AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home iEnergy Article
PDF (4.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Development of epoxy resin with superior breakdown strength: A Review

Li Shengtao( )Li Mingru
State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Shaanxi 710049, China
Show Author Information

Abstract

Epoxy resin (EP) has been widely utilized in electrical equipment and electronic devices due to its fascinating electric, thermal, and mechanical properties. However, the complex insulation structures of modern power devices in high-voltage direct current systems pose several challenges for EP-based dielectrics. The most significant among these challenges is the need for EP to stably operate under greater electric fields, requiring superior breakdown strength. This paper summarizes the key factors influencing the breakdown strength of EP and reviews reported methods for enhancing this property. Recognizing the limitations of existing approaches, we propose that the emerging technology of molecule design offers a potentially optimal solution for developing EP with enhanced breakdown strength. Furthermore, we anticipate the future development direction of EP with satisfactory insulation properties. We believe that enhancing the breakdown theory of solid dielectrics, exploring new research and development methodologies, and creating environmentally friendly EP with high performance are primary focus areas. We hope that this paper will offer guidance and support for the future development of EP with superior breakdown strength, proving valuable in advancing EP-based dielectrics.

References

[1]

Li, C., Hu, J., Lin, C., Zhang, B., Zhang, G., He, J. (2017). Surface charge migration and dc surface flashover of surface-modified epoxy-based insulators. Journal of Physics D: Applied Physics, 50: 065301.

[2]

Ye, L., Jin, Y., Wang, K., Chen, W., Wang, F., Dai, B. (2023). A multi-area intra-day dispatch strategy for power systems under high share of renewable energy with power support capacity assessment. Applied Energy, 351: 121866.

[3]

Mao, T., Zhou, B., Zhang, X., Yao, W., Zhu, Z. (2020). Accommodation of clean energy: Challenges and practices in China southern region. IEEE Open Journal of Power Electronics, 1: 198–209.

[4]

Wang, M., An, T., Ergun, H., Lan, Y., Andersen, B., Szechtman, M., Leterme, W., Beerten, J., Van Hertem, D. (2020). Review and outlook of HVDC grids as backbone of the transmission system. CSEE Journal of Power and Energy Systems, 7: 797–810.

[5]

Li, M., Niu, H., Shang, K., Gao, Y., Li, Z., Feng, Y., Li, S. (2022). Mechanism of ozone-improved surface flashover performance of epoxy composites. Materials Chemistry and Physics, 289: 126426.

[6]

Wang, W., Li, S. (2020). Research status and development of insulation breakdown in engineering solid dielectrics. Chinese Science Bulletin, 65: 3461–3474.

[7]

Zhang, C., Fu, H., Xing, Z., Guo, S., Cui, H., Wang, S., Li, J. (2022). Electrical tree performance in epoxy resin under low-frequency bipolar square- wave voltage. Journal of Electronic Materials, 51: 5205–5218.

[8]

Li, J., Aung, H. H., Du, B. (2023). Curing regime-modulating insulation performance of anhydride-cured epoxy resin: A review. Molecules, 28: 547.

[9]

Bian, W., Yao, T., Chen, M., Zhang, C., Shao, T., Yang, Y. (2018). The synergistic effects of the micro-BN and nano-Al2O3 in micro-nano composites on enhancing the thermal conductivity for insulating epoxy resin. Composites Science and Technology, 168: 420–428.

[10]

Bell, M., Krentz, T., Keith Nelson, J., Schadler, L., Wu, K., Breneman, C., Zhao, S., Hillborg, H., Benicewicz, B. (2017). Investigation of dielectric breakdown in silica-epoxy nanocomposites using designed interfaces. Journal of Colloid and Interface Science, 495: 130–139.

[11]

Gong, C., Zhao, Y., Zhang, S., Zhang, Z., Ding, L., Zhang, H., Li, X. (2022). Improving the insulating performance of epoxy resin in humid environments by HTPDMS modification. Journal of Applied Polymer Science, 139: e51754.

[12]

Fröhlich, H., Paranjape, B. V. (1956). Dielectric breakdown in solids. Proceedings of the Physical Society Section B, 69: 21–32.

[13]

Fröhlich H. (1947). On the theory of dielectric breakdown in solids. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 188: 521–532.

[14]

Von Hippel, A. (1937). Electric breakdown of solid and liquid insulators. Journal of Applied Physics, 8: 815–832.

[15]

Fröhlich H. (1937). Theory of electrical breakdown in ionic crystals. Proceedings of the Royal Society of London Series A - Mathematical and Physical Sciences, 160: 230–241.

