AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home iEnergy Article
PDF (4.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

A review of the preparation process and anode stabilization strategies of Zn microbatteries

Xin Guo1Sajian Wu3Xiaojun Guo1Dexu Zheng3Yan Zhu1Jishuang Liu3Xinxin Xing1Haoxiang Zhang1,2( )Shengzhong (Frank) Liu1,2,4( )
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
CNNP Optoelectronics Technology (Shanghai) Co., Ltd., Shanghai 201306, China
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, China
Show Author Information

Abstract

As a burgeoning energy storage technology, Zn microbatteries (ZMBs) exhibit expansive potential for applications. This article initially presents a method for fabricating ZMBs utilizing interdigitated electrodes, employing advanced techniques such as 3D printing, screen printing, laser etching, and electrodeposition. These methodologies play a crucial role in mitigating anode-related issues, consequently enhancing battery performance. Subsequently, the challenges encountered by ZMBs anodes, including dendrite formation, corrosion passivation, hydrogen evolution, and Zn cycle exfoliation, are thoroughly examined. Lastly, a comprehensive strategy for stabilizing the anode is delineated, encompassing anode material selection, anode structure construction, interface engineering, and electrolyte optimization. In essence, the preparation and fine-tuning of ZMBs present ongoing challenges. With continued research and development efforts, it is anticipated that ZMBs will attain efficient, stable, and secure performance on the microscale, offering enduring and dependable energy solutions for applications in miniature electronic devices and wearable technology.

References

[1]

Pao, H. T., Li, Y. Y., Fu, U. H. C. (2014). Clean energy, non-clean energy, and economic growth in the MIST countries. Energy Policy, 67: 932–942.

[2]

Olabi, A. G. (2017). Renewable energy and energy storage systems. Energy, 136: 1–6.

[3]

Ryu, H., Yoon, H. J., Kim, S. W. (2019). Hybrid energy harvesters: Toward sustainable energy harvesting. Advanced Materials, 31: 1802898.

[4]

Sadorsky, P. (2021). Wind energy for sustainable development: Driving factors and future outlook. Journal of Cleaner Production, 289: 125779.

[5]

Chowdhury, M. S., Rahman, K. S., Selvanathan, V., Nuthammachot, N., Suklueng, M., Mostafaeipour, A., Habib, A., Akhtaruzzaman, M., Amin, N., Techato, K. (2021). Current trends and prospects of tidal energy technology. Environment, Development and Sustainability, 23: 8179–8194.

[6]

Kabir, E., Kumar, P., Kumar, S., Adelodun, A. A., Kim, K. H. (2018). Solar energy: Potential and future prospects. Renewable and Sustainable Energy Reviews, 82: 894–900.

[7]
Yang, Y. S. (2020). A review of electrochemical energy storage researches in the past 22 years. Journal of Electrochemistry, 26(4): 443–463. (in Chinese)
[8]

Mackanic, D. G., Chang, T. H., Huang, Z., Cui, Y., Bao, Z. (2020). Stretchable electrochemical energy storage devices. Chemical Society Reviews, 49: 4466–4495.

[9]

Liu, J., Yue, M., Wang, S., Zhao, Y., Zhang, J. (2022). A review of performance attenuation and mitigation strategies of lithium-ion batteries. Advanced Functional Materials, 32: 2107769.

[10]

Fang, G., Zhou, J., Pan, A., Liang, S. (2018). Recent advances in aqueous zinc-ion batteries. ACS Energy Letters, 3: 2480–2501.

[11]

Xu, W., Wang, Y. (2019). Recent progress on zinc-ion rechargeable batteries. Nano-Micro Letters, 11: 90.

[12]

Zhang, N., Chen, X., Yu, M., Niu, Z., Cheng, F., Chen, J. (2020). Materials chemistry for rechargeable zinc-ion batteries. Chemical Society Reviews, 49: 4203–4219.

[13]

Luc, P. M., Bauer, S., Kowal, J. (2022). Reproducible production of lithium-ion coin cells. Energies, 15: 7949.

[14]

Bi, S., Wan, F., Wang, S., Jia, S., Tian, J., Niu, Z. (2021). Flexible and tailorable quasi-solid-state rechargeable Ag/Zn microbatteries with high performance. Carbon Energy, 3: 167–175.

[15]

Wang, X., Wu, Z. S. (2020). Zinc based micro-electrochemical energy storage devices: Present status and future perspective. EcoMat, 2: e12042.

[16]

Ma, J., Quhe, R., Zhang, W., Yan, Y., Tang, H., Qu, Z., Cheng, Y., Schmidt, O. G., Zhu, M. (2023). Zn microbatteries explore ways for integrations in intelligent systems. Small, 19: 2300230.

[17]

He, P., Chen, Q., Yan, M., Xu, X., Zhou, L., Mai, L., Nan, C. W. (2019). Building better zinc-ion batteries: A materials perspective. EnergyChem, 1: 100022.

[18]

Jia, H., Qiu, M., Tang, C., Liu, H., Fu, S., Zhang, X. (2022). Nano-scale BN interface for ultra-stable and wide temperature range tolerable Zn anode. EcoMat, 4: e12190.

[19]

Zheng, J., Huang, Z., Zeng, Y., Liu, W., Wei, B., Qi, Z., Wang, Z., Xia, C., Liang, H. (2022). Electrostatic shielding regulation of magnetron sputtered Al-based alloy protective coatings enables highly reversible zinc anodes. Nano Letters, 22: 1017–1023.

