Home iEnergy Article
PDF (7 MB)
Collect
Submit Manuscript
Review | Open Access

Four-terminal perovskite tandem solar cells

Muhammad Rafiq1,2Hengyue Li1,2()Junliang Yang1,2,3()
Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, China
State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
Show Author Information

Abstract

One of the primary barriers to the advancement of high-efficiency energy conversion technologies is the Shockley–Queisser limit, which imposes a fundamental efficiency constraint on single-junction solar cells. The advent of multi-junction solar cells provides a formidable alternative to this obstacle. Among these, organic-inorganic perovskite solar cells (PSCs) have captured substantial interest due to their outstanding optoelectronic properties, including tunable bandgaps and high-power conversion efficiencies, positioning them as prime candidates for multi-junction photovoltaic systems. We give a review of the latest advancements in four-terminal (4T) perovskite tandem solar cells (TSCs), emphasizing four pertinent configurations: perovskite-silicon (PVK/Si), perovskite-perovskite (PVK/PVK), perovskite-Cu(In,Ga)Se2 (PVK/CIGS), and perovskite-organic (PVK/organic), as well as other emerging 4T perovskite TSCs. Further, it also emphasizes the advancement of semitransparent wide-bandgap PSCs for TSC applications, tackling important issues and outlining potential future directions for optimizing 4T tandem design performance.

References

[1]

Wang, Z., Song, Z., Yan, Y., Liu, S., Yang, D. (2019). Perovskite—a perfect top cell for tandem devices to break the S–Q limit. Advanced Science, 6: 1801704.

[2]
Shockley, W., Queisser, H. (2018). Detailed balance limit of efficiency of p–n junction solar cells. In: Bent Sorensen Ed. Renewable Energy. London: Routledge.
[3]

Okada, Y., Ekins-Daukes, N. J., Kita, T., Tamaki, R., Yoshida, M., Pusch, A., Hess, O., Phillips, C. C., Farrell, D. J., Yoshida, K., et al. (2015). Intermediate band solar cells: Recent progress and future directions. Applied Physics Reviews, 2: 021302.

[4]

De Vos, A. (1980). Detailed balance limit of the efficiency of tandem solar cells. Journal of Physics D: Applied Physics, 13: 839–846.

[5]

Leijtens, T., Bush, K. A., Prasanna, R., McGehee, M. D. (2018). Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nature Energy, 3: 828–838.

[6]

Li, H., Feng, X., Huang, K., Lu, S., Wang, X., Feng, E., Chang, J., Long, C., Gao, Y., Chen, Z., et al. (2023). Constructing additives synergy strategy to doctor-blade efficient CH3NH3PbI3 perovskite solar cells under a wide range of humidity from 45% to 82%. Small, 19: 2300374.

[7]

Chang, J., Feng, E., Feng, X., Li, H., Ding, Y., Long, C., Lu, S., Zhu, H., Deng, W., Shi, J., et al. (2024). Bridging buried interface enable 24.67%-efficiency doctor-bladed perovskite solar cells in ambient condition. Nano Research, 17: 8068–8076.

[8]

Yang, W. S., Park, B. W., Jung, E. H., Jeon, N. J., Kim, Y. C., Lee, D. U., Shin, S. S., Seo, J., Kim, E. K., Noh, J. H., et al. (2017). Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science, 356: 1376–1379.

[9]

Luo, D., Yang, W., Wang, Z., Sadhanala, A., Hu, Q., Su, R., Shivanna, R., Trindade, G. F., Watts, J. F., Xu, Z., et al. (2018). Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science, 360: 1442–1446.

[10]

Jiang, Q., Zhao, Y., Zhang, X., Yang, X., Chen, Y., Chu, Z., Ye, Q., Li, X., Yin, Z., You, J. (2019). Surface passivation of perovskite film for efficient solar cells. Nature Photonics, 13: 460–466.

[11]
The National Renewable Energy (2024). Best research-cell efficiencies. Available at https://www.nrel.gov/pv/cell-efficiency.html.
[12]

McMeekin, D. P., Sadoughi, G., Rehman, W., Eperon, G. E., Saliba, M., Hörantner, M. T., Haghighirad, A., Sakai, N., Korte, L., Rech, B., et al. (2016). A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science, 351: 151–155.

[13]

Zheng, X., Alsalloum, A. Y., Hou, Y., Sargent, E. H., Bakr, O. M. (2020). All-perovskite tandem solar cells: A roadmap to uniting high efficiency with high stability. Accounts of Materials Research, 1: 63–76.

[14]

Peng, W., Mao, K., Cai, F., Meng, H., Zhu, Z., Li, T., Yuan, S., Xu, Z., Feng, X., Xu, J., et al. (2023). Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact. Science, 379: 683–690.

[15]

Wang, R., Xue, J., Wang, K. L., Wang, Z. K., Luo, Y., Fenning, D., Xu, G., Nuryyeva, S., Huang, T., Zhao, Y., et al. (2019). Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science, 366: 1509–1513.

