AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home iEnergy Article
PDF (589.9 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

Noisy-intermediate-scale quantum power system state estimation

Fei Feng1Peng Zhang2( )Yifan Zhou2Yacov A. Shamash2
Department of Engineering, SUNY Maritime College, Bronx, NY 10465, USA
Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY 11794-2350, USA
Show Author Information

Abstract

Quantum power system state estimation (QPSSE) offers an inspiring direction for tackling the challenge of state estimation through quantum computing. Nevertheless, the current bottlenecks originate from the scarcity of practical and scalable QPSSE methodologies in the noisy intermediate-scale quantum (NISQ) era. This paper devises a NISQ−QPSSE algorithm that facilitates state estimation on real NISQ devices. Our new contributions include: (1) A variational quantum circuit (VQC)-based QPSSE formulation that empowers QPSSE analysis utilizing shallow-depth quantum circuits; (2) A variational quantum linear solver (VQLS)-based QPSSE solver integrating QPSSE iterations with VQC optimization; (3) An advanced NISQ-compatible QPSSE methodology for tackling the measurement and coefficient matrix issues on real quantum computers; (4) A noise-resilient method to alleviate the detrimental effects of noise disturbances. The encouraging test results on the simulator and real-scale systems affirm the precision, universality, and scalability of our QPSSE algorithm and demonstrate the vast potential of QPSSE in the thriving NISQ era.

References

[1]

Primadianto, A., Lu, C. N. (2017). A review on distribution system state estimation. IEEE Transactions on Power Systems, 32: 3875–3883.

[2]

Feng, F., Zhang, P., Zhou, Y. (2022). Authentic microgrid state estimation. IEEE Transactions on Power Systems, 37: 1657–1660.

[3]

Xia, N., Gooi, H. B., Chen, S., Hu, W. (2018). Decentralized state estimation for hybrid AC/DC microgrids. IEEE Systems Journal, 12: 434–443.

[4]

Harmon, E., Ozgur, U., Cintuglu, M. H., de Azevedo, R., Akkaya, K., Mohammed, O. A. (2018). The Internet of microgrids: A cloud-based framework for wide area networked microgrids. IEEE Transactions on Industrial Informatics, 14: 1262–1274.

[5]
Monticelli, A. (1999). State Estimation in Electric Power Systems: A Generalized Approach. New York, NY: Springer.
[6]

Zhou, Y., Tang, Z., Nikmehr, N., Babahajiani, P., Feng, F., Wei, T. C., Zheng, H., Zhang, P. (2022). Quantum computing in power systems. iEnergy, 1: 170–187.

[7]

Chen, C. C., Shiau, S. Y., Wu, M. F., Wu, Y. R. (2019). Hybrid classical-quantum linear solver using noisy intermediate-scale quantum machines. Scientific Reports, 9: 16251.

[8]

Feng, F., Zhou, Y. F., Zhang, P. (2023). Noise-resilient quantum power flow. iEnergy, 2: 63–70.

[9]

Zhou, Y., Feng, F., Zhang, P. (2021). Quantum electromagnetic transients program. IEEE Transactions on Power Systems, 36: 3813–3816.

[10]

Fei, X., Zhao, H., Zhou, X., Zhao, J., Shu, T., Wen, F. (2024). Power system fault diagnosis with quantum computing and efficient gate decomposition. Scientific Reports, 14: 16991.

[11]

Cao, Y., Zhou, X., Fei, X., Zhao, H., Liu, W., Zhao, J. (2023). Linear-layer-enhanced quantum long short-term memory for carbon price forecasting. Quantum Machine Intelligence, 5: 26.

