Predictors for gases of high electrical strength. IEEE Transactions on Dielectrics and Electrical Insulation, 20: 856–863.

[67]

Meurice, N., Sandre, E., Aslanides, A., Vercauteren, D. P. (2004). Simple theoretical estimation of the dielectric strength of gases. IEEE Transactions on Dielectrics and Electrical Insulation, 11: 946–948.

[68]

Yu, X. J., Hou, H., Wang, B. S. (2018). A priori theoretical model for discovery of environmentally sustainable perfluorinated compounds. The Journal of Physical Chemistry A, 122: 3462–3469.

[69]

Yu, X. J., Hou, H., Wang, B. S. (2017). Prediction on dielectric strength and boiling point of gaseous molecules for replacement of SF6. Journal of Computational Chemistry, 38: 721–729.

[70]
Hua, H., Xiaojuan, Y., Wenjun, Z., Yunbai, L., Baoshan, W. (2018). Theoretical investigations on the structure. activity relationship to the dielectric strength of the insulation gases. Chemical Journal of Chinese Universities, 39: 2477–2484.
[71]

Hua, H., Baoshan, W. (2021). Group additivity theoretical model for the prediction of dielectric strengths of the alternative gases to SF6. Chemical Journal of Chinese Universities, 42: 3709–3715.

[72]

Chen, Q., Qiu, R., Lin, L., Cheng, S., Zhang, C. (2019). Selection of potential substitutes for SF6 based on density functional theory. High Voltage Engineering, 45: 1026–1033.

[73]

Lin, L., Qingguo, C., Song, C. (2018). The analysis of SF6 potential alternative gas dielectric strength based on density functional theory (in Chinese). Transactions of China Electrotechnical Society, 33: 4382–4388.

[74]
Liu, G., Yang, S., Zhang, N., Wang, H., Xiao, J. (2022) Prediction on electrical strength of gaseous medium based on electron location function surface analysis. High Voltage Engineering, 48: 2208–2214.
[75]

Zhang, N. N., Yang, S., Liu, G. P., Wang, H., Xiao, J. X. (2022). Influence of electron probability density on prediction for insulation strength. High Voltage Engineering, 48: 4323–4331.

[76]

You, T. P., Dong, X. Z., Zhou, W. J., Zheng, Y., Ren, S. B., Lei, H. Y. (2022). Study on gas molecular structure parameters based on maximum information coefficient. IEEE Transactions on Dielectrics and Electrical Insulation, 29: 1633–1639.

[77]
Sun, H., Liang, L. Q., Wang, C. L., Wu, Y., Yang, F., Rong, M. Z. (2020). Prediction of the electrical strength and boiling temperature of the substitutes for greenhouse gas SF6 using neural network and random forest. IEEE Access, 8: 124204–124216.
[78]
Wang, Y., Gao, Z. Y., Wang, B. S., Zhou, W. J., Yu, P., Luo, Y. B. (2019). Synthesis and dielectric properties of trifluoromethanesulfonyl fluoride: An alternative gas to SF6. Industrial & Engineering Chemistry Research, 58: 21913–21920.
[79]
Long, Y. X., Guo, L. P., Wang, Y., Chen, C., Chen, Y. H., Li, F., Zhou, W. J. (2020). Electron swarms parameters in CF3SO2F as an alternative gas to SF6. Industrial & Engineering Chemistry Research, 59: 11355–11358.
[80]
Hu, S. Z., Wang, Y., Zhou, W. J., Qiu, R., Luo, Y. B., Wang, B. S. (2020). Dielectric properties of CF3SO2F/N2 and CF3SO2F/CO2 mixtures as a substitute to SF6. Industrial & Engineering Chemistry Research, 59: 15796–15804.
[81]

Zhang, L., Peng, R. C., Huang, Y. J., Song, G. S., Wang, Y. (2022). Toxic study on the new eco-friendly insulating gas trifluoromethanesulfonyl fluoride: A substitute for SF6. Sustainability, 14: 5239.

[82]
Tian, S. S., Zhang, X. X., Cressault, Y., Hu, J. T., Wang, B., Xiao, S., Li, Y., Kabbaj, N. (2020). Research status of replacement gases for SF6 in power industry. AIP Advances, 10: 050702.
[83]
Takuma, T. (1999). Application of a gas mixture with c-C. In: Proceedings of the 11th International Symposium on High-Voltage Engineering (ISH 99). London, UK.
[84]

Wada, J., Ueta, G., Okabe, S., Hikita, M. (2016). Dielectric properties of gas mixtures with per-fluorocarbon gas and gas with low liquefaction temperature. IEEE Transactions on Dielectrics and Electrical Insulation, 23: 838–847.

[85]
Zhao, S., Jiao, J. T., Zhao, X. L., Zhang, H., Xiao, D. M., Yan, J. D. (2016). Synergistic effect of c-C4F8/N2 gas mixtures in slightly non-uniform electric field under lightning impulse. In: Proceedings of the 2016 IEEE Electrical Insulation Conference (EIC). Montreal, Canada.
[86]

Whitman, L. C. (1965). Impulse voltage tests on air and C3F8. IEEE Transactions on Electrical Insulation, EI-1: 44–48.

[87]

Okubo, H., Yamada, T., Hatta, K., Hayakawa, N., Yuasa, S., Okabe, S. (2002). Partial discharge and breakdown mechanisms in ultra-dilute SF6 and PFC gases mixed with N2 gas. Journal of Physics D: Applied Physics, 35: 2760–2765.

[88]

Xiao, S., Zhang, X. X., Han, Y. F., Dai, Q. W. (2016). AC breakdown characteristics of CF3I/N2 in a non-uniform electric field. IEEE Transactions on Dielectrics and Electrical Insulation, 23: 2649–2656.

[89]

Zhang, X. X., Xiao, S., Han, Y. F., Dai, Q. W. (2015). Analysis of the feasibility of CF3I/CO2 used in C-GIS by partial discharge inception voltages in positive half cycle and breakdown voltages. IEEE Transactions on Dielectrics and Electrical Insulation, 22: 3234–3243.

[90]

Toyota, H., Matsuoka, S., Hidaka, K. (2006). Measurement of sparkover voltage and time lag characteristics in CF3I–N2 and CF3I–air gas mixtures by using steep-front square voltage. Electrical Engineering in Japan, 157: 1–7.