[16]

Rosam, B., Meinhold, D., Löser, F., Lyssenko, V. G., Glutsch, S., Bechstedt, F., Rossi, F., Köhler, K., Leo, K. (2001). Field-induced delocalization and Zener breakdown in semiconductor superlattices. Physical Review Letters, 86: 1307–1310.

[17]

Artbauer, J. (1996). Electric strength of polymers. Journal of Physics D: Applied Physics, 29: 446–456.

[18]
Dissado, L. A., Fothergill, J. C. (1992).Electrical degradation and breakdown in polymers. London, United Kingdom: Peter Peregrinus Ltd.
[19]

Stark, K. H., Garton, C. G. (1955). Electric strength of irradiated polythene. Nature, 176: 1225–1226.

[20]

Huang, J., Shian, S., Diebold, R. M., Suo, Z., Clarke, D. R. (2012). The thickness and stretch dependence of the electrical breakdown strength of an acrylic dielectric elastomer. Applied Physics Letters, 101: 122905.

[21]

Matsui, K., Tanaka, Y., Takada, T., Fukao, T., Fukunaga, K., Maeno, T., Alison, J. M. (2005). Space charge behavior in low-density polyethylene at pre-breakdown. IEEE Transactions on Dielectrics and Electrical Insulation, 12: 406–415.

[22]

Wang, S., Chen, Y., Mao, J., Liu, C., Zhang, L., Cheng, Y., Du, C., Tanaka, T. (2020). Dielectric strength of glass fibre fabric reinforced epoxy by nano-Al2O3. IEEE Transactions on Dielectrics and Electrical Insulation, 27: 1086–1094.

[23]

Park, J. J., Lee, J. Y. (2023). Effect of surface-modified nanosilicas on the electrical breakdown strength in epoxy nanocomposites. IEEE Transactions on Dielectrics and Electrical Insulation, 30: 3–10.

[24]

Tuncer, E., Sauers, I., James, D. R., Ellis, A. R., Paranthaman, M. P., Aytuğ, T., Sathyamurthy, S., More, K. L., Li, J., Goyal, A. (2007). Electrical properties of epoxy resin based nano-composites. Nanotechnology, 18: 025703.

[25]

Huang, X., Li, Y., Liu, F., Jiang, P., Iizuka, T., Tatsumi, K., Tanaka, T. (2014). Electrical properties of epoxy/POSS composites with homogeneous nanostructure. IEEE Transactions on Dielectrics and Electrical Insulation, 21: 1516–1528.

[26]

Aslam, F., Li, Z., Qu, G., Feng, Y., Li, S., Li, S., Mao, H. (2021). Improvement of DC breakdown strength of the epoxy/POSS nanocomposite by tailoring interfacial electron trap characteristics. Materials, 14: 1298.

[27]

Li, Z., Han, Y., Liu, J., Min, D., Li, S. (2022). Investigation of temperature-dependent DC breakdown mechanism of EP/TiO2 nanocomposites. Applied Physics Letters, 121: 052901.

[28]

Li, Z., Min, D., Niu, H., Li, S., Zhang, Y., Huang, Y., Li, S. (2021). Enhanced DC breakdown strength of epoxy nanocomposites at elevated temperature and its mechanisms. Journal of Applied Physics, 130: 065101.

[29]

Ge, G., Tang, Y., Li, Y., Huang, L. (2020). Effect of environmental temperature on the insulating performance of epoxy/MgO nanocomposites. Applied Sciences, 10: 7018.

[30]

Yang, K., Chen, W., Zhao, Y., Ding, L., Du, B., Zhang, S., Yang, W. (2022). Enhancing dielectric strength of thermally conductive epoxy composites by preventing interfacial charge accumulation using micron-sized diamond. Composites Science and Technology, 221: 109178.

[31]

Du, B., Chen, N., Liu, Q., Mai, Y., Zhang, G., Zhao, Y., Huang, Z. (2023). Optimization of epoxy resin crosslinking network structures and control of electron transport behavior using chloride ions. Journal of Electronic Materials, 52: 5575–5585.

[32]

Liu, Q., Du, B., Mai, Y., Zhao, Y. (2022). Study of the effects of doping alkali metal ions on cross-linked network of epoxy resins and analysis of insulation properties. Journal of Electronic Materials, 51: 3141–3149.

[33]
Wang, X. P., Zhao, Y. S., Yang, K. R., He, Y. H., Kan, C. H. (2020). Effect of Na+ on the electrical properties of alumina/epoxy composite insulation materials. High Voltage Engineering, 46(12): 4146–4154. (in Chinese)
[34]

Li, J., Guo, P., Kong, X., Wang, Y., Yang, Y., Liu, F., Du, B. (2023). Curing kinetics and dielectric properties of anhydride cured epoxy resin with different accelerator contents. IEEE Transactions on Dielectrics and Electrical Insulation, 30: 20–30.