[20]

Wang, K., Zhang, X., Han, J., Zhang, X., Sun, X., Li, C., Liu, W., Li, Q., Ma, Y. (2018). High-performance cable-type flexible rechargeable Zn battery based on MnO2@CNT fiber microelectrode. ACS Applied Materials & Interfaces, 10: 24573–24582.

[21]

Li, M., Meng, J., Li, Q., Huang, M., Liu, X., Owusu, K. A., Liu, Z., Mai, L. (2018). Finely crafted 3D electrodes for dendrite-free and high-performance flexible fiber-shaped Zn–Co batteries. Advanced Functional Materials, 28: 1802016.

[22]

Yan, C., Wang, X., Cui, M., Wang, J., Kang, W., Foo, C. Y., Lee, P. S. (2014). Stretchable silver-zinc batteries based on embedded nanowire elastic conductors. Advanced Energy Materials, 4: 130139.

[23]

Shin, J., You, J. M., Lee, J. Z., Kumar, R., Yin, L., Wang, J., Shirley Meng, Y. (2016). Deposition of ZnO on bismuth species towards a rechargeable Zn-based aqueous battery. Physical Chemistry Chemical Physics, 18: 26376–26382.

[24]

Cao, L., Fang, G., Cao, H., Duan, X. (2019). Photopatterning and electrochemical energy storage properties of an on-chip organic radical microbattery. Langmuir, 35: 16079–16086.

[25]

Sun, P., Li, X., Shao, J., Braun, P. V. (2021). High-performance packaged 3D lithium-ion microbatteries fabricated using imprint lithography. Advanced Materials, 33: 2006229.

[26]

Cho, S., Jung, W., Jung, G. Y., Eom, K. (2020). High-performance boron-doped silicon micron-rod anode fabricated using a mass-producible lithography method for a lithium ion battery. Journal of Power Sources, 454: 227931.

[27]

Cebollero, J. A., Lahoz, R., Laguna-Bercero, M. A., Larrea, A. (2017). Tailoring the electrode-electrolyte interface of Solid Oxide Fuel Cells (SOFC) by laser micro-patterning to improve their electrochemical performance. Journal of Power Sources, 360: 336–344.

[28]

Lai, W., Wang, Y., Lei, Z., Wang, R., Lin, Z., Wong, C. P., Kang, F., Yang, C. (2018). High performance, environmentally benign and integratable Zn//MnO2microbatteries. Journal of Materials Chemistry A, 6: 3933–3940.

[29]

Kohler, R., Besser, H., Hagen, M., Ye, J., Ziebert, C., Ulrich, S., Proell, J., Pfleging, W. (2011). Laser micro-structuring of magnetron-sputtered SnO x thin films as anode material for lithium ion batteries. Microsystem Technologies, 17: 225–232.

[30]

Kumar, R., Shin, J., Yin, L., You, J. M., Meng, Y. S., Wang, J. (2017). All-printed, stretchable Zn-Ag2O rechargeable battery via hyperelastic binder for self-powering wearable electronics. Advanced Energy Materials, 7: 1602096.

[31]

Wang, X., Zheng, S., Zhou, F., Qin, J., Shi, X., Wang, S., Sun, C., Bao, X., Wu, Z. S. (2020). Scalable fabrication of printed Zn//MnO2 planar micro-batteries with high volumetric energy density and exceptional safety. National Science Review, 7: 64–72.

[32]

Zhang, Y., Zheng, S., Zhou, F., Shi, X., Dong, C., Das, P., Ma, J., Wang, K., Wu, Z. S. (2022). Multi-layer printable lithium ion micro-batteries with remarkable areal energy density and flexibility for wearable smart electronics. Small, 18: 2104506.

[33]

Lawes, S., Sun, Q., Lushington, A., Xiao, B., Liu, Y., Sun, X. (2017). Inkjet-printed silicon as high performance anodes for Li-ion batteries. Nano Energy, 36: 313–321.

[34]

Kolchanov, D. S., Mitrofanov, I., Kim, A., Koshtyal, Y., Rumyantsev, A., Sergeeva, E., Vinogradov, A., Popovich, A., Maximov, M. Y. (2020). Inkjet printing of Li-rich cathode material for thin-film lithium-ion microbatteries. Energy Technology, 8: 1901086.

[35]

Milroy, C. A., Jang, S., Fujimori, T., Dodabalapur, A., Manthiram, A. (2017). Inkjet-printed lithium–sulfur microcathodes for all-printed, integrated nanomanufacturing. Small, 13: 1603786.

[36]

Sowade, E., Polomoshnov, M., Willert, A., Baumann, R. R. (2019). Toward 3D-printed electronics: Inkjet-printed vertical metal wire interconnects and screen-printed batteries. Advanced Engineering Materials, 21: 1900568.

[37]

Sun, K., Wei, T. S., Ahn, B. Y., Seo, J. Y., Dillon, S. J., Lewis, J. A. (2013). 3D printing of interdigitated Li-ion microbattery architectures. Advanced Materials, 25: 4539–4543.