[91]
Tu, Y. P., Luo, Y., Wang, C., Luo, S., Cheng, Y. C. (2015). Breakdown characteristics of CF3I and CF3I/N2 gas mixtures in uniform field. In: Proceedings of the 2015 IEEE 11th International Conference on the Properties and Applications of Dielectric Materials (ICPADM). Sydney, Australia.
[92]

Widger, P., Haddad, A., Griffiths, H. (2016). Breakdown performance of vacuum circuit breakers using alternative CF3I-CO2 insulation gas mixture. IEEE Transactions on Dielectrics and Electrical Insulation, 23: 14–21.

[93]
Simka, P., Ranjan, N. (2015). Dielectric strength of C5 perfluoroketone. In: Proceedings of the 19th International Symposium on High Voltage Engineering, Pilzen, Czech.
[94]
Saxegaard, M., Kristoffersen, M., Stoller, P., Seeger, M., Hyrenbach, M., Landsverk, H. (2015). Dielectric properties of gases suitable for secondary medium voltage switchgear. In: Proceedings of the 23rd International Conference on Electricity Distribution, Lyon, France.
[95]

Tian, S. S., Zhang, X. X., Xiao, S., Deng, Z. T., Li, Y., Tang, J. (2019). Experimental research on insulation properties of C6F12O/N2 and C6F12O/CO2 gas mixtures. IET Generation. Transmission & Distribution, 13: 417–422.

[96]

Kieffel, Y., Irwin, T., Ponchon, P., Owens, J. (2016). Green gas to replace SF6 in electrical grids. IEEE Power and Energy Magazine, 14: 32–39.

[97]

Nechmi, H. E., Beroual, A., Girodet, A., Vinson, P. (2016). Fluoronitriles/CO2 gas mixture as promising substitute to SF6 for insulation in high voltage applications. IEEE Transactions on Dielectrics and Electrical Insulation, 23: 2587–2593.

[98]

Zhang, B. Y., Uzelac, N., Cao, Y. (2018). Fluoronitrile/CO2 mixture as an eco-friendly alternative to SF6 for medium voltage switchgears. IEEE Transactions on Dielectrics and Electrical Insulation, 25: 1340–1350.

[99]

Li, Y., Zhang, X. X., Zhang, J., Fu, M. L., Zhuo, R., Luo, Y., Chen, D. C., Xiao, S. (2019). Experimental study on the partial discharge and AC breakdown properties of C4F7N/CO2 mixture. High Voltage, 4: 12–17.

[100]

Koch, M., Franck, C. M. (2015). High voltage insulation properties of HFO1234ze. IEEE Transactions on Dielectrics and Electrical Insulation, 22: 3260–3268.

[101]

Hösl, A., Pachin, J., Egüz, E., Chachereau, A., Franck, C. M. (2020). Positive synergy of SF6 and HFO1234ze(E). IEEE Transactions on Dielectrics and Electrical Insulation, 27: 322–324.

[102]

Tu, Y. P., Cheng, Y., Wang, C., Ai, X., Zhou, F. W., Chen, G. (2018). Insulation characteristics of fluoronitriles/CO2 gas mixture under DC electric field. IEEE Transactions on Dielectrics and Electrical Insulation, 25: 1324–1331.

[103]

Wang, C., Cheng, Y., Tu, Y. P., Chen, G., Yuan, Z. K., Xiao, A., Owens, J., Zhang, A., Mi, N. (2018). Characteristics of C3F7CN/CO2 as an alternative to SF6 in HVDC-GIL systems. IEEE Transactions on Dielectrics and Electrical Insulation, 25: 1351–1356.

[104]

Zheng, Y., Zhou, W. J., Li, H., Yan, X. L., Li, Z. B., Chen, W. J., Bian, K. (2019). Influence of conductor surface roughness on insulation performance of C4F7N/CO2 mixed gas. IEEE Transactions on Dielectrics and Electrical Insulation, 26: 922–929.

[105]
Xiao, S., Gao, B., Pang, X. P., Zhang, X. X., Li, Y., Tian, S. S., Tang, J., Luo, Y. (2021). The sensitivity of C4F7N to electric field and its influence to environment-friendly insulating gas mixture C4F7N/CO2. Journal of Physics D: Applied Physics, 54: 055501.
[106]
Ai, X., Tu, Y. P., Zhang, Y., Chen, G., Yuan, Z. K., Wang, C., Yan, X. L., Liu, W. (2020). The effect of electrode surface roughness on the breakdown characteristics of C3F7CN/CO2 gas mixtures. International Journal of Electrical Power & Energy Systems, 118: 105751.
[107]

Liu, J., Wang, F., Zhong, L. P., Chen, S., Sun, Q. Q., Nie, J., Tang, N., Li, L. (2023). Negative DC dielectric breakdown characteristics and synergistic effect of HFO-1336mzz(E) mixtures. IEEE Transactions on Dielectrics and Electrical Insulation, 30: 65–73.

[108]

Tu, Y., Ai, X., Cheng, Y., Jin, H., Wang, C. (2018). DC breakdown characteristics of C3F7CN/N2 gas mixtures. (in Chinese). Transactions of China Electrotechnical Society, 33: 5189–5195.

[109]

Hu, S., Zhou, W., Zheng, Y. (2019). Power frequency breakdown experiments and synergistic effect analysis of C4F7N/CO2 and C4F7N/N2 mixtures. (in Chinese). High Voltage Engineering (in Chinese), 45: 3562–3570.

[110]

Zhao, S., Xiao, D. M., Zhang, H., Deng, Y. K. (2017). Discharge characteristics of CF3I/N2 mixtures under lightning impulse and alternating voltage. IEEE Transactions on Dielectrics and Electrical Insulation, 24: 2731–2737.

[111]

Zhang, T. R., Zhou, W. J., Zheng, Y., Yu, J. H. (2019). Insulation properties of C4F7N/CO2 mixtures under non-uniform electric field. IEEE Transactions on Dielectrics and Electrical Insulation, 26: 1747–1754.

[112]
Xing, W. J., Zhang, G. Q., Li, K., Niu, W. H., Wang, X., Wang, Y. Y. (2011). Experimental study of partial discharge characteristics of c-C4F8/N2 mixtures. (in Chinese). Proceedings of the Chinese Society for Electrical Engineering, 31: 119–124.
[113]
Zhang, X., Zhou, J., Tang, J., Zhuo, R., Chen, Y. (2013). Experimental study of partial discharge insulating properties for CF3I-CO2 mixtures under needle-plate electrode. (in Chinese). Transactions of China Electrotechnical Society, 28: 36–42
[114]

Toigo, C., Vu-Cong, T., Jacquier, F., Girodet, A. (2020). Partial discharge behavior of protrusion on high voltage conductor in GIS/GIL under high voltage direct current: Comparison of SF6 and SF6 alternative gases. IEEE Transactions on Dielectrics and Electrical Insulation, 27: 140–147.