[12]
Nielsen, M. A., Chuang, I. L. (2012). Quantum Computation and Quantum Information. Cambridge, UK: Cambridge University Press.
[13]
Wiseman, H. M., Milburn, G. J. (2009). Quantum Measurement and Control. Cambridge, UK: Cambridge University Press.
[14]
Bravo-Prieto, C., LaRose, R., Cerezo, M., Subasi, Y., Cincio, L., Coles, P. (2023). Variational quantum linear solver. Quantum, 7: 1188.
[15]

Subaşı, Y., Somma, R. D., Orsucci, D. (2019). Quantum algorithms for systems of linear equations inspired by adiabatic quantum computing. Physical review letters, 122: 060504.

[16]

Feng, F., Zhang, P., Zhou, Y., Tang, Z. (2022). Quantum microgrid state estimation. Electric Power Systems Research, 212: 108386.

[17]

Harrow, A. W., Hassidim, A., Lloyd, S. (2009). Quantum algorithm for linear systems of equations. Physical Review Letters, 103: 150502.

[18]

Feng, F., Zhou, Y., Zhang, P. (2021). Quantum power flow. IEEE Transactions on Power Systems, 36: 3810–3812.

[19]

Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S. C., Endo, S., Fujii, K., McClean, J. R., Mitarai, K., Yuan, X., Cincio, L., et al. (2021). Variational quantum algorithms. Nature Reviews Physics, 3: 625–644.

[20]
Dervovic, D., Herbster, M., Mountney, P., Severini, S., Usher, N., Wossnig, L. (2018). Quantum linear systems algorithms: A primer. arXiv preprint, arXiv:1802.08227.
[21]
Abur, A., Exposito, A. G. (2004). Power System State Estimation: Theory and Implementation. Boca Raton, FL, USA: CRC press.
[22]

Concus, P., Golub, G. H., Meurant, G. (1985). Block preconditioning for the conjugate gradient method. SIAM Journal on Scientific and Statistical Computing, 6: 220–252.

[23]

Córcoles, A. D., Takita, M., Inoue, K., Lekuch, S., Minev, Z. K., Chow, J. M., Gambetta, J. M. (2021). Exploiting dynamic quantum circuits in a quantum algorithm with superconducting qubits. Physical Review Letters, 127: 100501.

[24]

Zhou, Y., Zhang, P., Feng, F. (2023). Noisy-intermediate-scale quantum electromagnetic transients program. IEEE Transactions on Power Systems, 38: 1558–1571.

[25]

Brown, A. R., Susskind, L. (2018). Second law of quantum complexity. Physical Review D, 97: 086015.

[26]

Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J. M., Gambetta, J. M. (2017). Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 549: 242–246.

[27]

Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K. (2018). Quantum circuit learning. Physical Review A, 98: 032309.

[28]
Aharonov, D., Jones, V., Landau, Z. (2006). A polynomial quantum algorithm for approximating the Jones polynomial. In: Proceedings of the thirty-eighth annual ACM symposium on Theory of Computing, Seattle WA, USA.
[29]

Liang, J., Sankar, L., Kosut, O. (2015). Vulnerability analysis and consequences of false data injection attack on power system state estimation. IEEE Transactions on Power Systems, 31: 3864–3872.

[30]
Kingma, D. P., Ba, J., Hammad, M. M. (2014). Adam: A method for stochastic optimization. arXiv preprint, arXiv:1412.6980.
[31]
Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint, arXiv:1609.04747.
[32]
Wille, R., Van Meter, R., Naveh, Y. (2019). IBM’s qiskit tool chain: Working with and developing for real quantum computers. In: Proceedings of the 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), Florence, Italy.
[33]
Maslov, D., Young, C., Miller, D. M., Dueck, G. W. (2005). Quantum circuit simplification using templates. In: Proceedings of the Design, Automation and Test in Europe, Munich, Germany.
iEnergy
Pages 135-141
Cite this article:
Feng F, Zhang P, Zhou Y, et al. Noisy-intermediate-scale quantum power system state estimation. iEnergy, 2024, 3(3): 135-141. https://doi.org/10.23919/IEN.2024.0019

60

Views

11

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 30 August 2024
Revised: 22 September 2024
Accepted: 23 September 2024
Published: 09 October 2024
© The author(s) 2024.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return