[38]

Cao, D., Xing, Y., Tantratian, K., Wang, X., Ma, Y., Mukhopadhyay, A., Cheng, Z., Zhang, Q., Jiao, Y., Chen, L., et al. (2019). 3D printed high-performance lithium metal microbatteries enabled by nanocellulose. Advanced Materials, 31: 1807313.

[39]

Wang, R., Zhang, Y., Xi, W., Zhang, J., Gong, Y., He, B., Wang, H., Jin, J. (2023). 3D printing of hierarchically micro/nanostructured electrodes for high-performance rechargeable batteries. Nanoscale, 15: 13932–13951.

[40]

Ma, J., Zheng, S., Chi, L., Liu, Y., Zhang, Y., Wang, K., Wu, Z. S. (2022). 3D printing flexible sodium-ion microbatteries with ultrahigh areal capacity and robust rate capability. Advanced Materials, 34: 2205569.

[41]

Zhou, L., Ning, W., Wu, C., Zhang, D., Wei, W., Ma, J., Li, C., Chen, L. (2019). 3D-printed microelectrodes with a developed conductive network and hierarchical pores toward high areal capacity for microbatteries. Advanced Materials Technologies, 4: 1800402.

[42]

Zhang, F., Wei, M., Viswanathan, V. V., Swart, B., Shao, Y., Wu, G., Zhou, C. (2017). 3D printing technologies for electrochemical energy storage. Nano Energy, 40: 418–431.

[43]

Chang, P., Mei, H., Zhou, S., Dassios, K. G., Cheng, L. (2019). 3D printed electrochemical energy storage devices. Journal of Materials Chemistry A, 7: 4230–4258.

[44]

Tian, X., Jin, J., Yuan, S., Chua, C. K., Tor, S. B., Zhou, K. (2017). Emerging 3D-printed electrochemical energy storage devices: A critical review. Advanced Energy Materials, 7: 1700127.

[45]

Gao, X., Liu, K., Su, C., Zhang, W., Dai, Y., Parkin, I. P., Carmalt, C. J., He, G. (2024). From bibliometric analysis: 3D printing design strategies and battery applications with a focus on zinc-ion batteries. SmartMat, 5: e1197.

[46]

Wu, B., Guo, B., Chen, Y., Mu, Y., Qu, H., Lin, M., Bai, J., Zhao, T., Zeng, L. (2023). High zinc utilization aqueous zinc ion batteries enabled by 3D printed graphene arrays. Energy Storage Materials, 54: 75–84.

[47]

Gao, W., Michalička, J., Pumera, M. (2022). Hierarchical atomic layer deposited V2O5 on 3D printed nanocarbon electrodes for high-performance aqueous zinc-ion batteries. Small, 18: 2105572.

[48]

Kalkal, A., Kumar, S., Kumar, P., Pradhan, R., Willander, M., Packirisamy, G., Kumar, S., Malhotra, B. D. (2021). Recent advances in 3D printing technologies for wearable (bio)sensors. Additive Manufacturing, 46: 102088.

[49]

Shi, H., Cao, J., Sun, Z., Ali Ghazi, Z., Zhu, X., Han, S., Ren, D., Lu, G., Lan, H., Li, F. (2023). 3D printing enables customizable batteries. Batteries & Supercaps, 6: 2300161.

[50]

Zhu, C., Schorr, N. B., Qi, Z., Wygant, B. R., Turney, D. E., Yadav, G. G., Worsley, M. A., Duoss, E. B., Banerjee, S., Spoerke, E. D., et al. (2023). Direct ink writing of 3D Zn structures as high-capacity anodes for rechargeable alkaline batteries. Small Structures, 4: 2200323.

[51]

Liu, G., Ma, Z., Li, G., Yu, W., Wang, P., Meng, C., Guo, S. (2023). All-printed 3D solid-state rechargeable zinc-air microbatteries. ACS Applied Materials & Interfaces, 15: 13073–13085.

[52]

Ma, H., Tian, X., Fan, J., Cao, W., Yuan, X., Hou, S., Jin, H. (2022). 3D printing of solid-state zinc-ion microbatteries with ultrahigh capacity and high reversibility for wearable integration design. Journal of Power Sources, 550: 232152.

[53]

Lacey, S. D., Kirsch, D. J., Li, Y., Morgenstern, J. T., Zarket, B. C., Yao, Y., Dai, J., Garcia, L. Q., Liu, B., Gao, T., et al. (2018). Extrusion-based 3D printing of hierarchically porous advanced battery electrodes. Advanced Materials, 30: 1705651.

[54]

Lu, H., Hu, J., Zhang, K., Zhao, J., Deng, S., Li, Y., Xu, B., Pang, H. (2024). Microfluidic-assisted 3D printing zinc powder anode with 2D conductive MOF/MXene heterostructures for high-stable zinc–organic battery. Advanced Materials, 36: 2309753.

[55]

Wisnieff, R. (1998). Printing screens. Nature, 394: 225–227.

[56]

Abdolhosseinzadeh, S., Schneider, R., Verma, A., Heier, J., Nüesch, F., Zhang, C. J. (2020). Turning trash into treasure: Additive free MXene sediment inks for screen-printed micro-supercapacitors. Advanced Materials, 32: 2000716.

[57]

He, P., Cao, J., Ding, H., Liu, C., Neilson, J., Li, Z., Kinloch, I. A., Derby, B. (2019). Screen-printing of a highly conductive graphene ink for flexible printed electronics. ACS Applied Materials & Interfaces, 11: 32225–32234.