[115]

Li, Z. C., Ding, W. D., Gao, K. L., Liu, Y. S., Liu, W., Guo, Y. J. (2019). Surface flashover characteristics of epoxy insulator in C4F7N/CO2 mixtures under lightening impulse voltage. (in Chinese). High Voltage Engineering, 45: 1071–1077.

[116]
Chen, J. H., Sun, P., Li, J. S., Li, W. D., Li, Y., Deng, J. B., Ji, S. C., Zhang, G. J. (2022). Surface discharge pattern of C4F7N/CO2 mixture under negative impulse voltages. Applied Physics Letters, 121: 171602.
[117]
Chen, G., Tu, Y. P., Wu, S. C., Lin, C. J., Qin, S. C., Li, C. Y., He, J. L. (2020). Intrinsic hetero-polar surface charge phenomenon in environmental friendly C3F7CN/CO2 gas mixture. Journal of Physics D: Applied Physics, 53: 18LT03.
[118]

Zhang, R., Wang, J., Li, J., Ren, C. Y., Yan, P. (2017). Insulation characteristics of environmentally friendly mix gas c-C4F8/N2 substituting SF6. (in Chinese). High Voltage Engineering, 43: 414–419.

[119]

Man, L., Deng, Y., Xiao, D. (2017). Insulating properties of c-C4F8/N2 and c-C4F8/CO2 mixtures. (in Chinese). High Voltage Engineering, 43: 788–794.

[120]

Lin, L., Chen, Q. G., Wang, X. Y., Zhang, H., Feng, H. R., Zhang, C. (2018). AC breakdown characteristics of c-C4F8/N2 gas mixtures in an extremely non-uniform electric field. Energies, 11: 3533.

[121]
Zhang, Z. M., Ni, Z. R., Xiao, D. M., Wu, Y. Z. (2018). Insulation characteristics of triple mixtures of c-C4F8/N2/CO2 under lightning impulse voltage. Plasma Science and Technology, 20: 105405.
[122]

Zhang, R., Wang, J., Yan, P. (2018). Insulation characteristics of c-C4F8/N2 with less c-C4F8 applied to HVDC-GIL. (in Chinese). High Voltage Engineering, 44: 2672–2678.

[123]

Man, L., Zhang, M., Pan, X., Lu, T., Yang, T., Sun, G. (2019). Surface flashover properties of c-C4F8/N2 insulator. (in Chinese). High Voltage Engineering, 45: 1234–1240.

[124]
Zhang, X. X., Xiao, S., Han, Y. F., Cressault, Y. (2016). Experimental studies on power frequency breakdown voltage of CF3I/N2 mixed gas under different electric fields. Applied Physics Letters, 108: 092901.
[125]

Hu, S., Zhou, W., Zheng, Y., Zhang, T. R., Wang, L. Z., Li, Z. (2020). Influence of three buffer gases on dielectric strength of C4F7N mixtures. (in Chinese). High Voltage Engineering, 46: 224–232.

[126]
Jiang, X., Jin, H. Y., Zhang, W. B. (2020). Lightning impulse insulation properties of eco-friendly C4F7N/CO2 mixed gas under extremely non-uniform electric field. (in Chinese). Proceedings of the Chinese Society for Electrical Engineering. 40: 1030–1036).
[127]

Li, Z. C., Ding, W. D., Liu, Y. S., Li, Y., Zheng, Z. B., Liu, W., Gao, K. L. (2019). Surface flashover characteristics of epoxy insulator in C4F7N/CO2 mixtures in a uniform field under AC voltage. IEEE Transactions on Dielectrics and Electrical Insulation, 26: 1065–1072.

[128]
Wang, X., Fu, X., Han, G., Lu, Y., Li, X., Gao, Q., Rong, M. (2017). Insulation performance of C5F10O/CO2 gas mixture. (in Chinese). High Voltage Engineering, 43: 715–720.
[129]

Guo, Z., Li, X. W., Li, B. X., Fu, M. L., Zhuo, R., Wang, D. B. (2019). Dielectric properties of C5-PFK mixtures as a possible SF6 substitute for MV power equipment. IEEE Transactions on Dielectrics and Electrical Insulation, 26: 129–136.

[130]

Zeng, F. P., Xie, B. Q., Su, D. Z., Li, C., Lei, Z. C., Ma, G. M., Dai, L. J., Li, L., Tang, J. (2022). Breakdown characteristics of eco-friendly gas C5F10O/CO2 under switching impulse in nonuniform electric field. IEEE Transactions on Dielectrics and Electrical Insulation, 29: 866–873.

[131]
Li, B. N., Fu, Y. J., Gao, Y. F., Niu, H., Li, M. R., Lang, J. Y., Li, S. T. (2022). Research on insulation properties of new environment-friendly gas C5F10O/CO2. In: Proceedings of the 2022 IEEE International Conference on High Voltage Engineering and Applications (ICHVE). Chongqing, China.
[132]

Lin, L., Chen, Q. G., Wang, X. Y., Zhang, H., Jia, Z. K., Zhang, C. (2020). Study on the decomposition mechanism of the HFO1234zeE/N2 gas mixture. IEEE Transactions on Plasma Science, 48: 1130–1137.

[133]

Ranjan, P., Chen, L., Alabani, A., Bahdad, F. O., Cotton, I., van der Zel, L. (2021). Anomalous first breakdown behavior for HFO1234ze(E). IEEE Transactions on Dielectrics and Electrical Insulation, 28: 1620–1627.

[134]
Lesaint, O., Bonifaci, N., Merini, H., Maladen, R., Gentils, F. (2018). A study of breakdown properties of HFO gas under DC and impulse voltage. In Proceedings of the 2018 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP). Cancun, Mexico.
[135]

Zhong, L. L., Cressault, Y., Teulet, P. (2019). Evaluation of arc quenching ability for a gas by combining 1-D hydrokinetic modeling and boltzmann equation analysis. IEEE Transactions on Plasma Science, 47: 1835–1840.

[136]

Cressault, Y., Teulet, P., Baumann, X., Vanhulle, G., Reichert, F., Petchanka, A., Kabbaj, N. (2019). State of art and challenges for the calculation of radiative and transport properties of thermal plasmas in HVCB. Plasma Physics and Technology, 6: 208–216.

