Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Under the pressure of environmental issues, decarbonization of the entire energy system has emerged as a prevalent strategy worldwide. The evolution of China’s power system will increasingly emphasize the integration of variable renewable energy (VRE). However, the rapid growth of VRE will pose substantial challenges to the power system, highlighting the importance of power system planning. This letter introduces Grid Optimal Planning Tool (GOPT), a planning tool, and presents the key findings of our research utilizing GOPT to analyze the transition pathway of China’s power system towards dual carbon goals. Furthermore, the letter offers insights into key technologies essential for driving the future transition of China’s power system.
Di Silvestre, M. L., Favuzza, S., Riva Sanseverino, E., Zizzo, G. (2018). How decarbonization, digitalization and decentralization are changing key power infrastructures. Renewable and Sustainable Energy Reviews, 93: 483–498.
Luo, S., Hu, W., Liu, W., Xu, X., Huang, Q., Chen, Z., Lund, H. (2021). Transition pathways towards a deep decarbonization energy system—A case study in Sichuan, China. Applied Energy, 302: 117507.
Song, Q., Rong, N., Han, S., Ao, W., Huang, H., Wei, Y. (2022). Decarbonization pathways of China’s provincial energy systems under carbon constraints: A case study of Guizhou Province. Energy Reports, 8: 9363–9378.
He, G., Avrin, A. P., Nelson, J. H., Johnston, J., Mileva, A., Tian, J., Kammen, D. M. (2016). SWITCH-China: A systems approach to decarbonizing China’s power system. Environmental Science & Technology, 50: 5467–5473.
Li, N., Chen, W. (2018). Modeling China’s interprovincial coal transportation under low carbon transition. Applied Energy, 222: 267–279.
Brown, P. R., Botterud, A. (2021). The value of inter-regional coordination and transmission in decarbonizing the US electricity system. Joule, 5: 115–134.
Pleßmann, G., Blechinger, P. (2017). How to meet EU GHG emission reduction targets? A model based decarbonization pathway for Europe’s electricity supply system until 2050. Energy Strategy Reviews, 15: 19–32.
Mohandes, B., El Moursi, M. S., Hatziargyriou, N., El Khatib, S. (2019). A review of power system flexibility with high penetration of renewables. IEEE Transactions on Power Systems, 34: 3140–3155.
Li, J., Zhou, J., Chen, B. (2020). Review of wind power scenario generation methods for optimal operation of renewable energy systems. Applied Energy, 280: 115992.
Alipoor, J., Miura, Y., Ise, T. (2015). Power system stabilization using virtual synchronous generator with alternating moment of inertia. IEEE Journal of Emerging and Selected Topics in Power Electronics, 3: 451–458.
Converse, A. O. (2012). Seasonal energy storage in a renewable energy system. Proceedings of the IEEE, 100: 401–409.
Wang, W., Beddard, A., Barnes, M., Marjanovic, O. (2014). Analysis of active power control for VSC–HVDC. IEEE Transactions on Power Delivery, 29: 1978–1988.
Du, E., Zhang, N., Hodge, B. M., Wang, Q., Kang, C., Kroposki, B., Xia, Q. (2018). The role of concentrating solar power toward high renewable energy penetrated power systems. IEEE Transactions on Power Systems, 33: 6630–6641.
Bui, M., Adjiman, C. S., Bardow, A., Anthony, E. J., Boston, A., Brown, S., Fennell, P. S., Fuss, S., Galindo, A., Hackett, L. A., et al. (2018). Carbon capture and storage (CCS): The way forward. Energy & Environmental Science, 11: 1062–1176.
Zhuo, Z., Du, E., Zhang, N., Nielsen, C. P., Lu, X., Xiao, J., Wu, J., Kang, C. (2022). Cost increase in the electricity supply to achieve carbon neutrality in China. Nature Communications, 13: 3172.
Zhang, N., Yu, Y., Fang, C., Su, Y., Kang, C. (2024). Power system adequacy with variable resources: A capacity credit perspective. IEEE Transactions on Reliability, 73: 53–58.
Pudjianto, D., Ramsay, C., Strbac, G. (2007). Virtual power plant and system integration of distributed energy resources. IET Renewable Power Generation, 1: 10–16.
Hatziargyriou, N., Milanovic, J., Rahmann, C., Ajjarapu, V., Canizares, C., Erlich, I., Hill, D., Hiskens, I., Kamwa, I., Pal, B., et al. (2021). Definition and classification of power system stability–revisited & extended. IEEE Transactions on Power Systems, 36: 3271–3281.
Zhang, N., Jia, H., Hou, Q., Zhang, Z., Xia, T., Cai, X., Wang, J. (2023). Data-driven security and stability rule in high renewable penetrated power system operation. Proceedings of the IEEE, 111: 788–805.
He, G., Lin, J., Sifuentes, F., Liu, X., Abhyankar, N., Phadke, A. (2020). Rapid cost decrease of renewables and storage accelerates the decarbonization of China’s power system. Nature Communications, 11: 2486.
Zhuo, Z., Zhang, N., Hou, Q., Du, E., Kang, C. (2022). Backcasting technical and policy targets for constructing low-carbon power systems. IEEE Transactions on Power Systems, 37: 4896–4911.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).