[16]

Min, H., Kim, M., Lee, S. U., Kim, H., Kim, G., Choi, K., Lee, J. H., Seok, S. I. (2019). Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science, 366: 749–753.

[17]

Xue, J., Wang, R., Wang, K. L., Wang, Z. K., Yavuz, I., Wang, Y., Yang, Y., Gao, X., Huang, T., Nuryyeva, S., et al. (2019). Crystalline liquid-like behavior: Surface-induced secondary grain growth of photovoltaic perovskite thin film. Journal of the American Chemical Society, 141: 13948–13953.

[18]

Tan, H., Jain, A., Voznyy, O., Lan, X., García de Arquer, F. P., Fan, J. Z., Quintero-Bermudez, R., Yuan, M., Zhang, B., Zhao, Y., et al. (2017). Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science, 355: 722–726.

[19]

Zhang, T., Wang, F., Kim, H. B., Choi, I. W., Wang, C., Cho, E., Konefal, R., Puttisong, Y., Terado, K., Kobera, L., et al. (2022). Ion-modulated radical doping of spiro-OMeTAD for more efficient and stable perovskite solar cells. Science, 377: 495–501.

[20]

Long, C., Feng, E., Chang, J., Ding, Y., Gao, Y., Li, H., Liu, B., Zheng, Z., Ding, L., Yang, J. (2024). Embedding gold nanoparticles in the SnO2 electron transport layer for boosting flexible perovskite solar cells with the efficiency over 23%. Applied Physics Letters, 124: 123908.

[21]

Hu, S., Otsuka, K., Murdey, R., Nakamura, T., Truong, M. A., Yamada, T., Handa, T., Matsuda, K., Nakano, K., Sato, A., et al. (2022). Optimized carrier extraction at interfaces for 23.6% efficient tin–lead perovskite solar cells. Energy & Environmental Science, 15: 2096–2107.

[22]

Park, I. J., Kang, G., Park, M. A., Kim, J. S., Seo, S. W., Kim, D. H., Zhu, K., Park, T., Kim, J. Y. (2017). Highly efficient and uniform 1 cm2 perovskite solar cells with an electrochemically deposited NiO x hole-extraction layer. ChemSusChem, 10: 2660–2667.

[23]

Kim, D., Jung, H. J., Park, I. J., Larson, B. W., Dunfield, S. P., Xiao, C., Kim, J., Tong, J., Boonmongkolras, P., Ji, S. G., et al. (2020). Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites. Science, 368: 155–160.

[24]

Park, I. J., Kim, D. H., Ji, S. G., Ahn, Y. J., Park, S. J., Kim, D., Shin, B., Kim, J. Y. (2021). Rationally designed window layers for high efficiency perovskite/Si tandem solar cells. Advanced Optical Materials, 9: 2100788.

[25]

Walsh, A. (2015). Principles of chemical bonding and band gap engineering in hybrid organic–inorganic halide perovskites. The Journal of Physical Chemistry C, 119: 5755–5760.

[26]

Correa-Baena, J. P., Luo, Y., Brenner, T. M., Snaider, J., Sun, S., Li, X., Jensen, M. A., Hartono, N. T. P., Nienhaus, L., Wieghold, S., et al. (2019). Homogenized halides and alkali cation segregation in alloyed organic-inorganic perovskites. Science, 363: 627–631.

[27]

Lee, J. W., Hsieh, Y. T., De Marco, N., Bae, S. H., Han, Q., Yang, Y. (2017). Halide perovskites for tandem solar cells. The Journal of Physical Chemistry Letters, 8: 1999–2011.

[28]

Anaya, M., Lozano, G., Calvo, M. E., Míguez, H. (2017). ABX3 perovskites for tandem solar cells. Joule, 1: 769–793.

[29]

Hoke, E. T., Slotcavage, D. J., Dohner, E. R., Bowring, A. R., Karunadasa, H. I., McGehee, M. D. (2015). Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chemical Science, 6: 613–617.

[30]

Ji, S. G., Park, I. J., Chang, H., Park, J. H., Hong, G. P., Choi, B. K., Jang, J. H., Choi, Y. J., Lim, H. W., Ahn, Y. J., et al. (2022). Stable pure-iodide wide-band-gap perovskites for efficient Si tandem cells via kinetically controlled phase evolution. Joule, 6: 2390–2405.

[31]

Meggiolaro, D., Mosconi, E., De Angelis, F. (2019). Formation of surface defects dominates ion migration in lead-halide perovskites. ACS Energy Letters, 4: 779–785.

[32]

Ahmadian-Yazdi, M. R., Eslamian, M. (2021). Effect of Marangoni convection on the perovskite thin liquid film deposition. Langmuir, 37: 2596–2606.

[33]

Zhang, F., Min, H., Zhang, Y., Kuang, Z., Wang, J., Feng, Z., Wen, K., Xu, L., Yang, C., Shi, H., et al. (2022). Vapor-assisted in situ recrystallization for efficient tin-based perovskite light-emitting diodes. Advanced Materials, 34: 2203180.