[137]
Cressault, Y., Connord, V., Hingana, H., Teulet, P., Gleizes, A. (2011). Transport properties of CF3I thermal plasmas mixed with CO2, air or N2 as an alternative to SF6 plasmas in high-voltage circuit breakers. Journal of Physics D: Applied Physics, 44: 495202.
[138]
Zhong, L. L., Cressault, Y., Teulet, P. (2018). Thermophysical and radiation properties of high-temperature C4F8-CO2 mixtures to replace SF6 in high-voltage circuit breakers. Physics of Plasmas, 25: 033502.
[139]
Zhong, L. L., Gu, Q., Wu, B. Y. (2021). Graphite production in two-temperature non-LTE plasmas of C4F7N and C5F10O mixed with CO2, N2, and O2 as eco-friendly SF6 replacements: A numerical study. Plasma Processes and Polymers, 18: 2100036.
[140]

Zhong, L. L., Wang, J. Y., Xu, J., Wang, X. H., Rong, M. Z. (2019). Effects of buffer gases on plasma properties and arc decaying characteristics of C4F7N–N2 and C4F7N–CO2 arc plasmas. Plasma Chemistry and Plasma Processing, 39: 1379–1396.

[141]
Wu, Y., Wang, C. L., Sun, H., Murphy, A. B., Rong, M. Z., Yang, F., Chen, Z. X., Niu, C. P., Wang, X. H. (2018). Properties of C4F7N–CO2 thermal plasmas: Thermodynamic properties, transport coefficients and emission coefficients. Journal of Physics D: Applied Physics, 51: 155206.
[142]
Zhong, L. L., Rong, M. Z., Wang, X. H., Wu, J. H., Han, G. Q., Han, G. H., Lu, Y. H., Yang, A. J., Wu, Y. (2017). Compositions, thermodynamic properties, and transport coefficients of high-temperature C5F10O mixed with CO2 and O2 as substitutes for SF6 to reduce global warming potential. AIP Advances, 7: 075003.
[143]
Wu, Y., Wang, C. L., Sun, H., Rong, M. Z., Murphy, A. B., Li, T. W., Zhong, J. Y., Chen, Z. X., Yang, F., Niu, C. P. (2017). Evaluation of SF6-alternative gas C5-PFK based on arc extinguishing performance and electric strength. Journal of Physics D: Applied Physics, 50: 385202.
[144]
Li, X. W., Guo, X. X., Murphy, A. B., Zhao, H., Wu, J., Guo, Z. (2017). Calculation of thermodynamic properties and transport coefficients of C5F10O-CO2 thermal plasmas. Journal of Applied Physics, 122: 143302.
[145]
Zhong, L. L., Wu, B. Y., Zheng, S. Z., Gu, Q. (2021). A database of electron-impact ionization cross sections of molecules composed of H, C, N, O, and F. Physics of Plasmas, 28: 083505.
[146]
Zhong, L. L., Murphy, A. B., Wang, X. H., Rong, M. Z. (2020). Calculation of two-temperature plasma composition: II. Consideration of condensed phases. Journal of Physics D: Applied Physics, 53: 065203.
[147]

Zhong, L. L., Wang, X. H., Rong, M. Z., Cressault, Y. (2016). Effects of copper vapour on thermophysical properties of CO2-N2 plasma. The European Physical Journal D, 70: 233.

[148]
Liu, J., Zhang, Q., Yan, J. D., Zhong, J., Fang, M. C. (2016). Analysis of the characteristics of DC nozzle arcs in air and guidance for the search of SF6 replacement gas. Journal of Physics D: Applied Physics, 49: 435201.
[149]
Rong, M. Z., Zhong, L. L., Cressault, Y., Gleizes, A., Wang, X. H., Chen, F., Zheng, H. (2014). Thermophysical properties of SF6–Cu mixtures at temperatures of 300–30, 000 K and pressures of 0.01–1.0 MPa: Part 1. Equilibrium compositions and thermodynamic properties considering condensed phases. Journal of Physics D: Applied Physics, 47: 495202.
[150]
Teulet, P., Gonzalez, J. J., Mercado-Cabrera, A., Cressault, Y., Gleizes, A. (2009). One-dimensional hydro-kinetic modelling of the decaying arc in air–PA66–copper mixtures: II. Study of the interruption ability. Journal of Physics D: Applied Physics, 42: 185207.
[151]
Salem, D., Hannachi, R., Cressault, Y., Teulet, P., Béji, L. (2017). Mean absorption coefficients of He/Ar/N2/(C1–xy, Nix, Coy) thermal plasmas for CNT synthesis. Journal of Physics D: Applied Physics, 50: 035203.
[152]
Salem, D., Hannachi, R., Cressault, Y., Teulet, P., Béji, L. (2015). Radiative properties of argon–helium–nitrogen–carbon–cobalt–nickel plasmas used in CNT synthesis. Journal of Physics D: Applied Physics, 48: 065202.
[153]
Cressault, Y., Bauchire, J. M., Hong, D., Rabat, H., Riquel, G., Sanchez, F., Gleizes, A. (2015). Radiation of long and high power arcs. Journal of Physics D: Applied Physics, 48: 415201.
[154]
Cressault, Y. (2015). Basic knowledge on radiative and transport properties to begin in thermal plasmas modelling. AIP Advances, 5: 057112.
[155]
Wang, X. H., Zhong, L. L., Rong, M. Z., Yang, A. J., Liu, D. X., Wu, Y., Miao, S. (2015). Dielectric breakdown properties of hot SF6 gas contaminated by copper at temperatures of 300–3500 K. Journal of Physics D: Applied Physics, 48: 155205.
[156]
Zhong, L. L., Yang, A. J., Wang, X. H., Liu, D. X., Wu, Y., Rong, M. Z. (2014). Dielectric breakdown properties of hot SF6-CO2 mixtures at temperatures of 300–3500 K and pressures of 0.01–1.0 MPa. Physics of Plasmas, 21: 053506.
[157]

Hagelaar, G. M., Pitchford, L. C. (2005). Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Science and Technology, 14: 722–733.

[158]

Wang, X. H., Zhong, L. L., Yan, J., Yang, A. J., Han, G. H., Han, G. Q., Wu, Y., Rong, M. Z. (2015). Investigation of dielectric properties of cold C3F8 mixtures and hot C3F8 gas as Substitutes for SF6. The European Physical Journal D, 69: 240.