[35]

Li, J., Guo, P., Wang, Y., Wang, Q., Du, B. (2023). Improved high-temperature dielectric properties of DGEBA/MHHPA/DMP-30 system with optimizing postcuring process. IEEE Transactions on Dielectrics and Electrical Insulation, 30: 2150–2157.

[36]

Zhao, Y., Xu, Y., Shen, H., Du, B., Teyssedre, G. (2022). Introducing chlorine into epoxy resin to modulate charge trap depth in the material. IEEE Transactions on Dielectrics and Electrical Insulation, 29: 1666–1674.

[37]

Sun, W., Xu, J., Song, J., Chen, Y., Lv, Z., Cheng, Y., Zhang, L. (2023). Self-healing of electrical damage in insulating robust epoxy containing dynamic fluorine-substituted carbamate bonds for green dielectrics. Materials Horizons, 10: 2542–2553.

[38]

Zhao, Y., Xu, Y., He, Y., Wang, K., Chen, Y. (2021). Effects of methyl and carbon-carbon double bond in anhydride molecule on dielectric properties of epoxy/Al2O3 composite. IEEE Transactions on Dielectrics and Electrical Insulation, 28: 1531–1538.

[39]

Li, Z., Gao, H., Zhang, L., Wang, S., Liu, J., Li, S. (2024). The mechanisms of enhanced thickness-dependent DC breakdown strength of EP/MWCNTs nanocomposites. High Voltage, 9: 440–452.

[40]

Preetha, P., Thomas, M. (2011). AC breakdown characteristics of epoxy nanocomposites. IEEE Transactions on Dielectrics and Electrical Insulation, 18: 1526–1534.

[41]

Mohanty, A., Srivastava, V. K. (2013). Dielectric breakdown performance of alumina/epoxy resin nanocomposites under high voltage application. Materials & Design, 47: 711–716.

[42]

Wang, X., Chen, Q., Chi, Q., Zhang, T., Lin, L. (2019). Effect of nano-fillers on nonlinear conduction and DC breakdown characteristics of epoxy composites. Journal of Materials Science: Materials in Electronics, 30: 10293–10301.

[43]

Chen, Y., Zhang, D., Wu, X., Wang, H., Zhang, C., Yang, W., Chen, Y. (2017). Epoxy/α-alumina nanocomposite with high electrical insulation performance. Progress in Natural Science: Materials International, 27: 574–581.

[44]

Tang, Y., Zhang, P., Zhu, M., Li, J., Li, Y., Wang, Z., Huang, L. (2019). Temperature effects on the dielectric properties and breakdown performance of h-BN/epoxy composites. Materials, 12: 4112.

[45]

Shi, Y., Zhao, Y., Hou, T., Liao, C., Li, D. (2023). Implementation of epoxy resin composites filled with copper nanowire-modified boron nitride nanosheets for electronic device packaging. ACS Applied Nano Materials, 6: 16768–16777.

[46]

Lewis, T. J. (1994). Nanometric dielectrics. IEEE Transactions on Dielectrics and Electrical Insulation, 1: 812–825.

[47]

Li, S., Xie, D., Lei, Q. (2020). Understanding insulation failure of nanodielectrics: Tailoring carrier energy. High Voltage, 5: 643–649.

[48]

Li, S., Xie, D., Qu, G., Yang, L., Min, D., Cheng, Y. (2019). Tailoring interfacial compatibility and electrical breakdown properties in polypropylene based composites by surface functionalized POSS. Applied Surface Science, 478: 451–458.

[49]
Chen, Y., Shao, Y. Y., Wang, S., Wang, Z. B., Wang, S. H., Du, C. Y., Cheng, Y. H. (2021). Preparation and properties of polystyrene-grafted Al2O3/epoxy nanocomposites. Journal of Xi’an Jiaotong University, 55(12): 155–162. (in Chinese)
[50]

Lü, F. C., Song, J. X., Ruan, H. O., Zhu, M. Y., Wang, S. S., Lü, P., Xie, Q. (2022). Enhanced direct-current breakdown strength of Al2O3/epoxy resin composites through plasma fluoridation of fillers interface. Polymer Composites, 43: 347–357.

