AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home iEnergy Article
PDF (959 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Review of semiconductor devices and other power electronics components at cryogenic temperature

Yuchuan Liao1Abdelrahman Elwakeel1Yudi Xiao1Rafael Peña Alzola1Min Zhang1Weijia Yuan1( )Alfonso J. Cruz Feliciano2Lukas Graber2
Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow G1 1XQ, UK
School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta GA, USA
Show Author Information

Abstract

With the increasing demand for high power density, and to meet extreme working conditions, research has been focused on investigating the performance of power electronics devices at cryogenic temperatures. The aim of this paper is to review the performance of power semiconductor devices, passive components, gate drivers, sensors, and eventually power electronics converters at cryogenic temperatures. By comparing the physical properties of semiconductor materials and the electrical performance of commercial power semiconductor devices, silicon carbide switches show obvious disadvantages due to the increased on-resistance and switching time at cryogenic temperature. In contrast, silicon and gallium nitride devices exhibit improved performance when temperature is decreased. The performance ceiling of power semiconductor devices can be influenced by gate drivers, within which the commercial alternatives show deteriorated performance at cryogenic temperature compared to room temperature. Moreover, options for voltage and current sense in cryogenic environments are justified. Based on the cryogenic performance of the various components afore-discussed, this paper ends by presenting an overview of the published converter, which are either partially or fully tested in a cryogenic environment.

References

[1]

Rounds, R., Sarkar, B., Sochacki, T., Bockowski, M., Imanishi, M., Mori, Y., Kirste, R., Collazo, R., Sitar, Z. (2018). Thermal conductivity of GaN single crystals: Influence of impurities incorporated in different growth processes. Journal of Applied Physics, 124: 105106.

[2]

Zanato, D., Gokden, S., Balkan, N., Ridley, B. K., Schaff, W. J. (2004). The effect of interface-roughness and dislocation scattering on low temperature mobility of 2D electron gas in GaN/AlGaN. Semiconductor Science and Technology, 19: 427–432.

[3]

Pässler, R. (2001). Dispersion-related assessments of temperature dependences for the fundamental band gap of hexagonal GaN. Journal of Applied Physics, 90: 3956–3964.

[4]

Roccaforte, F., Giannazzo, F., Iucolano, F., Eriksson, J., Weng, M., Raineri, V. (2010). Surface and interface issues in wide band gap semiconductor electronics. Applied Surface Science, 256: 5727–5735.

[5]

Kim, D., Theodorou, C., Chanuel, A., Gobil, Y., Charles, M., Morvan, E., Woo Lee, J., Mouis, M., Ghibaudo, G. (2022). Detailed electrical characterization of 200 mm CMOS compatible GaN/Si HEMTs down to deep cryogenic temperatures. Solid-State Electronics, 197: 108448.

[6]

Bludau, W., Onton, A., Heinke, W. (1974). Temperature dependence of the band gap of silicon. Journal of Applied Physics, 45: 1846–1848.

[7]
Gutierrez-D, E. A., Deen, J., Claeys, C. (2000). Low Temperature Electronics: Physics, Devices, Circuits, and Applications. Elsevier.
[8]

Jacoboni, C., Canali, C., Ottaviani, G., Alberigi Quaranta, A. (1977). A review of some charge transport properties of silicon. Solid-State Electronics, 20: 77–89.

[9]

English, T. S., Phinney, L. M., Hopkins, P. E., Serrano, J. R. (2013). Mean free path effects on the experimentally measured thermal conductivity of single-crystal silicon microbridges. Journal of Heat Transfer, 135: 091103.

[10]

Cannuccia, E., Gali, A. (2020). Thermal evolution of silicon carbide electronic bands. Physical Review Materials, 4: 014601.

[11]

Liu, D. M., Lin, B. W. (1996). Thermal conductivity in hot-pressed silicon carbide. Ceramics International, 22: 407–414.

[12]
Dhar, S., Ahyi, A. C., Williams, J. R., Ryu, S. H., Agarwal, A. K. (2012). Temperature dependence of inversion layer carrier concentration and hall mobility in 4H-SiC MOSFETs. Materials Science Forum, 717–720: 713–716.
[13]

Koizumi, A., Jun, S., Kimoto, T. (2009). Temperature and doping dependencies of electrical properties in Al-doped 4H-SiC epitaxial layers. Journal of Applied Physics, 106: 013716.

[14]

Kuzuhara, M., Asubar, J. T., Tokuda, H. (2016). AlGaN/GaN high-electron-mobility transistor technology for high-voltage and low-on-resistance operation. Japanese Journal of Applied Physics, 55: 070101.