[159]
Zhao, H., Li, X. W., Jia, S. L., Murphy, A. B. (2013). Dielectric breakdown properties of SF6–N2 mixtures at 0.01–1.6 MPa and 300–3000 K. Journal of Applied Physics, 113: 143301.
[160]
Li, X. W., Zhao, H., Jia, S. L., Murphy, A. B. (2013). Study of the dielectric breakdown properties of hot SF6–CF4 mixtures at 0.01–1.6 MPa. Journal of Applied Physics, 114: 053302.
[161]

Guo, Z., Liu, S. G., Pu, Y. J., Zhang, B. Y., Li, X. W., Tang, F., Lv, Q. S., Jia, S. L. (2019). Study of the arc interruption performance of CO2 gas in high-voltage circuit breaker. IEEE Transactions on Plasma Science, 47: 2742–2751.

[162]
Pu, Y. J., Tang, F., Zhang, B. Y., Zhou, R., Li, X. W. (2020). Study of the arc interruption performance of SF6 alternative gases in load switch. In: Proceedings of the 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE). Beijing, China.
[163]

Yokomizu, Y., Suzuki, M., Matsumura, T. (2006). Thermodynamic, transport and radiation properties of high-temperature CF3I and transient conductance of residual arc sustained in axial CF3I flow. IEEJ Transactions on Electrical and Electronic Engineering, 1: 268–275.

[164]
Zhong, L. L., Gu, Q., Zheng, S. Z. (2019). An improved method for fast evaluating arc quenching performance of a gas based on 1D arc decaying model. Physics of Plasmas, 26: 103507.
[165]

Guo, Z., Tang, F., Lv, Q., Li, X., Zhang, B., Jia, S., Huang, R. (2019). Experimental investigation on the arc characteristics and arc quenching capabilities of C5F10O-CO2 mixtures. Plasma Physics and Technology, 6: 231–234.

[166]
Chen, L., Zhang, B. Y., Yang, T., Deng, Y. K., Li, X. W., Murphy, A. B. (2020). Thermal decomposition characteristics and kinetic analysis of C4F7N/CO2 gas mixture. Journal of Physics D: Applied Physics, 53: 055502.
[167]

Li, Y., Zhang, X. X., Zhang, J., Xie, C., Shao, X. J., Wang, Z. L., Chen, D. C., Xiao, S. (2020). Study on the thermal decomposition characteristics of C4F7N–CO2 mixture as eco-friendly gas-insulating medium. High Voltage, 5: 46–52.

[168]
Xiao, S., Li, Y., Zhang, X. X., Tian, S. S., Deng, Z. T., Tang, J. (2017). Effects of micro-water on decomposition of the environment-friendly insulating medium C5F10O. AIP Advances, 7: 065017.
[169]
Zhang, X. X., Li, Y., Shao, X. J., Xie, C., Chen, D. C., Tian, S. S., Xiao, S., Tang, J. (2019). Influence of oxygen on the thermal decomposition properties of C4F7N–N2–O2 as an eco-friendly gas insulating medium. ACS Omega, 4: 18616–18626.
[170]
Zhang, B. Y., Li, C. W., Xiong, J. Y., Zhang, Z. Y., Li, X. W., Deng, Y. K. (2019). Decomposition characteristics of C4F7N/CO2 mixture under AC discharge breakdown. AIP Advances, 9: 115212.
[171]

Li, Y., Zhang, X. X., Xiao, S., Chen, Q., Tang, J., Chen, D. C., Wang, D. B. (2018). Decomposition properties of C4F7N/N2 gas mixture: An environmentally friendly gas to replace SF6. Industrial & Engineering Chemistry Research, 57: 5173–5182.

[172]
Tang, N., Chen, L., Zhang, B. Y., Li, X. W. (2020). Experimental and theoretical exploration of C4F7N gas decomposition under partial discharge. In: Proceedings of the 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE). Beijing, China.
[173]
Zhang, X. X., Li, Y., Xiao, S., Tang, J., Tian, S. S., Deng, Z. T. (2017). Decomposition mechanism of C5F10O: An environmentally friendly insulation medium. Environmental Science & Technology, 51: 10127–10136.
[174]
Zhang, Y., Zhang, X. X., Li, Y., Li, Y. L., Chen, Q., Zhang, G. Z., Xiao, S., Tang, J. (2019). AC breakdown and decomposition characteristics of environmental friendly gas C5F10O/air and C5F10O/N2. IEEE Access, 7: 73954–73960.
[175]

Li, Y. L., Zhang, X. X., Li, Y., Wei, Z., Ye, F. C., Xiao, S., Zhang, X. X., Wang, Y. (2021). Effect of oxygen on power frequency breakdown characteristics and decomposition properties of C5-PFK/CO2 gas mixture. IEEE Transactions on Dielectrics and Electrical Insulation, 28: 373–380.

[176]
Li, Y. L., Zhang, X. X., Wang, Y., Li, Y., Zhang, Y., Wei, Z., Xiao, S. (2019). Experimental study on the effect of O2 on the discharge decomposition products of C5-PFK/N2 mixtures. Journal of Materials Science: Materials in Electronics, 30: 19353–19361.
[177]
Wang, X. N., Ma, J., Liu, D. X., Ma, Q., Yuan, H., Yang, A. J., Rong, M. Z., Wang, X. H. (2021). Detection and analysis of spark discharge products of C5F10O by electron attachment mass spectrometry. Journal of Physics D: Applied Physics, 54: 045201.
[178]

Wang, X. N., Wang, X. H., Yuan, H., Yang, A. J., Liu, D. X., Gao, Q. Q., Rong, M. Z. (2022). Study on the insulation performance and decomposition characteristics of C5F10O/CO2 gas mixture. Plasma Chemistry and Plasma Processing, 42: 957–971.

[179]

Zhang, Y., Zhang, X. X., Li, Y., Li, Y. L., Chen, Q., Zhang, G. Z., Xiao, S., Tang, J. (2019). Effect of oxygen on power frequency breakdown voltage and decomposition characteristics of the C5F10O/N2/O2 gas mixture. RSC Advances, 9: 18963–18970.

[180]

Li, Y., Zhang, X. X., Chen, Q., Zhang, J., Li, Y. L., Xiao, S., Tang, J. (2019). Influence of oxygen on dielectric and decomposition properties of C4F7N-N2-O2 mixture. IEEE Transactions on Dielectrics and Electrical Insulation, 26: 1279–1286.