[34]

Bai, Y., Huang, Z., Zhang, X., Lu, J., Niu, X., He, Z., Zhu, C., Xiao, M., Song, Q., Wei, X., et al. (2022). Initializing film homogeneity to retard phase segregation for stable perovskite solar cells. Science, 378: 747–754.

[35]

Lian, X., Xu, Y., Fu, W., Meng, R., Ma, Q., Xu, C., Luo, M., Hu, Y., Han, J., Min, H., et al. (2024). Homogenizing morphology and composition of methylammonium-free wide-bandgap perovskite for efficient and stable tandem solar cells. Advanced Functional Materials, 34: 2402061.

[36]

Shi, H., Zhang, L., Huang, H., Wang, X., Li, Z., Xuan, D., Wang, C., Ou, Y., Ni, C., Li, D., et al. (2022). Simultaneous interfacial modification and defect passivation for wide-bandgap semitransparent perovskite solar cells with 14.4% power conversion efficiency and 38% average visible transmittance. Small, 18: 2202144.

[37]

Tong, J., Song, Z., Kim, D. H., Chen, X., Chen, C., Palmstrom, A. F., Ndione, P. F., Reese, M. O., Dunfield, S. P., Reid, O. G., et al. (2019). Carrier lifetimes of >1 μs in Sn–Pb perovskites enable efficient all-perovskite tandem solar cells. Science, 364: 475–479.

[38]

Shivarudraiah, S. B., Tewari, N., Ng, M., Li, C. A., Chen, D., Halpert, J. E. (2021). Optically clear films of formamidinium lead bromide perovskite for wide-band-gap, solution-processed, semitransparent solar cells. ACS Applied Materials & Interfaces, 13: 37223–37230.

[39]

Yu, J. C., Li, B., Dunn, C. J., Yan, J., Diroll, B. T., Chesman, A. S. R., Jasieniak, J. J. (2022). High-performance and stable semi-transparent perovskite solar cells through composition engineering. Advanced Science, 9: 2201487.

[40]

Jaysankar, M., Raul, B. A. L., Bastos, J., Burgess, C., Weijtens, C., Creatore, M., Aernouts, T., Kuang, Y., Gehlhaar, R., Hadipour, A., et al. (2019). Minimizing voltage loss in wide-bandgap perovskites for tandem solar cells. ACS Energy Letters, 4: 259–264.

[41]

Tao, J., Xue, J., Guo, H., Wang, Y., Shen, J., Wang, T., He, T., Fu, G., Yang, S. (2023). Precisely adjusting the organic/electrode interface charge barrier for efficient and stable Ag-based regular perovskite solar cells with >23% efficiency. Chemical Engineering Journal, 463: 142445.

[42]

Duong, T., Nguyen, T., Huang, K., Pham, H., Adhikari, S. G., Khan, M. R., Duan, L., Liang, W., Fong, K. C., Shen, H., et al. (2023). Bulk incorporation with 4-methylphenethylammonium chloride for efficient and stable methylammonium-free perovskite and perovskite-silicon tandem solar cells. Advanced Energy Materials, 13: 2203607.

[43]

Rai, M., Rahmany, S., Lim, S. S., Magdassi, S., Wong, L. H., Etgar, L. (2018). Hot dipping post treatment for improved efficiency in micro patterned semi-transparent perovskite solar cells. Journal of Materials Chemistry A, 6: 23787–23796.

[44]

Yu, B., Tang, F., Yang, Y., Huang, J., Wu, S., Lu, F., Duan, W., Lambertz, A., Ding, K., Mai, Y. (2023). Impermeable atomic layer deposition for sputtering buffer layer in efficient semi-transparent and tandem solar cells via activating unreactive substrate. Advanced Materials, 35: 2202447.

[45]

Duong, T., Pham, H., Kho, T. C., Phang, P., Fong, K. C., Yan, D., Yin, Y., Peng, J., Mahmud, M. A., Gharibzadeh, S., et al. (2020). High efficiency perovskite-silicon tandem solar cells: Effect of surface coating versus bulk incorporation of 2D perovskite. Advanced Energy Materials, 10: 1903553.

[46]

Tian, C., Gao, X., Li, J., Pan, J., Yu, G., Huang, B., Wen, Y., Zhu, H., Bu, T., Cheng, Y. B., et al. (2022). Scalable growth of stable wide-bandgap perovskite towards large-scale tandem photovoltaics. Solar RRL, 6: 2200134.

[47]

Yang, M., Kim, D. H., Yu, Y., Li, Z., Reid, O. G., Song, Z., Zhao, D., Wang, C., Li, L., Meng, Y., et al. (2018). Effect of non-stoichiometric solution chemistry on improving the performance of wide-bandgap perovskite solar cells. Materials Today Energy, 7: 232–238.