[15]
Matsunami, H. (1998). Progress of semiconductor silicon carbide (SiC). Electronics and Communications in Japan (Part II: Electronics), 81: 38–44.
[16]

Rumyantsev, S. L., Shur, M. S., Levinshtein, M. E., Ivanov, P. A., Palmour, J. W., Agarwal, A. K., Hull, B. A., Ryu, S. H. (2009). Channel mobility and on-resistance of vertical double implanted 4H-SiC MOSFETs at elevated temperatures. Semiconductor Science and Technology, 24: 075011.

[17]

Kobayashi, T., Matsushita, Y. I. (2019). Structure and energetics of carbon defects in SiC (0001)/SiO2 systems at realistic temperatures: Defects in SiC, SiO2, and at their interface. Journal of Applied Physics, 126: 145302.

[18]
Garrett, J., Schupbach, R., Lostetter, A. B., Mantooth, H. A. (2007). Development of a DC motor drive for extreme cold environments. In: Proceedings of the 2007 IEEE Aerospace Conference, Big Sky, MT, USA.
[19]
Bourne, J., Schupbach, R., Hollosi, B., Di, J., Lostetter, A., Mantooth, H. A. (2008). Ultra-wide temperature (−230 ℃ to 130 ℃) DC-motor drive with SiGe asynchronous controller. In: Proceedings of the 2008 IEEE Aerospace Conference, Big Sky, MT.
[20]

Elwakeel, A., Feng, Z., McNeill, N., Zhang, M., Williams, B., Yuan, W. (2021). Study of power devices for use in phase-leg at cryogenic temperature. IEEE Transactions on Applied Superconductivity, 31: 5000205.

[21]
Shwarts, Y. M., Shwarts, M. M., Sapon, S. V. (2008). A new generation of cryogenic silicon diode temperature sensors. In: Proceedings of the 2008 International Conference on Advanced Semiconductor Devices and Microsystems, Smolenice, Slovakia.
[22]
Jia, C., Forsyth, A. J. (2006). Evaluation of semiconductor losses in cryogenic DC-DC converters. In: Proceedings of the 2006 CES/IEEE 5th International Power Electronics and Motion Control Conference, Shanghai, China.
[23]
Wei, Y., Hossain, M. M., Mantooth, H. A. (2022). Low temperature evaluation of silicon carbide (SiC) based converter. In: Proceedings of the 2022 IEEE Applied Power Electronics Conference and Exposition (APEC), Houston, TX, USA.
[24]
Wei, Y., Hossain, M. M., Mantooth, A. (2021). Comprehensive cryogenic characterizations of a commercial 650 V GaN HEMT. In: Proceedings of the 2021 IEEE International Future Energy Electronics Conference (IFEEC), Taipei, China.
[25]

Naik, H., Marron, T., Chow, T. P. (2011). High-low temperature performance of GaN 600 V Schottky rectifiers. Physica Status Solidi C, 8: 2219–2222.

[26]

Kizilyalli, I. C., Aktas, O. (2015). Characterization of vertical GaN p–n diodes and junction field-effect transistors on bulk GaN down to cryogenic temperatures. Semiconductor Science and Technology, 30: 124001.

[27]
Leong, K. K., Bryant, A. T., Mawby, P. A. (2010). Power MOSFET operation at cryogenic temperatures: Comparison between HEXFET®, MDMeshTM and CoolMOSTM. In: Proceedings of the 2010 22nd International Symposium on Power Semiconductor Devices & IC's (ISPSD), Hiroshima, Japan.
[28]
Singh, R., Baliga, B. J. (2015). Power MOSFET analysis/optimization for cryogenic operation including the effect of degradation in breakdown voltage. In: Proceedings of the 4th International Symposium on Power Semiconductor Devices and Ics, Tokyo, Japan.
[29]
Gui, H., Ren, R., Zhang, Z., Chen, R., Niu, J., Wang, F., Tolbert, L. M., Blalock, B. J., Costinett, D. J., Choi, B. B. (2018). Characterization of 1.2 kV SiC power MOSFETs at cryogenic temperatures. In: Proceedings of the 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA.
[30]
Mehrabankhomartash, M., Yin, S., Cruz, A. J., Graber, L., Saeedifard, M., Evans, S., Kapaun, F., Revel, I., Steiner, G., Ybanez, L., et al. (2021). Static and dynamic characterization of 1200 V SiC MOSFETs at room and cryogenic temperatures. In: Proceedings of the IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society, Toronto, ON, Canada.
[31]
Colmenares, J., Foulkes, T., Barth, C., Modeert, T., Pilawa-Podgurski, R. C. N. (2016). Experimental characterization of enhancement mode gallium-nitride power field-effect transistors at cryogenic temperatures. In: Proceedings of the 2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Fayetteville, AR, USA.
[32]

Abd El-Azeem, S. M., El-Ghanam, S. M. (2020). Comparative study of gallium nitride and silicon carbide MOSFETs as power switching applications under cryogenic conditions. Cryogenics, 107: 103071.