[58]

Niu, H., Liu, Y., Song, H., Meng, Q., Du, Y., Shen, S. Z. (2021). Facile preparation of flexible all organic PEDOT: PSS/methyl cellulose thermoelectric composite film by a screen printing process. Synthetic Metals, 276: 116752.

[59]

Zeng, J., Dong, L., Sun, L., Wang, W., Zhou, Y., Wei, L., Guo, X. (2021). Printable zinc-ion hybrid micro-capacitors for flexible self-powered integrated units. Nano-Micro Letters, 13: 19.

[60]

Houle, F. A. (1986). Basic mechanisms in laser etching and deposition. Applied Physics A Solids and Surfaces, 41: 315–330.

[61]
Li, X., Jin, X., Wang, Y., Zhang, X., Li, D., Wang, J., Yuan, M., Liu, J., Zhao, Y. (2023). All-direct laser patterning zinc-based microbatteries. Advanced Functional Materials, https://doi.org/10.1002/adfm.202314060.
[62]

Shi, J., Wang, S., Chen, X., Chen, Z., Du, X., Ni, T., Wang, Q., Ruan, L., Zeng, W., Huang, Z. (2019). An ultrahigh energy density quasi-solid-state zinc ion microbattery with excellent flexibility and thermostability. Advanced Energy Materials, 9: 1901957.

[63]

Wang, Y., Hong, X., Guo, Y., Zhao, Y., Liao, X., Liu, X., Li, Q., He, L., Mai, L. (2020). Wearable textile-based Co–Zn alkaline microbattery with high energy density and excellent reliability. Small, 16: 2000293.

[64]

Wang, C., Yu, F., Chen, C., Xia, J, H., Gan, Y., Li, J, Y., Yao, J., Zheng, J, J., Chen, X., Wu, Z. et al. (2024). Laser etching of on-chip ultra-high stability flexible micro MnO2//Zn batteries. Materials Today Energy, 41: 101530.

[65]

Kim, S., Kim, J., Joung, Y. H., Ahn, S., Choi, J., Koo, C. (2019). Optimization of selective laser-induced etching (SLE) for fabrication of 3D glass microfluidic device with multi-layer micro channels. Micro and Nano Systems Letters, 7: 15.

[66]

Pu, J., Shen, Z., Zhong, C., Zhou, Q., Liu, J., Zhu, J., Zhang, H. (2020). Electrodeposition technologies for Li-based batteries: New frontiers of energy storage. Advanced Materials, 32: 1903808.

[67]

Lincot, D. (2005). Electrodeposition of semiconductors. Thin Solid Films, 487: 40–48.

[68]

Walter, E. C., Zach, M. P., Favier, F., Murray, B. J., Inazu, K., Hemminger, J. C., Penner, R. M. (2003). Metal nanowire arrays by electrodeposition. ChemPhysChem, 4: 131–138.

[69]

Bicelli, L. P., Bozzini, B., Mele, C., D’Urzo, L. (2008). A review of nanostructural aspects of metal electrodeposition. International Journal of Electrochemical Science, 3: 356–408.

[70]

Sun, G., Jin, X., Yang, H., Gao, J., Qu, L. (2018). An aqueous Zn–MnO2 rechargeable microbattery. Journal of Materials Chemistry A, 6: 10926–10931.

[71]

Wang, H., Guo, R., Li, H., Wang, J., Du, C., Wang, X., Zheng, Z. (2022). 2D metal patterns transformed from 3D printed stamps for flexible Zn//MnO2 in-plane micro-batteries. Chemical Engineering Journal, 429: 132196.

[72]

Dai, C., Hu, L., Jin, X., Wang, Y., Wang, R., Xiao, Y., Li, X. Y., Zhang, X. Q., Song, L., Han, H. et al. (2022). Fast constructing polarity-switchable zinc-bromine microbatteries with high areal energy density. Science Advances, 8: eabo6688.

[73]

Zeng, L., He, H., Chen, H., Luo, D., He, J., Zhang, C. (2022). 3D printing architecting reservoir-integrated anode for dendrite-free, safe, and durable Zn batteries. Advanced Energy Materials, 12: 2103708.

[74]

Yang, Q., Li, Q., Liu, Z., Wang, D., Guo, Y., Li, X., Tang, Y., Li, H., Dong, B., Zhi, C. (2020). Dendrites in Zn-based batteries. Advanced Materials, 32: 2001854.

[75]

He, H., Liu, J. (2020). Suppressing Zn dendrite growth by molecular layer deposition to enable long-life and deeply rechargeable aqueous Zn anodes. Journal of Materials Chemistry A, 8: 22100–22110.

[76]

Zhang, Y., Peng, C. G., Zhang, Y., Yang, S., Zeng, Z., Zhang, X., Qie, L., Zhang, L., Wang, Z. (2022). In-situ crosslinked Zn2+-conducting polymer complex interphase with synergistic anion shielding and cation regulation for high-rate and dendrite-free zinc metal anodes. Chemical Engineering Journal, 448: 137653.

[77]

Zhang, Q., Luan, J., Huang, X., Zhu, L., Tang, Y., Ji, X., Wang, H. (2020). Simultaneously regulating the ion distribution and electric field to achieve dendrite-free Zn anode. Small, 16: 2000929.

