Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Quantum power system state estimation (QPSSE) offers an inspiring direction for tackling the challenge of state estimation through quantum computing. Nevertheless, the current bottlenecks originate from the scarcity of practical and scalable QPSSE methodologies in the noisy intermediate-scale quantum (NISQ) era. This paper devises a NISQ−QPSSE algorithm that facilitates state estimation on real NISQ devices. Our new contributions include: (1) A variational quantum circuit (VQC)-based QPSSE formulation that empowers QPSSE analysis utilizing shallow-depth quantum circuits; (2) A variational quantum linear solver (VQLS)-based QPSSE solver integrating QPSSE iterations with VQC optimization; (3) An advanced NISQ-compatible QPSSE methodology for tackling the measurement and coefficient matrix issues on real quantum computers; (4) A noise-resilient method to alleviate the detrimental effects of noise disturbances. The encouraging test results on the simulator and real-scale systems affirm the precision, universality, and scalability of our QPSSE algorithm and demonstrate the vast potential of QPSSE in the thriving NISQ era.
Primadianto, A., Lu, C. N. (2017). A review on distribution system state estimation. IEEE Transactions on Power Systems, 32: 3875–3883.
Feng, F., Zhang, P., Zhou, Y. (2022). Authentic microgrid state estimation. IEEE Transactions on Power Systems, 37: 1657–1660.
Xia, N., Gooi, H. B., Chen, S., Hu, W. (2018). Decentralized state estimation for hybrid AC/DC microgrids. IEEE Systems Journal, 12: 434–443.
Harmon, E., Ozgur, U., Cintuglu, M. H., de Azevedo, R., Akkaya, K., Mohammed, O. A. (2018). The Internet of microgrids: A cloud-based framework for wide area networked microgrids. IEEE Transactions on Industrial Informatics, 14: 1262–1274.
Zhou, Y., Tang, Z., Nikmehr, N., Babahajiani, P., Feng, F., Wei, T. C., Zheng, H., Zhang, P. (2022). Quantum computing in power systems. iEnergy, 1: 170–187.
Chen, C. C., Shiau, S. Y., Wu, M. F., Wu, Y. R. (2019). Hybrid classical-quantum linear solver using noisy intermediate-scale quantum machines. Scientific Reports, 9: 16251.
Feng, F., Zhou, Y. F., Zhang, P. (2023). Noise-resilient quantum power flow. iEnergy, 2: 63–70.
Zhou, Y., Feng, F., Zhang, P. (2021). Quantum electromagnetic transients program. IEEE Transactions on Power Systems, 36: 3813–3816.
Fei, X., Zhao, H., Zhou, X., Zhao, J., Shu, T., Wen, F. (2024). Power system fault diagnosis with quantum computing and efficient gate decomposition. Scientific Reports, 14: 16991.
Cao, Y., Zhou, X., Fei, X., Zhao, H., Liu, W., Zhao, J. (2023). Linear-layer-enhanced quantum long short-term memory for carbon price forecasting. Quantum Machine Intelligence, 5: 26.
Subaşı, Y., Somma, R. D., Orsucci, D. (2019). Quantum algorithms for systems of linear equations inspired by adiabatic quantum computing. Physical review letters, 122: 060504.
Feng, F., Zhang, P., Zhou, Y., Tang, Z. (2022). Quantum microgrid state estimation. Electric Power Systems Research, 212: 108386.
Harrow, A. W., Hassidim, A., Lloyd, S. (2009). Quantum algorithm for linear systems of equations. Physical Review Letters, 103: 150502.
Feng, F., Zhou, Y., Zhang, P. (2021). Quantum power flow. IEEE Transactions on Power Systems, 36: 3810–3812.
Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S. C., Endo, S., Fujii, K., McClean, J. R., Mitarai, K., Yuan, X., Cincio, L., et al. (2021). Variational quantum algorithms. Nature Reviews Physics, 3: 625–644.
Concus, P., Golub, G. H., Meurant, G. (1985). Block preconditioning for the conjugate gradient method. SIAM Journal on Scientific and Statistical Computing, 6: 220–252.
Córcoles, A. D., Takita, M., Inoue, K., Lekuch, S., Minev, Z. K., Chow, J. M., Gambetta, J. M. (2021). Exploiting dynamic quantum circuits in a quantum algorithm with superconducting qubits. Physical Review Letters, 127: 100501.
Zhou, Y., Zhang, P., Feng, F. (2023). Noisy-intermediate-scale quantum electromagnetic transients program. IEEE Transactions on Power Systems, 38: 1558–1571.
Brown, A. R., Susskind, L. (2018). Second law of quantum complexity. Physical Review D, 97: 086015.
Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J. M., Gambetta, J. M. (2017). Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 549: 242–246.
Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K. (2018). Quantum circuit learning. Physical Review A, 98: 032309.
Liang, J., Sankar, L., Kosut, O. (2015). Vulnerability analysis and consequences of false data injection attack on power system state estimation. IEEE Transactions on Power Systems, 31: 3864–3872.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).