[48]

Yao, Y., Hang, P., Li, B., Hu, Z., Kan, C., Xie, J., Wang, Y., Zhang, Y., Yang, D., Yu, X. (2022). Phase-stable wide-bandgap perovskites for four-terminal perovskite/silicon tandem solar cells with over 30% efficiency. Small, 18: 2203319.

[49]

Naqvi, S. D. H., Son, K., Jung, W., Hwang, H. U., Lee, S., Lee, A., Keum, M., Kim, S., Kim, J. W., Kang, M. G., et al. (2023). Mitigating intrinsic interfacial degradation in semi-transparent perovskite solar cells for high efficiency and long-term stability. Advanced Energy Materials, 13: 2302147.

[50]

Jaysankar, M., Filipič, M., Zielinski, B., Schmager, R., Song, W., Qiu, W., Paetzold, U. W., Aernouts, T., Debucquoy, M., Gehlhaar, R., et al. (2018). Perovskite–silicon tandem solar modules with optimised light harvesting. Energy & Environmental Science, 11: 1489–1498.

[51]

Dewi, H. A., Wang, H., Li, J., Thway, M., Sridharan, R., Stangl, R., Lin, F., Aberle, A. G., Mathews, N., Bruno, A., et al. (2019). Highly efficient semitransparent perovskite solar cells for four terminal perovskite-silicon tandems. ACS Applied Materials & Interfaces, 11: 34178–34187.

[52]

Tao, J., Liu, X., Shen, J., Han, S., Guan, L., Fu, G., Kuang, D. B., Yang, S. (2022). F-type pseudo-halide anions for high-efficiency and stable wide-band-gap inverted perovskite solar cells with fill factor exceeding 84. ACS Nano, 16: 10798–10810.

[53]

Yoon, S., Ha, H. U., Seok, H. J., Kim, H. K., Kang, D. W. (2022). Highly efficient and reliable semitransparent perovskite solar cells via top electrode engineering. Advanced Functional Materials, 32: 2111760.

[54]

Wu, M., Li, X., Ying, Z., Chen, Y., Wang, X., Zhang, M., Su, S., Guo, X., Sun, J., Shou, C., et al. (2023). Reconstruction of the indium tin oxide surface enhances the adsorption of high-density self-assembled monolayer for perovskite/silicon tandem solar cells. Advanced Functional Materials, 33: 2304708.

[55]

Gharibzadeh, S., Hossain, I. M., Fassl, P., Nejand, B. A., Abzieher, T., Schultes, M., Ahlswede, E., Jackson, P., Powalla, M., Schäfer, S., et al. (2020). 2D/3D heterostructure for semitransparent perovskite solar cells with engineered bandgap enables efficiencies exceeding 25% in four-terminal tandems with silicon and CIGS. Advanced Functional Materials, 30: 1909919.

[56]

Zhang, D., Najafi, M., Zardetto, V., Dörenkämper, M., Zhou, X., Veenstra, S., Geerligs, L. J., Aernouts, T., Andriessen, R. (2018). High efficiency 4-terminal perovskite/c-Si tandem cells. Solar Energy Materials and Solar Cells, 188: 1–5.

[57]

Rohatgi, A., Zhu, K., Tong, J., Kim, D. H., Reichmanis, E., Rounsaville, B., Prakash, V., Ok, Y. W. (2020). 26.7% efficient 4-terminal perovskite–silicon tandem solar cell composed of a high-performance semitransparent perovskite cell and a doped poly-Si/SiO x passivating contact silicon cell. IEEE Journal of Photovoltaics, 10: 417–422.

[58]

Li, Z., Li, X., Chen, X., Cui, X., Guo, C., Feng, X., Ren, D., Mo, Y., Yang, M., Huang, H., et al. (2023). In situ epitaxial growth of blocking structure in mixed-halide wide-band-gap perovskites for efficient photovoltaics. Joule, 7: 1363–1381.

[59]

Chai, W., Li, L., Zhu, W., Chen, D., Zhou, L., Xi, H., Zhang, J., Zhang, C., Hao, Y. (2023). Graded heterojunction improves wide-bandgap perovskite for highly efficient 4-terminal perovskite/silicon tandem solar cells. Research, 6: 0196.

[60]

Akhil, S., Akash, S., Pasha, A., Kulkarni, B., Jalalah, M., Alsaiari, M., Harraz, F. A., Balakrishna, R. G. (2021). Review on perovskite silicon tandem solar cells: Status and prospects 2T, 3T and 4T for real world conditions. Materials & Design, 211: 110138.

[61]

Li, H., Zhang, W. (2020). Perovskite tandem solar cells: From fundamentals to commercial deployment. Chemical Reviews, 120: 9835–9950.

[62]

Chi, W., Banerjee, S. K., Jayawardena, K. G. D. I., Silva, S. R. P., Seok, S. I. (2023). Perovskite/silicon tandem solar cells: Choice of bottom devices and recombination layers. ACS Energy Letters, 8: 1535–1550.