[78]

Lu, Z., Liang, Q., Wang, B., Tao, Y., Zhao, Y., Lv, W., Liu, D., Zhang, C., Weng, Z., Liang, J., et al. (2019). Graphitic carbon nitride induced micro-electric field for dendrite-free lithium metal anodes. Advanced Energy Materials, 9: 1803186.

[79]

Zhu, K. P., Guo, C., Gong, W. B., Xiao, Q. H., Yao, Y. G., Davey, K., Wang, Q. H., Mao, J. F., Xue, P., Guo, Z. (2023). Engineering an electrostatic field layer for high-rate and dendrite-free Zn metal anodes. Energy & Environmental Science, 16: 3612–3622.

[80]

Han, D., Wu, S., Zhang, S., Deng, Y., Cui, C., Zhang, L., Long, Y., Li, H., Tao, Y., Weng, Z., et al. (2020). A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems. Small, 16: 2001736.

[81]

Fu, J., Cano, Z. P., Park, M. G., Yu, A., Fowler, M., Chen, Z. (2017). Electrically rechargeable zinc–air batteries: Progress, challenges, and perspectives. Advanced Materials, 29: 201604685.

[82]

He, P., Huang, J. (2022). Chemical passivation stabilizes Zn anode. Advanced Materials, 34: 2109872.

[83]

Liu, S., Lin, H., Song, Q., Zhu, J., Zhu, C. (2023). Anti-corrosion and reconstruction of surface crystal plane for Zn anodes by an advanced metal passivation technique. Energy & Environmental Materials, 6: 12405.

[84]

Cabot, P. L., Cortes, M., Centellas, F., Perez, E. (1993). Potentiostatic passivation of zinc in alkaline solutions. Journal of Applied Electrochemistry, 23: 371–378.

[85]

Zhang, J. Y., Zhu, X. L., Zhang, S. H., Cheng, M., Yu, M. X., Wang, G. W., Li, C. Y. (2019). Selective production of para-xylene and light olefins from methanol over the mesostructured Zn–Mg–P/ZSM-5 catalyst. Catalysis Science & Technology, 9: 316–326.

[86]

Qiu, D., Li, B., Zhao, C., Dang, J., Chen, G., Qiu, H., Miao, H. (2023). A review on zinc electrodes in alkaline electrolyte: Current challenges and optimization strategies. Energy Storage Materials, 61: 102903.

[87]

Nie, C., Wang, G., Wang, D., Wang, M., Gao, X., Bai, Z., Wang, N., Yang, J., Xing, Z., Dou, S. (2023). Recent progress on Zn anodes for advanced aqueous zinc-ion batteries. Advanced Energy Materials, 13: 2300606.

[88]

Yi, Z., Chen, G., Hou, F., Wang, L., Liang, J. (2021). Strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Advanced Energy Materials, 11: 2003065.

[89]

Bai, X., Nan, Y., Yang, K., Deng, B., Shao, J., Hu, W., Pu, X. (2023). Zn ionophores to suppress hydrogen evolution and promote uniform Zn deposition in aqueous Zn batteries. Advanced Functional Materials, 33: 2307595.

[90]

Ma, L., Li, Q., Ying, Y., Ma, F., Chen, S., Li, Y., Huang, H., Zhi, C. (2021). Toward practical high-areal-capacity aqueous zinc-metal batteries: Quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes. Advanced Materials, 33: 2007406.

[91]

Dong, N., Zhao, X., Yan, M., Li, H., Pan, H. (2022). Synergetic control of hydrogen evolution and ion-transport kinetics enabling Zn anodes with high-areal-capacity. Nano Energy, 104: 107903.

[92]

Wang, H., Li, H., Tang, Y., Xu, Z., Wang, K., Li, Q., He, B., Liu, Y., Ge, M., Chen, S., et al. (2022). Stabilizing Zn anode interface by simultaneously manipulating the thermodynamics of Zn nucleation and overpotential of hydrogen evolution. Advanced Functional Materials, 32: 2207898.

[93]

Salarizadeh, P., Rastgoo-Deylami, M., Askari, M. B. (2022). Electrochemical properties of Ni3S2@MoS2-rGO ternary nanocomposite as a promising cathode for Ni–Zn batteries and catalyst towards hydrogen evolution reaction. Renewable Energy, 194: 152–162.

[94]

Chen, J., Zhao, W., Jiang, J., Zhao, X., Zheng, S., Pan, Z., Yang, X. (2023). Challenges and perspectives of hydrogen evolution-free aqueous Zn-Ion batteries. Energy Storage Materials, 59: 102767.

[95]

Wang, H., Zhou, A., Hu, Z., Hu, X., Zhang, F., Song, Z., Huang, Y., Cui, Y., Cui, Y., Li, L., et al. (2024). Toward simultaneous dense zinc deposition and broken side-reaction loops in the Zn//V2O5 system. Angewandte Chemie International Edition, 63: 2318928.

[96]

Ren, J. T., Chen, L., Wang, H. Y., Yuan, Z. Y. (2021). Aqueous rechargeable Zn–N2 battery assembled by bifunctional cobalt phosphate nanocrystals-loaded carbon nanosheets for simultaneous NH3 production and power generation. ACS Applied Materials & Interfaces, 13: 12106–12117.