[51]
Li, P. X., Cui, H. Z., Xing, Z. L., Guo, N., Min, D. M. (2022). Dielectric and thermal properties of epoxy/POSS composites. Transactions of China Electrotechnical Society, 37(2): 291–298. (in Chinese)
[52]
Liu, Y., Zhou, Q. K., Zhao, J. X., Yin, G. L., Zhao, C., Li, J. Y., Li, S. T. (2016). Effect of interaction zone on short-time breakdown of NanoAl2O3-epoxy composites. Journal of Xi’an Jiaotong University, 50(12): 18–23, 154. (in Chinses
[53]

Li, S., Yin, G., Bai, S., Li, J. (2011). A new potential barrier model in epoxy resin nanodielectrics. IEEE Transactions on Dielectrics and Electrical Insulation, 18: 1535–1543.

[54]

Hu, Y., Chen, C., Wen, Y., Xue, Z., Zhou, X., Shi, D., Hu, G. H., Xie, X. (2021). Novel micro-nano epoxy composites for electronic packaging application: Balance of thermal conductivity and processability. Composites Science and Technology, 209: 108760.

[55]

Jux, M., Finke, B., Mahrholz, T., Sinapius, M., Kwade, A., Schilde, C. (2017). Effects of Al(OH)O nanoparticle agglomerate size in epoxy resin on tension, bending, and fracture properties. Journal of Nanoparticle Research, 19: 139.

[56]

El-Shahat, M., Huzayyin, A., Anis, H. (2019). Effect of chemical impurities on charge injection barriers at the interface of copper and polyethylene. IEEE Transactions on Dielectrics and Electrical Insulation, 26: 642–647.

[57]

Alhabill, F. N., Ayoob, R., Andritsch, T., Vaughan, A. S. (2017). Effect of resin/hardener stoichiometry on electrical behavior of epoxy networks. IEEE Transactions on Dielectrics and Electrical Insulation, 24: 3739–3749.

[58]

Wang, C., Zhang, H., Wang, Y., Chen, C., Zhang, Z., Wang, Y. (2023). Effect of hardener stoichiometry on the dielectric properties of epoxy resin/liquid nitrile rubber composite materials. IEEE Transactions on Dielectrics and Electrical Insulation, 30: 1178–1187.

[59]
Guo, P. X., Li, J., Kong, X. X., Wang, Y. F., Li, F., Du, B. X. (2022). Study on dielectric properties of bisphenol-A epoxy resin cured with mixed anhydride. Insulating Materials, 55(06): 16–21. (in Chinese)
[60]

Luo, J., Zhang, L., Sun, W., Mao, J., Zheng, Y., Wang, S., Zhang, Z., Chen, Y., Cheng, Y. (2022). Influence of imidazole derivatives on the dielectric and energy storage performance of epoxy. High Voltage, 7: 782–791.

[61]

Mao, J., Wang, S., Cheng, Y., Xiao, B., Zhang, L., Ai, D., Chen, Y., Sun, W., Luo, J. (2022). High energy storage density and efficiency achieved in dielectric films functionalized with strong electronegative asymmetric halogen-phenyl groups. Chemical Engineering Journal, 444: 136331.

[62]

Zhang, S., Chen, W., Zhao, Y., Ding, L., Pan, X., Du, B., Shen, H., Gong, C., Yang, W., Yang, K., et al. (2022). Designing multi-aromatic ring epoxy composites to integrate high insulation and high heat resistance performances by electron-induced effect. Composites Part B: Engineering, 243: 110107.

[63]

Yang, K., Chen, W., Zhao, Y., He, Y., Chen, X., Du, B., Yang, W., Zhang, S., Fu, Y. (2021). Enhancing dielectric strength of epoxy polymers by constructing interface charge traps. ACS Applied Materials & Interfaces, 13: 25850–25857.

[64]

Li, M., Shang, K., Zhao, J., Jiang, L., Sun, J., Wang, X., Niu, H., Feng, Y., An, Z., Li, S. (2023). Constructing fluorine hybrid epoxy polymers with excellent breakdown strength by surface fluorination. ACS Applied Polymer Materials, 5: 10226–10233.

[65]

Ran, Z., Wang, R., Fu, J., Yang, M., Li, M., Hu, J., He, J., Li, Q. (2023). Spiral-structured dielectric polymers exhibiting ultrahigh energy density and charge–discharge efficiency at high temperatures. Advanced Materials, 35: 2303849.

[66]

Wang, R., Zhu, Y., Fu, J., Yang, M., Ran, Z., Li, J., Li, M., Hu, J., He, J., Li, Q. (2023). Designing tailored combinations of structural units in polymer dielectrics for high-temperature capacitive energy storage. Nature Communications, 14: 2406.