[63]

Qiu, Z., Xu, Z., Li, N., Zhou, N., Chen, Y., Wan, X., Liu, J., Li, N., Hao, X., Bi, P., et al. (2018). Monolithic perovskite/Si tandem solar cells exceeding 22% efficiency via optimizing top cell absorber. Nano Energy, 53: 798–807.

[64]

Chen, B., Yu, Z., Liu, K., Zheng, X., Liu, Y., Shi, J., Spronk, D., Rudd, P. N., Holman, Z., Huang, J. (2019). Grain engineering for perovskite/silicon monolithic tandem solar cells with efficiency of 25.4%. Joule, 3: 177–190.

[65]
Ou, Y., Huang, H., Shi, H., Li, Z., Chen, Z., Mateen, M., Huang, S. (2023). Collaborative interfacial modification and surficial passivation for high-efficiency MA-free wide-bandgap perovskite solar cells. Chemical Engineering Journal, 469: 143860.
[66]

Yoshikawa, K., Kawasaki, H., Yoshida, W., Irie, T., Konishi, K., Nakano, K., Uto, T., Adachi, D., Kanematsu, M., Uzu, H., et al. (2017). Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature Energy, 2: 17032.

[67]

Löper, P., Moon, S. J., de Nicolas, S. M., Niesen, B., Ledinsky, M., Nicolay, S., Bailat, J., Yum, J. H., De Wolf, S., Ballif, C. (2015). Organic-inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells. Physical Chemistry Chemical Physics, 17: 1619–1629.

[68]

Bailie, C. D., Christoforo, M. G., Mailoa, J. P., Bowring, A. R., Unger, E. L., Nguyen, W. H., Burschka, J., Pellet, N., Lee, J. Z., Grätzel, M., et al. (2015). Semi-transparent perovskite solar cells for tandems with silicon and CIGS. Energy & Environmental Science, 8: 956–963.

[69]

Chen, B., Bai, Y., Yu, Z., Li, T., Zheng, X., Dong, Q., Shen, L., Boccard, M., Gruverman, A., Holman, Z., et al. (2016). Efficient semitransparent perovskite solar cells for 23.0%-efficiency perovskite/silicon four-terminal tandem cells. Advanced Energy Materials, 6: 1601128.

[70]

Bush, K. A., Bailie, C. D., Chen, Y., Bowring, A. R., Wang, W., Ma, W., Leijtens, T., Moghadam, F., McGehee, M. D. (2016). Thermal and environmental stability of semi-transparent perovskite solar cells for tandems enabled by a solution-processed nanoparticle buffer layer and sputtered ITO electrode. Advanced Materials, 28: 3937–3943.

[71]

Ramírez Quiroz, C. O., Shen, Y., Salvador, M., Forberich, K., Schrenker, N., Spyropoulos, G. D., Heumüller, T., Wilkinson, B., Kirchartz, T., Spiecker, E., et al. (2018). Balancing electrical and optical losses for efficient 4-terminal Si–perovskite solar cells with solution processed percolation electrodes. Journal of Materials Chemistry A, 6: 3583–3592.

[72]

Wang, Z., Zhu, X., Zuo, S., Chen, M., Zhang, C., Wang, C., Ren, X., Yang, Z., Liu, Z., Xu, X., et al. (2020). 27%-efficiency four-terminal perovskite/silicon tandem solar cells by sandwiched gold nanomesh. Advanced Functional Materials, 30: 1908298.

[73]

Werner, J., Barraud, L., Walter, A., Bräuninger, M., Sahli, F., Sacchetto, D., Tétreault, N., Paviet-Salomon, B., Moon, S. J., Allebé, C., et al. (2016). Efficient near-infrared-transparent perovskite solar cells enabling direct comparison of 4-terminal and monolithic perovskite/silicon tandem cells. ACS Energy Letters, 1: 474–480.

[74]

Duong, T., Wu, Y., Shen, H., Peng, J., Fu, X., Jacobs, D., Wang, E. C., Kho, T. C., Fong, K. C., Stocks, M., et al. (2017). Rubidium multication perovskite with optimized bandgap for perovskite-silicon tandem with over 26% efficiency. Advanced Energy Materials, 7: 1700228.

[75]

Chen, B., Baek, S. W., Hou, Y., Aydin, E., De Bastiani, M., Scheffel, B., Proppe, A., Huang, Z., Wei, M., Wang, Y. K., et al. (2020). Enhanced optical path and electron diffusion length enable high-efficiency perovskite tandems. Nature Communications, 11: 1257.

[76]

Aydin, E., De Bastiani, M., Yang, X., Sajjad, M., Aljamaan, F., Smirnov, Y., Hedhili, M. N., Liu, W., Allen, T. G., Xu, L., et al. (2019). Zr-doped indium oxide (IZRO) transparent electrodes for perovskite-based tandem solar cells. Advanced Functional Materials, 29: 1901741.

[77]

Duong, T., Lal, N., Grant, D., Jacobs, D., Zheng, P., Rahman, S., Shen, H., Stocks, M., Blakers, A., Weber, K., et al. (2016). Semitransparent perovskite solar cell with sputtered front and rear electrodes for a four-terminal tandem. IEEE Journal of Photovoltaics, 6: 679–687.