[97]

Lei, L., Dong, J., Ke, S., Wu, S., Yuan, S. (2023). Porous framework materials for stable Zn anodes in aqueous zinc-ion batteries. Inorganic Chemistry Frontiers, 10: 5555–5572.

[98]

Liu, H., Zhang, G., Wang, L., Zhang, X., Zhao, Z., Chen, F., Song, L., Duan, H. (2021). Engineering 3D architecture electrodes for high-rate aqueous Zn–Mn microbatteries. ACS Applied Energy Materials, 4: 10414–10422.

[99]
Meng, H., Ran, Q., Dai, T. Y., Shi, H., Zeng, S. P., Zhu, Y. F., Wen, Z., Zhang, W., Lang, X. Y., Zheng, W. T., et al. (2022). Surface-alloyed nanoporous zinc as reversible and stable anodes for high-performance aqueous zinc-ion battery. Nano-Micro Letters, 14: 128.[PubMed]
[100]

Ruan, J., Ma, D., Ouyang, K., Shen, S., Yang, M., Wang, Y., Zhao, J., Mi, H., Zhang, P. (2023). 3D artificial array interface engineering enabling dendrite-free stable Zn metal anode. Nano-Micro Letters, 15: 37.

[101]

Tang, Y., Liu, C., Zhu, H., Xie, X., Gao, J., Deng, C., Han, M., Liang, S., Zhou, J. (2020). Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode. Energy Storage Materials, 27: 109–116.

[102]

Varzi, A., Mattarozzi, L., Cattarin, S., Guerriero, P., Passerini, S. (2018). 3D porous Cu–Zn alloys as alternative anode materials for Li-ion batteries with superior low T performance. Advanced Energy Materials, 8: 1701706.

[103]

Tian, Y., An, Y., Zhang, B. (2023). Approaching microsized alloy anodes via solid electrolyte interphase design for advanced rechargeable batteries. Advanced Energy Materials, 13: 2300123.

[104]

Xia, A., Pu, X., Tao, Y., Liu, H., Wang, Y. (2019). Graphene oxide spontaneous reduction and self-assembly on the zinc metal surface enabling a dendrite-free anode for long-life zinc rechargeable aqueous batteries. Applied Surface Science, 481: 852–859.

[105]

Fu, H., Shi, C., Li, Z., Nie, J., Yao, S. (2022). Chain-tailed dodecahedron structure derived from Zn/Co-ZIFs/CNTs with excellent rate capability as an anode for lithium-ion batteries. Journal of Alloys and Compounds, 904: 164104.

[106]

Zawar, S., Akbar, M., Mustafa, G. M., Ali, G., Riaz, S., Atiq, S., Chung, K. Y. (2021). CNTs embedded in layered Zn-doped Co3O4 nano-architectures as an efficient hybrid anode material for SIBs. Journal of Alloys and Compounds, 867: 158730.

[107]

Ma, P. C., Tang, B. Z., Kim, J. K. (2008). Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites. Carbon, 46: 1497–1505.

[108]

Zhang, D., Shi, L., Fang, J., Li, X., Dai, K. (2005). Preparation and modification of carbon nanotubes. Materials Letters, 59: 4044–4047.

[109]

Xia, H., Wang, Y., Lin, J., Lu, L. (2012). Hydrothermal synthesis of MnO2/CNT nanocomposite with a CNT core/porous MnO2 sheath hierarchy architecture for supercapacitors. Nanoscale Research Letters, 7: 33.

[110]
Pantano, A. (2018). Mechanical properties of CNT/polymer. In: Carbon Nanotube-Reinforced Polymers. Rafiee R. Ed. Amsterdam: Elsevier.
[111]

Liu, X. M., Huang, Z. D., Oh, S. W., Zhang, B., Ma, P. C., Yuen, M. M. F., Kim, J. K. (2012). Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: A review. Composites Science and Technology, 72: 121–144.

[112]

Zhao, B., Wang, S., Yu, Q., Wang, Q., Wang, M., Ni, T., Ruan, L., Zeng, W. (2021). A flexible, heat-resistant and self-healable “rocking-chair” zinc ion microbattery based on MXene-TiS2 (de)intercalation anode. Journal of Power Sources, 504: 230076.

[113]

Zheng, J., Huang, Z., Ming, F., Zeng, Y., Wei, B., Jiang, Q., Qi, Z., Wang, Z., Liang, H. (2022). Surface and interface engineering of Zn anodes in aqueous rechargeable Zn-ion batteries. Small, 18: 2200006.

[114]

Zhou, J., Xie, M., Wu, F., Mei, Y., Hao, Y., Li, L., Chen, R. (2022). Encapsulation of metallic Zn in a hybrid MXene/graphene aerogel as a stable Zn anode for foldable Zn-ion batteries. Advanced Materials, 34: 2106897.

[115]

Ma, H., Tian, X., Wang, T., Hou, S., Jin, H. (2023). Multi-channel engineering of 3D printed zincophilic anodes for ultrahigh-capacity and dendrite-free quasi-solid-state zinc-ion microbatteries. ACS Applied Materials & Interfaces, 15: 57049–57058.

[116]

Zeng, Y., Pei, Z., Luan, D., Lou, X. W. D. (2023). Atomically dispersed zincophilic sites in N, P-codoped carbon macroporous fibers enable efficient Zn metal anodes. Journal of the American Chemical Society, 145: 12333–12341.