[33]
Mehrabankhomartash, M., Yin, S., Cruz, A. J., Graber, L., Saeedifard, M., Evans, S., Kapaun, F., Revel, I., Steiner, G., Ybanez, L., et al. (2021). Static and dynamic characterization of 650 V GaN E-HEMTs in room and cryogenic environments. In: Proceedings of the 2021 IEEE Energy Conversion Congress and Exposition (ECCE), Vancouver, BC, Canada.
[34]
Ren, R., Gui, H., Zhang, Z., Chen, R., Niu, J., Wang, F., Tolbert, L. M., Blalock, B. J., Costinett, D. J., Choi, B. B. (2018). Characterization of 650 V enhancement-mode GaN HEMT at cryogenic temperatures. In: Proceedings of the 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA.
[35]

Cuerdo, R., Pei, Y., Chen, Z., Keller, S., DenBaars, S. P., Calle, F., Mishra, U. K. (2009). The kink effect at cryogenic temperatures in deep submicron AlGaN/GaN HEMTs. IEEE Electron Device Letters, 30: 209–212.

[36]

Wang, M., Chen, K. J. (2011). Kink effect in AlGaN/GaN HEMTs induced by drain and gate pumping. IEEE Electron Device Letters, 32: 482–484.

[37]

Nazir, M. S., Kushwaha, P., Pampori, A., Ahsan, S. A., Chauhan, Y. S. (2022). Electrical characterization and modeling of GaN HEMTs at cryogenic temperatures. IEEE Transactions on Electron Devices, 69: 6016–6022.

[38]

Sharma, C., Laishram, R., Amit, Rawal, D. S., Vinayak, S., Singh, R. (2017). Investigation on de-trapping mechanisms related to non-monotonic kink pattern in GaN HEMT devices. AIP Advances, 7: 085209.

[39]

Meneghesso, G., Zanon, F., Uren, M. J., Zanoni, E. (2009). Anomalous kink effect in GaN high electron mobility transistors. IEEE Electron Device Letters, 30: 100–102.

[40]
Hossain, M. M., Rashid, A. U., Wei, Y., Sweeting, R., Mantooth, H. A. (2021). Cryogenic characterization and modeling of silicon IGBT for hybrid aircraft application. In: Proceedings of the 2021 IEEE Aerospace Conference (50100), Big Sky, MT, USA.
[41]
Patterson, R., Hammoud, A., Gerber, S. (2001). Performance of various types of resistors at low temperatures. Available at https://nepp.nasa.gov/DocUploads/47394B68-DE94-4525-95A6E2164342B9F4/LT-Test-Report-Resistors.pdf.
[42]

Singh, R., Baliga, B. J. (1995). Cryogenic operation of asymmetric n-channel IGBTs. Solid-State Electronics, 38: 561–566.

[43]
Tian, K., Qi, J., Mao, Z., Yang, S., Song, W., Yang, M., Zhang, A. (2017). Characterization of 1.2 kV 4H-SiC power MOSFETs and Si IGBTs at cryogenic and high temperatures. In: Proceedings of the 2017 14th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS), Beijing, China.
[44]
Wei, Y., Hossain, M. M., Mantooth, A. (2021). Cryogenic static and dynamic characterizations of 650 V field stop trench Si IGBT. In: Proceedings of the 2021 IEEE 22nd Workshop on Control and Modelling of Power Electronics (COMPEL), Cartagena, Colombia.
[45]

Wei, Y., Hossain, M. M., Mantooth, H. A. (2023). Comparisons and evaluations of silicon and wide band gap devices at cryogenic temperature. IEEE Transactions on Industry Applications, 59: 1982–1994.

[46]

Pan, M. J. (2005). Performance of capacitors under DC bias at liquid nitrogen temperature. Cryogenics, 45: 463–467.

[47]
Yin, S., Mehrabankhomartash, M., Cruz, A. J., Graber, L., Saeedifard, M., Evans, S., Kapaun, F., Revel, I., Steiner, G., Ybanez, L., et al. (2021). Characterization of inductor magnetic cores for cryogenic applications. In: Proceedings of the 2021 IEEE Energy Conversion Congress and Exposition (ECCE), Vancouver, BC, Canada.
[48]

Pei, X., Smith, A. C., Vandenbossche, L., Rens, J. (2019). Magnetic characterization of soft magnetic cores at cryogenic temperatures. IEEE Transactions on Applied Superconductivity, 29: 7800306.