[78]

Xie, J., Hang, P., Wang, H., Zhao, S., Li, G., Fang, Y., Liu, F., Guo, X., Zhu, H., Lu, X., et al. (2019). Perovskite bifunctional device with improved electroluminescent and photovoltaic performance through interfacial energy-band engineering. Advanced Materials, 31: 1902543.

[79]

Ma, S., Zhu, W., Han, T., Zhang, C., Gao, P., Guo, Y., Song, Z., Ni, Y., Qiao, D. (2023). Pure-phase, large-grained wide-band-gap perovskite films for high-efficiency, four-terminal perovskite/silicon tandem solar cells. ACS Applied Materials & Interfaces, 15: 40719–40726.

[80]

Yang, D., Zhang, X., Hou, Y., Wang, K., Ye, T., Yoon, J., Wu, C., Sanghadasa, M., Liu, S., Priya, S. (2021). 28.3%-efficiency perovskite/silicon tandem solar cell by optimal transparent electrode for high efficient semitransparent top cell. Nano Energy, 84: 105934.

[81]

Chirilă, A., Buecheler, S., Pianezzi, F., Bloesch, P., Gretener, C., Uhl, A. R., Fella, C., Kranz, L., Perrenoud, J., Seyrling, S., et al. (2011). Highly efficient Cu(In, Ga)Se2 solar cells grown on flexible polymer films. Nature Materials, 10: 857–861.

[82]

Yang, Y., Chen, Q., Hsieh, Y. T., Song, T. B., De Marco, N., Zhou, H., Yang, Y. (2015). Multilayer transparent top electrode for solution processed perovskite/Cu(In,Ga)(Se,S)2 four terminal tandem solar cells. ACS Nano, 9: 7714–7721.

[83]

Weiss, D. N. (2021). Tandem solar cells beyond perovskite-silicon. Joule, 5: 2247–2250.

[84]

Bati, A. S. R., Zhong, Y. L., Burn, P. L., Nazeeruddin, M. K., Shaw, P. E., Batmunkh, M. (2023). Next-generation applications for integrated perovskite solar cells. Communications Materials, 4: 2.

[85]

Fu, F., Feurer, T., Jäger, T., Avancini, E., Bissig, B., Yoon, S., Buecheler, S., Tiwari, A. N. (2015). Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications. Nature Communications, 6: 8932.

[86]

Fu, F., Feurer, T., Weiss, T. P., Pisoni, S., Avancini, E., Andres, C., Buecheler, S., Tiwari, A. N. (2017). High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration. Nature Energy, 2: 16190.

[87]

Shen, H., Duong, T., Peng, J., Jacobs, D., Wu, N., Gong, J., Wu, Y., Karuturi, S. K., Fu, X., Weber, K., et al. (2018). Mechanically-stacked perovskite/CIGS tandem solar cells with efficiency of 23.9% and reduced oxygen sensitivity. Energy & Environmental Science, 11: 394–406.

[88]

Kim, D. H., Muzzillo, C. P., Tong, J., Palmstrom, A. F., Larson, B. W., Choi, C., Harvey, S. P., Glynn, S., Whitaker, J. B., Zhang, F., et al. (2019). Bimolecular additives improve wide-band-gap perovskites for efficient tandem solar cells with CIGS. Joule, 3: 1734–1745.

[89]

Feurer, T., Carron, R., Torres Sevilla, G., Fu, F., Pisoni, S., Romanyuk, Y. E., Buecheler, S., Tiwari, A. N. (2019). Efficiency improvement of near-stoichiometric CuInSe2 solar cells for application in tandem devices. Advanced Energy Materials, 9: 1901428.

[90]

Feeney, T., Hossain, I. M., Gharibzadeh, S., Gota, F., Singh, R., Fassl, P., Mertens, A., Farag, A., Becker, J. P., Paetel, S., et al. (2022). Four-terminal perovskite/copper indium gallium selenide tandem solar cells: Unveiling the path to >27% in power conversion efficiency. Solar RRL, 6: 2200662.

[91]

Anand, A., Islam, M. M., Meitzner, R., Schubert, U. S., Hoppe, H. (2021). Introduction of a novel figure of merit for the assessment of transparent conductive electrodes in photovoltaics: Exact and approximate form. Advanced Energy Materials, 11: 2100875.

[92]

Rosli, N. N., Ibrahim, M. A., Ahmad Ludin, N., Mat Teridi, M. A., Sopian, K. (2019). A review of graphene based transparent conducting films for use in solar photovoltaic applications. Renewable and Sustainable Energy Reviews, 99: 83–99.