[117]

He, H., Tong, H., Song, X., Song, X., Liu, J. (2020). Highly stable Zn metal anodes enabled by atomic layer deposited Al2O3 coating for aqueous zinc-ion batteries. Journal of Materials Chemistry A, 8: 7836–7846.

[118]

Liang, P., Yi, J., Liu, X., Wu, K., Wang, Z., Cui, J., Liu, Y., Wang, Y., Xia, Y., Zhang, J. (2020). Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries. Advanced Functional Materials, 30: 1908528.

[119]

Zuo, Y., Wang, K., Pei, P., Wei, M., Liu, X., Xiao, Y., Zhang, P. (2021). Zinc dendrite growth and inhibition strategies. Materials Today Energy, 20: 100692.

[120]

Wang, J., Yang, Y., Zhang, Y., Li, Y., Sun, R., Wang, Z., Wang, H. (2021). Strategies towards the challenges of zinc metal anode in rechargeable aqueous zinc ion batteries. Energy Storage Materials, 35: 19–46.

[121]

Cao, P., Zhou, X., Wei, A., Meng, Q., Ye, H., Liu, W., Tang, J., Yang, J. (2021). Fast-charging and ultrahigh-capacity zinc metal anode for high-performance aqueous zinc-ion batteries. Advanced Functional Materials, 31: 2100398.

[122]

Zeng, X., Xie, K., Liu, S., Zhang, S., Hao, J., Liu, J., Pang, W. K., Liu, J., Rao, P., Wang, Q., et al. (2021). Bio-inspired design of an in situ multifunctional polymeric solid–electrolyte interphase for Zn metal anode cycling at 30 mA∙cm–2 and 30 mA∙h∙cm–2. Energy & Environmental Science, 14: 5947–5957.

[123]

Zhai, S., Wang, N., Tan, X., Jiang, K., Quan, Z., Li, Y., Li, Z. (2021). Interface-engineered dendrite-free anode and ultraconductive cathode for durable and high-rate fiber Zn dual-ion microbattery. Advanced Functional Materials, 31: 2008894.

[124]

He, Y., Pham, H., Liang, X., Park, J. (2022). Impact of ultrathin coating layer on lithium-ion intercalation into particles for lithium-ion batteries. Chemical Engineering Journal, 440: 135565.

[125]

Jin, Y., Han, K. S., Shao, Y., Sushko, M. L., Xiao, J., Pan, H., Liu, J. (2020). Stabilizing zinc anode reactions by polyethylene oxide polymer in mild aqueous electrolytes. Advanced Functional Materials, 30: 2003932.

[126]

Zhu, M., Hu, J., Lu, Q., Dong, H., Karnaushenko, D. D., Becker, C., Karnaushenko, D., Li, Y., Tang, H., Qu, Z., et al. (2021). A patternable and in situ formed polymeric zinc blanket for a reversible zinc anode in a skin-mountable microbattery. Advanced Materials, 33: 2007497.

[127]

Zhou, Y., Li, W., Xie, Y., Deng, L., Ke, B., Jian, Y., Cheng, S., Qu, B., Wang, X. (2023). Vertical graphene film enables high-performance quasi-solid-state planar zinc-ion microbatteries. ACS Applied Materials & Interfaces, 15: 9486–9493.

[128]

Ye, Z., Cao, Z., Lam Chee, M. O., Dong, P., Ajayan, P. M., Shen, J., Ye, M. (2020). Advances in Zn-ion batteries via regulating liquid electrolyte. Energy Storage Materials, 32: 290–305.

[129]

Liu, D., Tang, Z., Luo, L., Yang, W., Liu, Y., Shen, Z., Fan, X. H. (2021). Self-healing solid polymer electrolyte with high ion conductivity and super stretchability for all-solid zinc-ion batteries. ACS Applied Materials & Interfaces, 13: 36320–36329.

[130]

Qi, R., Tang, W., Shi, Y., Teng, K., Deng, Y., Zhang, L., Zhang, J., Liu, R. (2023). Gel polymer electrolyte toward large-scale application of aqueous zinc batteries. Advanced Functional Materials, 33: 2306052.

[131]

Fu, C., Wang, Y., Lu, C., Zhou, S., He, Q., Hu, Y., Feng, M., Wan, Y., Lin, J., Zhang, Y., et al. (2022). Modulation of hydrogel electrolyte enabling stable zinc metal anode. Energy Storage Materials, 51: 588–598.

[132]

Yang, M., Zhu, J., Bi, S., Wang, R., Niu, Z. (2022). A binary hydrate-melt electrolyte with acetate-oriented cross-linking solvation shells for stable zinc anodes. Advanced Materials, 34: 2201744.

[133]

Lee, C. J., Wu, H., Hu, Y., Young, M., Wang, H., Lynch, D., Xu, F., Cong, H., Cheng, G. (2018). Ionic conductivity of polyelectrolyte hydrogels. ACS Applied Materials & Interfaces, 10: 5845–5852.

[134]

Islam, S., Alfaruqi, M. H., Mathew, V., Song, J., Kim, S., Kim, S., Jo, J., Baboo, J. P., Pham, D. T., Putro, D. Y., et al. (2017). Facile synthesis and the exploration of the zinc storage mechanism of β-MnO2 nanorods with exposed (101) planes as a novel cathode material for high performance eco-friendly zinc-ion batteries. Journal of Materials Chemistry A, 5: 23299–23309.