[67]

Zhang, Q., Chen, X., Zhang, B., Zhang, T., Lu, W., Chen, Z., Liu, Z., Kim, S. H., Donovan, B., Warzoha, R. J., et al. (2021). High-temperature polymers with record-high breakdown strength enabled by rationally designed chain-packing behavior in blends. Matter, 4: 2448–2459.

[68]

Yuan, C., Zhou, Y., Zhu, Y., Hu, S., Liang, J., Luo, Z., Gao, B., Zeng, T., Zhang, Y., Li, J., et al. (2022). Improved high-temperature electrical properties of polymeric material by grafting modification. ACS Sustainable Chemistry & Engineering, 10: 8685–8693.

[69]

Gurnani, R., Kamal, D., Tran, H., Sahu, H., Scharm, K., Ashraf, U., Ramprasad, R. (2021). polyG2G: A novel machine learning algorithm applied to the generative design of polymer dielectrics. Chemistry of Materials, 33: 7008–7016.

[70]

Yue, D., Feng, Y., Liu, X. X., Yin, J. H., Zhang, W. C., Guo, H., Su, B., Lei, Q. Q. (2022). Prediction of energy storage performance in polymer composites using high-throughput stochastic breakdown simulation and machine learning. Advanced Science, 9: 2105773.

[71]

Feng, Q. K., Zhong, S. L., Pei, J. Y., Zhao, Y., Zhang, D. L., Liu, D. F., Zhang, Y. X., Dang, Z. M. (2022). Recent progress and future prospects on all-organic polymer dielectrics for energy storage capacitors. Chemical Reviews, 122: 3820–3878.

[72]
Liu, H. C., Guo, Z. P., Li, Y., Zhou, S. S., Wu, X. (2022). Comparative study on the performance of itaconic acid based epoxy resin and bisphenol a epoxy resin. Transactions of China Electrotechnical Society, 37(09), 2366–2376. (in Chinese)
[73]
Zhanpeng, G., Hechen, L., Le, L., Xuan, W., Yu, S. (2021). Comparative study on the performance of Itaconic Acid based epoxy resin and bisphenol a epoxy resin. In: Proceedings of the 22nd International Symposium on High Voltage Engineering (ISH 2021), Hybrid Conference, Xi’an, China.
[74]

Yang, Y., Dang, Z. M., Li, Q., He, J. (2020). Self-healing of electrical damage in polymers. Advanced Science, 7: 2002131.

[75]

Li, P., Ma, S., Wang, B., Xu, X., Feng, H., Yu, Z., Yu, T., Liu, Y., Zhu, J. (2022). Degradable benzyl cyclic acetal epoxy monomers with low viscosity: Synthesis, structure-property relationships, application in recyclable carbon fiber composite. Composites Science and Technology, 219: 109243.

[76]

Ma, S., Wei, J., Jia, Z., Yu, T., Yuan, W., Li, Q., Wang, S., You, S., Liu, R., Zhu, J. (2019). Readily recyclable, high-performance thermosetting materials based on a lignin-derived spiro diacetal trigger. Journal of Materials Chemistry A, 7: 1233–1243.

[77]

Jin, Y., Hu, C., Wang, Z., Xia, Z., Li, R., Shi, S., Xu, S., Yuan, L. (2023). Bio-based reprocessable and degradable epoxy resins via inverse vulcanization. ACS Sustainable Chemistry & Engineering, 11: 11259–11268.

[78]
Wu, Y. J., Hu, Y. R., Lin H., Fang, R., Cai, F. J., Zhang, X. X. (2023). Study on properties of degradable epoxy insulation materials based on schiff base. High Voltage Engineering, 49(11): 4490–4497. (in Chinese)
[79]

Wu, Y., Hu, Y., Lin, H., Zhang, X. (2024). An anhydride-cured degradable epoxy insulating material exhibiting recyclability, reusability, and excellent electrical performance. Green Chemistry, 26: 2258–2268.

[80]

Wu, Y., Lin, H., Hu, Y., Cai, F., Zhang, X. (2024). Electrical and degradation properties of epoxy insulating materials based on schiff bases. ACS Applied Polymer Materials, 6: 1182–1190.

iEnergy
Pages 89-101
Cite this article:
Shengtao L, Mingru L. Development of epoxy resin with superior breakdown strength: A Review. iEnergy, 2024, 3(2): 89-101. https://doi.org/10.23919/IEN.2024.0010

114

Views

6

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 24 February 2024
Revised: 09 April 2024
Accepted: 19 April 2024
Published: 24 July 2024
© The author(s) 2024.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return