[93]
Safaei, J., Rosli, N. N., Mohamad Noh, M. F., Mohamed, N. A., Ibrahim, M. A., Mat Teridi, M. A. (2018). Low temperature fabrication of transparent conductive electrode with high ultraviolet transmittance down to wavelength of 250 nm. Physica Status Solidi (RRL) – Rapid Research Letters, 12: 1800441.
[94]

Mohamad Noh, M. F., Teh, C. H., Daik, R., Lim, E. L., Yap, C. C., Ibrahim, M. A., Ahmad Ludin, N., bin Mohd Yusoff, A. R., Jang, J., Mat Teridi, M. A. (2018). The architecture of the electron transport layer for a perovskite solar cell. Journal of Materials Chemistry C, 6: 682–712.

[95]

Pisoni, S., Fu, F., Feurer, T., Makha, M., Bissig, B., Nishiwaki, S., Tiwari, A. N., Buecheler, S. (2017). Flexible NIR-transparent perovskite solar cells for all-thin-film tandem photovoltaic devices. Journal of Materials Chemistry A, 5: 13639–13647.

[96]

Ferguson, V., Li, B., Tas, M. O., Webb, T., Sajjad, M. T., Thomson, S. A. J., Wu, Z., Shen, Y., Shao, G., Anguita, J. V., et al. (2020). Direct growth of vertically aligned carbon nanotubes onto transparent conductive oxide glass for enhanced charge extraction in perovskite solar cells. Advanced Materials Interfaces, 7: 2001121.

[97]

Kranz, L., Abate, A., Feurer, T., Fu, F., Avancini, E., Löckinger, J., Reinhard, P., Zakeeruddin, S. M., Grätzel, M., Buecheler, S., et al. (2015). High-efficiency polycrystalline thin film tandem solar cells. The Journal of Physical Chemistry Letters, 6: 2676–2681.

[98]

Nakamura, M., Lin, C. C., Nishiyama, C., Tada, K., Bessho, T., Segawa, H. (2022). Semi-transparent perovskite solar cells for four-terminal perovskite/CIGS tandem solar cells. ACS Applied Energy Materials, 5: 8103–8111.

[99]

Guchhait, A., Dewi, H. A., Leow, S. W., Wang, H., Han, G., Suhaimi, F. B., Mhaisalkar, S., Wong, L. H., Mathews, N. (2017). Over 20% efficient CIGS–perovskite tandem solar cells. ACS Energy Letters, 2: 807–812.

[100]

Nakamura, M., Tada, K., Kinoshita, T., Bessho, T., Nishiyama, C., Takenaka, I., Kimoto, Y., Higashino, Y., Sugimoto, H., Segawa, H. (2020). Perovskite/CIGS spectral splitting double junction solar cell with 28% power conversion efficiency. iScience, 23: 101817.

[101]

Chen, C., Liang, J., Zhang, J., Liu, X., Yin, X., Cui, H., Wang, H., Wang, C., Li, Z., Gong, J., et al. (2021). Interfacial engineering of a thiophene-based 2D/3D perovskite heterojunction for efficient and stable inverted wide-bandgap perovskite solar cells. Nano Energy, 90: 106608.

[102]

Zhang, C., Chen, M., Fu, F., Zhu, H., Feurer, T., Tian, W., Zhu, C., Zhou, K., Jin, S., Zakeeruddin, S. M., et al. (2022). CNT-based bifacial perovskite solar cells toward highly efficient 4-terminal tandem photovoltaics. Energy & Environmental Science, 15: 1536–1544.

[103]

Tan, H. Q., Liang, H., Krause, M., Zhao, X., Kothandaraman, R., Carron, R., Tiwari, A. N., Fu, F., Birgersson, E., Hou, Y., et al. (2023). Accounting for fabrication variability in transparent perovskite solar cells for four-terminal tandem applications. Solar RRL, 7: 2300339.

[104]

Liu, X., Zhang, J., Tang, L., Gong, J., Li, W., Ma, Z., Tu, Z., Li, Y., Li, R., Hu, X., et al. (2023). Over 28% efficiency perovskite/Cu(InGa)Se2 tandem solar cells: Highly efficient sub-cells and their bandgap matching. Energy & Environmental Science, 16: 5029–5042.

[105]

Liang, H., Feng, J., Rodríguez-Gallegos, C. D., Krause, M., Wang, X., Alvianto, E., Guo, R., Liu, H., Kothandaraman, R. K., Carron, R., et al. (2023). 29.9%-efficient, commercially viable perovskite/CuInSe2 thin-film tandem solar cells. Joule, 7: 2859–2872.

[106]

Feng, E., Zhang, C., Chang, J., Zhao, F., Hu, B., Han, Y., Sha, M., Li, H., Du, X. J., Long, C., et al. (2024). Constraining the excessive aggregation of non-fullerene acceptor molecules enables organic solar modules with the efficiency >16%. ACS Nano, 18: 28026–28037.

[107]

Meng, L., Zhang, Y., Wan, X., Li, C., Zhang, X., Wang, Y., Ke, X., Xiao, Z., Ding, L., Xia, R., et al. (2018). Organic and solution-processed tandem solar cells with 17.3% efficiency. Science, 361: 1094–1098.