[135]

Islam, S., Alfaruqi, M. H., Song, J., Kim, S., Pham, D. T., Jo, J., Kim, S., Mathew, V., Baboo, J. P., Xiu, Z., et al. (2017). Carbon-coated manganese dioxide nanoparticles and their enhanced electrochemical properties for zinc-ion battery applications. Journal of Energy Chemistry, 26: 815–819.

[136]

Alfaruqi, M. H., Gim, J., Kim, S., Song, J., Jo, J., Kim, S., Mathew, V., Kim, J. (2015). Enhanced reversible divalent zinc storage in a structurally stable α-MnO2 nanorod electrode. Journal of Power Sources, 288: 320–327.

[137]

Zeng, Y., Zhang, X., Qin, R., Liu, X., Fang, P., Zheng, D., Tong, Y., Lu, X. (2019). Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Advanced Materials, 31: 1903675.

[138]

Hao, J., Mou, J., Zhang, J., Dong, L., Liu, W., Xu, C., Kang, F. (2018). Electrochemically induced spinel-layered phase transition of Mn3O4 in high performance neutral aqueous rechargeable zinc battery. Electrochimica Acta, 259: 170–178.

[139]

Zhang, L., Chen, L., Zhou, X., Liu, Z. (2015). Morphology-dependent electrochemical performance of zinc hexacyanoferrate cathode for zinc-ion battery. Scientific Reports, 5: 18263.

[140]

Dong, Y., Jia, M., Wang, Y., Xu, J., Liu, Y., Jiao, L., Zhang, N. (2020). Long-life zinc/vanadium pentoxide battery enabled by a concentrated aqueous ZnSO4 electrolyte with proton and zinc ion co-intercalation. ACS Applied Energy Materials, 3: 11183–11192.

[141]

Zhou, J., Shan, L., Wu, Z., Guo, X., Fang, G., Liang, S. (2018). Investigation of V2O5 as a low-cost rechargeable aqueous zinc ion battery cathode. Chemical Communications, 54: 4457–4460.

[142]

Huang, J., Wang, Z., Hou, M., Dong, X., Liu, Y., Wang, Y., Xia, Y. (2018). Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nature Communications, 9: 2906.

[143]

Wu, B., Zhang, G., Yan, M., Xiong, T., He, P., He, L., Xu, X., Mai, L. (2018). Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery. Small, 14: 1703850.

[144]

Sun, W., Wang, F., Hou, S., Yang, C., Fan, X., Ma, Z., Gao, T., Han, F., Hu, R., Zhu, M., et al. (2017). Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. Journal of the American Chemical Society, 139: 9775–9778.

[145]

Wan, F., Zhang, L., Wang, X., Bi, S., Niu, Z., Chen, J. (2018). An aqueous rechargeable zinc-organic battery with hybrid mechanism. Advanced Functional Materials, 28: 1804975.

[146]

Qin, H., Yang, Z., Chen, L., Chen, X., Wang, L. (2018). A high-rate aqueous rechargeable zinc ion battery based on the VS4@rGO nanocomposite. Journal of Materials Chemistry A, 6: 23757–23765.

[147]

Li, W., Wang, K., Cheng, S., Jiang, K. (2018). A long-life aqueous Zn-ion battery based on Na3V2(PO4)2F3 cathode. Energy Storage Materials, 15: 14–21.

[148]

Ming, F., Liang, H., Lei, Y., Kandambeth, S., Eddaoudi, M., Alshareef, H. N. (2018). Layered Mg x V2O5· nH2O as cathode material for high-performance aqueous zinc ion batteries. ACS Energy Letters, 3: 2602–2609.

[149]

Zhang, N., Dong, Y., Jia, M., Bian, X., Wang, Y., Qiu, M., Xu, J., Liu, Y., Jiao, L., Cheng, F. (2018). Rechargeable aqueous Zn–V2O5 battery with high energy density and long cycle life. ACS Energy Letters, 3: 1366–1372.

[150]

Yan, M., He, P., Chen, Y., Wang, S., Wei, Q., Zhao, K., Xu, X., An, Q., Shuang, Y., Shao, Y., et al. (2018). Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Advanced Materials, 30: 1703725.

[151]

Liu, C., Tian, Y., An, Y., Yang, Q., Xiong, S., Feng, J., Qian, Y. (2022). Robust and flexible polymer/MXene-derived two dimensional TiO2 hybrid gel electrolyte for dendrite-free solid-state zinc-ion batteries. Chemical Engineering Journal, 430: 132748.

[152]

Zhao, Z., Nian, B., Lei, Y., Wang, Y., Shi, L., Yin, J., Mohammed, O. F., Alshareef, H. N. (2023). A novel plastic-crystal electrolyte with fast ion-transport channels for solid zinc-ion batteries. Advanced Energy Materials, 13: 2300063.

iEnergy
Pages 12-27
Cite this article:
Guo X, Wu S, Guo X, et al. A review of the preparation process and anode stabilization strategies of Zn microbatteries. iEnergy, 2024, 3(1): 12-27. https://doi.org/10.23919/IEN.2024.0003

428

Views

35

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 23 January 2024
Revised: 20 February 2024
Accepted: 27 February 2024
Published: 31 March 2024
© The author(s) 2024.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return