[181]

Li, Y., Zhang, X. X., Ye, F. C., Chen, D. C., Tian, S. S., Cui, Z. L. (2020). Influence regularity of O2 on dielectric and decomposition properties of C4F7N–CO2–O2 gas mixture for medium-voltage equipment. High Voltage, 5: 256–263.

[182]

Ye, F. C., Zhang, X. X., Li, Y., Yao, Y. H., Xiao, S., Zhang, X. X., Xie, C., Shao, X. J., Sun, X. (2021). Effect of O2 on AC partial discharge and decomposition behavior of C4F7N/CO2/O2 gas mixture. IEEE Transactions on Dielectrics and Electrical Insulation, 28: 1440–1448.

[183]
Fu, Y. W., Yang, A. J., Wang, X. H., Rong, M. Z. (2019). Theoretical study of the decomposition mechanism of C4F7N. Journal of Physics D: Applied Physics, 52: 245203.
[184]
Zhang, X. X., Li, Y., Xiao, S., Tian, S. S., Deng, Z. T., Tang, J. (2017). Theoretical study of the decomposition mechanism of environmentally friendly insulating medium C3F7CN in the presence of H2O in a discharge. Journal of Physics D: Applied Physics, 50: 325201.
[185]
Fu, Y. W., Wang, X. H., Li, X., Yang, A. J., Han, G. H., Lu, Y. H., Wu, Y., Rong, M. Z. (2016). Theoretical study of the decomposition pathways and products of C5- perfluorinated ketone (C5 PFK). AIP Advances, 6: 085305.
[186]
Zhang, X. X., Li, Y., Chen, D. C., Xiao, S., Tian, S. S., Tang, J., Zhuo, R. (2017). Reactive molecular dynamics study of the decomposition mechanism of the environmentally friendly insulating medium C3F7CN. RSC Advances, 7: 50663–50671.
[187]
Liu, Y., Hu, J. Y., Hou, H., Wang, B. S. (2020). ReaxFF reactive force field development and application for molecular dynamics simulations of heptafluoroisobutyronitrile thermal decomposition. Chemical Physics Letters, 751: 137554.
[188]

Li, Y., Zhang, X. X., Tian, S. S., Xiao, S., Li, Y. L., Chen, D. C. (2019). Insight into the decomposition mechanism of C6F12O-CO2 gas mixture. Chemical Engineering Journal, 360: 929–940.

[189]

Zhang, X. X., Li, Y., Tian, S. S., Xiao, S., Chen, D. C., Tang, J., Zhuo, R. (2018). Decomposition mechanism of the C5-PFK/CO2 gas mixture as an alternative gas for SF6. Chemical Engineering Journal, 336: 38–46.

[190]

Li, Y., Zhang, X. X., Xiao, S., Chen, Q., Wang, D. B. (2018). Decomposition characteristics of C5F10O/air mixture as substitutes for SF6 to reduce global warming. Journal of Fluorine Chemistry, 208: 65–72.

[191]
Gao, Q. Q., Wang, X. H., Adamiak, K., Qi, X. C., Yang, A. J., Liu, D. X., Niu, C. P., Zhang, J. W. (2022). Negative corona discharge mechanism in C4F7N–CO2 and C4F7N–N2 mixtures. AIP Advances, 12: 095101.
[192]

Atanasova-Höhlein, I. (2021). Compatibility of materials with insulating liquids—Why and how to test. IEEE Electrical Insulation Magazine, 37: 31–35.

[193]

Gao, W. Q., Cao, Y., Wang, Y. F., Price, C., Ronzello, J., Uzelac, N., Laso, A., Tefferi, M., Darko, K. (2022). Materials compatibility study of C4F7N/CO2 gas mixture for medium-voltage switchgear. IEEE Transactions on Dielectrics and Electrical Insulation, 29: 270–278.

[194]
Xiong, J. Y., Zhang, B. Y., Zhang, Z. Y., Deng, Y. K., Li, X. W. (2020). The adsorption properties of environmentally friendly insulation gas C4F7N on Zn (0001) and ZnO (101¯0) surfaces: A first-principles study. Applied Surface Science, 509: 144854.
[195]

Li, Y., Zhang, X. X., Xiao, S., Chen, D. C., Chen, Q., Wang, D. B. (2018). Theoretical evaluation of the interaction between C5-PFK molecule and Cu (1 1 1). Journal of Fluorine Chemistry, 208: 48–54.

[196]

Li, Y., Zhang, X. X., Xiao, S., Chen, D. C., Liu, C., Shi, Y. (2018). Insights into the interaction between C4F7N decomposition products and Cu (1 1 1), Ag (1 1 1) surface. Journal of Fluorine Chemistry, 213: 24–30.

[197]
Li, Y., Zhang, X. X., Tian, S. S., Xiao, S., Chen, Q., Chen, D. C., Cui, Z. L., Tang, J. (2018). Insight into the compatibility between C6F12O and metal materials: Experiment and theory. IEEE Access, 6: 58154–58160.
[198]

Li, Y., Zhang, X. X., Xiao, S., Zhang, J., Chen, D. C., Cui, Z. L. (2019). Insight into the compatibility between C4F7N and silver: Experiment and theory. Journal of Physics and Chemistry of Solids, 126: 105–111.

[199]

Xiao, S., Li, Y., Zhang, X. X., Zhang, J., Zhang, Y., Chen, D. C., Tang, J. (2019). Theoretical study on the interaction of heptafluoro-iso-butyronitrile decomposition products with Al (1 1 1). Molecular Physics, 117: 218–227.

[200]

Li, Y., Zhang, X. X., Chen, Q., Zhang, J., Chen, D. C., Cui, Z. L., Xiao, S., Tang, J. (2019). Study on the thermal interaction mechanism between C4F7N-N2 and copper, aluminum. Corrosion Science, 153: 32–46.

[201]
Li, Y. L., Zhang, Y., Li, Y., Tang, F., Lv, Q. S., Zhang, J., Xiao, S., Tang, J., Zhang, X. X. (2019). Experimental study on compatibility of eco-friendly insulating medium C5F10O/CO2 gas mixture with copper and aluminum. IEEE Access, 7: 83994–84002.
[202]
Zhang, X. X., Wang, Y. F., Li, Y., Li, Y. L., Ye, F. C., Tian, S. S., Chen, D. C., Xiao, S., Tang, J. (2019). Thermal compatibility properties of C6F12O-air gas mixture with metal materials. AIP Advances, 9: 125024.
[203]

Li, Y. L., Zhang, X. X., Xia, Y. L., Li, Y., Wei, Z., Wang, Y., Xiao, S. (2020). Study on the compatibility of eco-friendly insulating gas C5F10O/N2 and C5F10O/air with copper materials in gas-insulated switchgears. Applied Sciences, 11: 197.