[49]

Hannah, E. C. (1981). Low temperature magnetic cores and a preamp for low impedance cryogenic sources. Review of Scientific Instruments, 52: 1087–1091.

[50]

Büttner, S., Nowak, A., März, M. (2022). Characterization of a Si and GaN converter at cryogenic temperatures. Cryogenics, 128: 103594.

[51]
Chen, R., Dong, Z., Zhang, Z., Gui, H., Niu, J., Ren, R., Wang, F., Tolbert, L. M., Blalock, B. J., Costinett, D. J., et al. (2018). Core characterization and inductor design investigation at low temperature. In: Proceedings of the 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA.
[52]
Bush, A. J., Khan, A. T., Gunesen, D. L., Cruz, A. J., Graber, L. (2021). Design and optimization of a cryogenic coreless inductor with copper clad aluminum conductor, In: Proceedings of the 2021 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS), Denver, CO, USA,
[53]

Ghosh, A., Feliciano, A. C., Murphy, R., Xu, C., Jin, Z., Graber, L. (2023). Feasibility study on copper-clad lithium conductors for cryogenic applications. IEEE Transactions on Applied Superconductivity, 33: 5202005.

[54]
Mustafeez-ul-Hassan, Y., Wu, V., Solovyov, Luo, F. (2022). Investigation about operation and performance of gate drivers for power electronics converters for cryogenic temperatures. In: Proceedings of the 2022 24th European Conference on Power Electronics and Applications (EPE'22 ECCE Europe), Hanover, Germany.
[55]
Wei, Y., Hossain, M. M., Sweeting, R., Mantooth, A. (2021). Functionality and performance evaluation of gate drivers under cryogenic temperature. In: Proceedings of the 2021 IEEE Aerospace Conference (50100), Big Sky, MT, USA.
[56]
Mustafeez-ul-Hassan, Wu, Y., Solovyov, V., Luo, F. (2022). Liquid nitrogen immersed and noise tolerant gate driver for cryogenically cooled power electronics applications. In: Proceedings of the 2022 IEEE Applied Power Electronics Conference and Exposition (APEC), Houston, TX, USA.
[57]

Hassan, M. U., Emon, A. I., Luo, F., Solovyov, V. (2022). Design and validation of a 20-kVA, fully cryogenic, two-level GaN-based Current source inverter for full electric aircrafts. IEEE Transactions on Transportation Electrification, 8: 4743–4759.

[58]

Deriszadeh, A., Zeng, X., Surapaneni, R. K., Galla, G., Nilsson, E., Rouquette, J. F., Ybanez, L., Pei, X. (2024). Gate driver design for cryogenically cooled power electronic converters. IEEE Transactions on Applied Superconductivity, 34: 2500206.

[59]

Elwakeel, A., McNeill, N., Alzola, R. P., Surapaneni, R. K., Galla, G., Ybanez, L., Zhang, M., Yuan, W. (2024). Design and testing of isolated gate driver for cryogenic environments. IEEE Transactions on Applied Superconductivity, 34: 3800704.

[60]
Zhao, R. B., Chen, X. Y., Shen, B. (2020). Principle and application feasibility of current transducers under cryogenic condition. In: Proceedings of the 2020 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), Tianjin, China.
[61]

González-Jorge, H., Quelle, I., Carballo, E., Domarco, G. (2006). Working with non-cryogenic hall sensors at 77K. Cryogenics, 46: 736–739.

[62]

Ma, T., Dai, S., Zhang, J., Zhao, L. (2015). Rogowski coil for current measurement in a cryogenic environment. Measurement Science Review, 15: 77–84.

[63]
Wei, Y., Hossain, M. M., Mantooth, H. A. (2022). Low Temperature Investigation of a Cascode GaN based Resonant Bi-directional DC/DC Converter. In: Proceedings of the 2022 International Power Electronics Conference (IPEC-Himeji 2022- ECCE Asia), Himeji, Japan.
[64]
Gallice, N., Santoro, D., Cova, P., Delmonte, N., Lazzaroni, M., Sala, P., Zani, A. (2022). Development of a cryogenic DC-DC Boost Converter: Devices characterization and first prototype measurements. In: Proceedings of the 2022 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Ottawa, ON, Canada.
iEnergy
Pages 102-114
Cite this article:
Liao Y, Elwakeel A, Xiao Y, et al. Review of semiconductor devices and other power electronics components at cryogenic temperature. iEnergy, 2024, 3(2): 102-114. https://doi.org/10.23919/IEN.2024.0014

147

Views

8

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 03 June 2024
Accepted: 20 June 2024
Published: 24 July 2024
© The author(s) 2024.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return