[204]

Kessler, F., Sarfert-Gast, W., Kuhlmann, L., Ise, M., Heinemann, F. W. (2020). Compatibility of a gaseous dielectric with Al, Ag, and Cu and gas-phase synthesis of a new N-acylamidine copper complex. European Journal of Inorganic Chemistry, 2020: 1989–1994.

[205]

Zhang, X. X., Li, Y., Chen, D. C., Xiao, S., Tian, S. S., Tang, J., Wang, D. B. (2018). Dissociative adsorption of environment-friendly insulating medium C3F7CN on Cu(111) and Al(111) surface: A theoretical evaluation. Applied Surface Science, 434: 549–560.

[206]

Li, Y., Zhang, X. X., Chen, D. C., Li, Y. L., Zhang, J., Cui, Z. L., Xiao, S., Tang, J. (2019). Theoretical study on the interaction between C5-PFK and Al (1 1 1), Ag (1 1 1): A comparative study. Applied Surface Science, 464: 586–596.

[207]
Yuan, R. J., Li, H., Zhou, W. J., Zheng, Z. Y., Yu, J. H. (2020). Study of compatibility between epoxy resin and C4F7N/CO2 based on thermal ageing. IEEE Access, 8: 119544–119553.
[208]

Wang, C., Cao, R. J., Tu, Y. P., Ai, X., Zhang, Y., Xu, Y. S. (2021). Characteristics of C4F7N/epoxy resin insulation system affected by long-term electro-thermal accelerated aging. IEEE Transactions on Dielectrics and Electrical Insulation, 28: 1973–1979.

[209]
Wang, C., Ai, X., Zhang, Y., Tu, Y. P., Liu, W., Yan, X. L., Bai, C. Y. (2020). Decomposition characteristics and marker products of C3F7CN/EP insulation system with long-term surface discharge. Engineering Failure Analysis, 116: 104719.
[210]

Li, Y., Zhang, X. X., Li, Y. L., Chen, D. C., Cui, Z. L., Liu, W., Tang, J. (2020). Interaction mechanism between the C4F7N–CO2 gas mixture and the EPDM seal ring. ACS Omega, 5: 5911–5920.

[211]
Zhang, X. X., Wu, P., Cheng, L., Liang, S. C. (2021). Compatibility and interaction mechanism between EPDM rubber and a SF6 alternative gas—C4F7N/CO2/O2. ACS Omega, 6: 13293–13299.
[212]

Zhang, Y., Liu, J., Huang D., Wang, Y., Zeng, L. (2020). Effect of insulating and enviromental gas C4F7N and CO2 on aging resistance of EPDM and NBR. (in Chinese). China Rubber Industry, 67: 0177–0180.

[213]

Xiao, S., Chen, J. Y., Wu, P., Yao, Q., Li, L., Pang, X. P., Zhang, S. L., Zhang, X. X., Li, Y. (2023). Research on the adsorption of environmentally friendly insulating gas C4F7N decomposed components on the surface of γ-Al2O3. High Voltage, 8: 274–282.

[214]
Xiao, S., Chen, D. C., Tang, J., Li, Y. (2020). Adsorption behavior of γ-Al2O3 toward heptafluoroisobutyronitrile and its decompositions: Theoretical and experimental insights. IEEE Access, 8: 36741–36748.
[215]
Zhao, M., Han D., Zhou L., Zhang, G. (2020). Adsorption characteristics of activated aluminaand molecular sieves for C3F7CN/CO2 and its decomposition by-products of overheating fault. (in Chinese). Transactions of China Electrotechnical Society, 35: 88–96.
[216]

Hou, H., Yan X., Yu X., Liu, W., Liu, Z., Wang, B. (2020). Theoretical investigation on the adsorption of C4F7N/CO2 dielectric gas and decomposition products in zeolite. (in Chinese). High Voltage Engineering, 45: 1040–1047.

[217]

Tian, S. S., Yuan, Z. A., Zhang, X. X., Wang, Y. X., Luo, W. F., Liu, Y. (2022). Adsorption properties of environmentally friendly insulating medium C4F7N and its common decomposition products in NaA, NaZSM-5, and NaX molecular sieves. High Voltage, 2022: 1–11.

[218]
Material Toxicity Summary Sheet, 3M™ Novec™ 4710 Insulating Gas; 3M Company: St. Paul, MN, USA, 2019.
[219]
Material Toxicity Summary Sheet, 3M™ Novec™ 5110 Insulating Gas; 3M Company: St. Paul, MN, USA, 2019.
[220]

Li, Y., Zhang, X. X., Zhang, J., Xiao, S., Xie, B. J., Chen, D. C., Gao, Y. D., Tang, J. (2019). Assessment on the toxicity and application risk of C4F7N: A new SF6 alternative gas. Journal of Hazardous Materials, 368: 653–660.

[221]

Zhang, X. X., Ye, F. C., Li, Y., Tian, S. S., Xie, B. J., Gao, Y. D., Xiao, S. (2020). Acute toxicity and health effect of perfluoroisobutyronitrile on mice: A promising substitute gas-insulating medium to SF6. Journal of Environmental Science and Health, Part A, 55: 1646–1658.

[222]
Carles, A., Schlernitzauer, A., Vignes, M., Cros, G., Magous, R., Maurice, T., Oiry, C. (2022). Heptafluoroisobutyronitrile (C4F7N), a gas used for insulating and arc quenching in electrical switchgear, is neurotoxic in the mouse brain. Toxicology, 480: 153319.
[223]

Meyer, F., Huguenot, P., Kieffel, Y., Maksoud, L., Huet, I., Berteloot, M., Walter, T., Owens, J. G., Bonk, J., Schlernitzauer, R., Van San, A., Magous, R. (2020). Application of fluoronitrile/CO2/O2 mixtures in high voltage products to lower the environmental footprint. Water and Energy International, 63r: 75.

[224]

Ye, F. C., Zhang, X. X., Li, Y., Wan, Q. Q., Bauchire, J. M., Hong, D. P., Xiao, S., Tang, J. (2022). Arc decomposition behavior of C4F7N/Air gas mixture and biosafety evaluation of its by-products. High Voltage, 7: 856–865.

[225]
Preve, C., Maladen, R., Piccoz, D. (2019). Alternative gases to SF6 as breaking medium for switching performance: Measurement of the concentrations of by-products and assessment of the acute toxicity. In: Proceedings of the 21st International Symposium on High Voltage Engineering (ISH), Budapest, Hungary.
[226]

Kristoffersen, M., Endre, T., Saxegaard, M., Hyrenbach, M., Wang, P. A., Harmsen, D., van Rijn, T., Vosse, R. (2017). Ring main units with eco-efficient gas mixtures: Field experience. CIRED - Open Access Proceedings Journal, 2017: 412–415.

[227]
Tian, S. S., Zhang, X. X., Wang, Y., Rao, X. J., Ye, F. C., Li, Y., Xiao, S. (2019). Partial discharge characteristics of C6F12O/CO2 mixed gas at power frequency AC voltage. AIP Advances, 9: 095057.
[228]

Chen, R., Li, W., Dong, E. Y., Wang, Y. X., Zhang, L. F., Yuan, F., Zhang, J. F. (2022). Analysis of arc characteristics of C4F7N/CO2 mixed gas ring main unit. IEEE Transactions on Plasma Science, 50: 1948–1956.

[229]
Preve, C., Maladen, R., Trichon, F., Piccoz, D. (2019). Innovative SF6 free switch with shunt vacuum interruption technology. In: Proceedings of the 25th International Conference on Electricity Distribution, Madrid, Spain.
[230]
Preve, C., Maladen, R., Trichon, F., Piccoz, D., Penelon, T., Richaud, M., Galas, S., Cros, G. (2018). HFO1234zeE in medium voltage switchgear as safe alternative to SF6. https://e-cigre.org/publication/SESSION2018_D1-105.
[231]
Inversin., M., Tsamo, D. S., Luescher, R., Moulle, G., Kieffel, Y., (2020). Alternative to SF6: an on-site 145 kV GIS pilot project from a TSO perspective. https://e-cigre.org/publication/SESSION2020_B3-115.
[232]
Gautschi, D., Ficheux, A., Walter, M., Vuachet, J. (2016). Application of a fluoronitrile gas in GIS and GIL as an environmental friendly alternative to SF6. https://e-cigre.org/publication/B3-106_2016.
[233]
Claessens, M. (2018). Physical aspects of arc interruption in CO2/O2/fluoroketones gas mixtures. https://e-cigre.org/publication/SESSION2018_A3-305.
[234]

Kuschel, M., Kunde, K., Katschinski, U. (2019). Technically advanced and SF6-free 145 kV blue GIS. Transformers Magazine, 6: 110–115.

[235]
Kuschel, M., Albert, A., Ehrlich, F., Nesheim, N., Pohlink, K., Rank, T., Skar, J. (2020). First 145 kV/40 kA gas-insulated switchgear with climate-neutral insulating gas & vacuum interrupter as an alternative to SF6-design, manufacturing, qualification & operational experience. Available at: https://e-cigre.org/publication/SESSION2020_B3-107.
[236]
Kim, K., Heo, S., Choi B., Kuschel, M., Ehrlich, F., Rank, T., Pohlink, K. First 170 kV/50 kA GIS with clean air and vacuum interrupter technology as a climate-neutral alternative to SF6 Available at: https://e-cigre.org/publication/SESSION2020_A3-301.
[237]

Zhang, Y., Zhang, X. X., Liu, C., Li, Y., Cui, Z. L., Fu, M. L. (2019). Ultraviolet spectral analysis and quantitative detection of heptafluoroisobutyronitrile (C4F7N) in a C4F7N–carbon dioxide (CO2) gas mixture. Applied Spectroscopy, 73: 917–926.

[238]

Kramer, A., Over, D., Stoller, P., Paul, T. A. (2017). Fiber-coupled LED gas sensor and its application to online monitoring of ecoefficient dielectric insulation gases in high-voltage circuit breakers. Applied Optics, 56: 4505.

[239]

Li, Y. L., Li, Y., Wei, Z., Zhang, X. X., Chen, W. J., Xiao, S., Tang, J., Bauchire, J. M., Hong, D. P. (2022). Quantification of C5-PFK gas mixture based on ultraviolet differential optical absorption spectroscopy (UV-DOAS). IEEE Transactions on Dielectrics and Electrical Insulation, 29: 394–402.

[240]

Zhang, Y., Zhang, X. X., Liu, C., Li, Y., Cheng, H. T., Xiao, H. (2019). Research on C4F7N gas mixture detection based on infrared spectroscopy. Sensors and Actuators A: Physical, 294: 126–132.

[241]
Zhang, X. X., Zhang, Y., Huang, Y., Li, Y., Cheng, H. T., Xiao, S. (2020). Detection of decomposition products of C4F7N-CO2 gas mixture based on infrared spectroscopy. Vibrational Spectroscopy, 110: 103114.
[242]

Porus, M., Paul, T. A., Kramer, A. (2017). Application of a multi-parameter sensor system for monitoring dielectric insulation of gas mixtures. IEEE Transactions on Dielectrics and Electrical Insulation, 24: 847–851.

[243]
Wu, P., Li, Y., Xiao, S., Chen, J. Y., Tang, J., Chen, D. C., Zhang, X. X. (2022). SnO2 nanoparticles based highly sensitive gas sensor for detection of C4F7N: A new eco-friendly gas insulating medium. Journal of Hazardous Materials, 422: 126882.
[244]
Wu, P., Li, Y., Xiao, S., Chen, D. C., Chen, J. Y., Tang, J., Zhang, X. X. (2022). Room-temperature detection of perfluoroisobutyronitrile with SnO2/Ti3C2Tx gas sensors. ACS Applied Materials & Interfaces, 14: 48200–48211.
[245]
3M News Center. (2022) 3M to Exit PFAS Manufacturing by the End of 2025 Available at: https://news.3m.com/2022-12-20-3M-to-Exit-PFAS-Manufacturing-by-the-End-of-2025.
iEnergy
Pages 14-42
Cite this article:
Li Y, Tian S, Zhong L, et al. Eco-friendly gas insulating medium for next-generation SF6-free equipment. iEnergy, 2023, 2(1): 14-42. https://doi.org/10.23919/IEN.2023.0001

635

Views

35

Downloads

12

Crossref

0

Scopus

Altmetrics

Received: 16 December 2022
Revised: 05 January 2023
Accepted: 15 January 2023
Published: 01 March 2023
© The author(s) 2023.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return