[108]

Chen, W., Zhang, J., Xu, G., Xue, R., Li, Y., Zhou, Y., Hou, J., Li, Y. (2018). A semitransparent inorganic perovskite film for overcoming ultraviolet light instability of organic solar cells and achieving 14.03% efficiency. Advanced Materials, 30: 1800855.

[109]

Xie, Y. M., Xue, Q., Yao, Q., Xie, S., Niu, T., Yip, H. L. (2021). Monolithic perovskite/organic tandem solar cells: Developments, prospects, and challenges. Nano Select, 2: 1266–1276.

[110]

Guo, J., Wu, Y., Sun, R., Wang, W., Guo, J., Wu, Q., Tang, X., Sun, C., Luo, Z., Chang, K., et al. (2019). Suppressing photo-oxidation of non-fullerene acceptors and their blends in organic solar cells by exploring material design and employing friendly stabilizers. Journal of Materials Chemistry A, 7: 25088–25101.

[111]

Wang, R., Han, M., Wang, Y., Zhao, J., Zhang, J., Ding, Y., Zhao, Y., Zhang, X., Hou, G. (2023). Recent progress on efficient perovskite/organic tandem solar cells. Journal of Energy Chemistry, 83: 158–172.

[112]

Liu, L., Xiao, H., Jin, K., Xiao, Z., Du, X., Yan, K., Hao, F., Bao, Q., Yi, C., Liu, F., et al. (2022). 4-terminal inorganic perovskite/organic tandem solar cells offer 22% efficiency. Nano-Micro Letters, 15: 23.

[113]

Zuo, C., Scully, A. D., Vak, D., Tan, W., Jiao, X., McNeill, C. R., Angmo, D., Ding, L., Gao, M. (2019). Self-assembled 2D perovskite layers for efficient printable solar cells. Advanced Energy Materials, 9: 1803258.

[114]

Zuo, C., Scully, A. D., Tan, W. L., Zheng, F., Ghiggino, K. P., Vak, D., Weerasinghe, H., McNeill, C. R., Angmo, D., Chesman, A. S. R., et al. (2020). Crystallisation control of drop-cast quasi-2D/3D perovskite layers for efficient solar cells. Communications Materials, 1: 33.

[115]

Zuo, C., Scully, A. D., Gao, M. (2021). Drop-casting method to screen ruddlesden-popper perovskite formulations for use in solar cells. ACS Applied Materials & Interfaces, 13: 56217–56225.

[116]

Xiao, H., Zuo, C., Liu, F., Ding, L. (2021). Drop-coating produces efficient CsPbI2Br solar cells. Journal of Semiconductors, 42: 050502.

[117]

Liu, L., Zuo, C., Ding, L. (2021). Self-spreading produces highly efficient perovskite solar cells. Nano Energy, 90: 106509.

[118]

Chen, X., Jia, Z., Chen, Z., Jiang, T., Bai, L., Tao, F., Chen, J., Chen, X., Liu, T., Xu, X., et al. (2020). Efficient and reproducible monolithic perovskite/organic tandem solar cells with low-loss interconnecting layers. Joule, 4: 1594–1606.

[119]

Palmstrom, A. F., Eperon, G. E., Leijtens, T., Prasanna, R., Habisreutinger, S. N., Nemeth, W., Gaulding, E. A., Dunfield, S. P., Reese, M., Nanayakkara, S., et al. (2019). Enabling flexible all-perovskite tandem solar cells. Joule, 3: 2193–2204.

[120]

Ávila, J., Momblona, C., Boix, P., Sessolo, M., Anaya, M., Lozano, G., Vandewal, K., Míguez, H., Bolink, H. J. (2018). High voltage vacuum-deposited CH3NH3PbI3–CH3NH3PbI3 tandem solar cells. Energy & Environmental Science, 11: 3292–3297.

[121]

Shen, H., Walter, D., Wu, Y., Fong, K. C., Jacobs, D. A., Duong, T., Peng, J., Weber, K., White, T. P., Catchpole, K. R. (2020). Monolithic perovskite/Si tandem solar cells: Pathways to over 30% efficiency. Advanced Energy Materials, 10: 1902840.

[122]

Braly, I. L., DeQuilettes, D. W., Pazos-Outón, L. M., Burke, S., Ziffer, M. E., Ginger, D. S., Hillhouse, H. W. (2018). Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency. Nature Photonics, 12: 355–361.

[123]

Yang, Z., Rajagopal, A., Chueh, C. C., Jo, S. B., Liu, B., Zhao, T., Jen, A. K. Y. (2016). Stable low-bandgap Pb–Sn binary perovskites for tandem solar cells. Advanced Materials, 28: 8990–8997.

[124]

Abdollahi Nejand, B., Hossain, I. M., Jakoby, M., Moghadamzadeh, S., Abzieher, T., Gharibzadeh, S., Schwenzer, J. A., Nazari, P., Schackmar, F., Hauschild, D., et al. (2020). Vacuum-assisted growth of low-bandgap thin films (FA0.8MA0.2Sn0.5Pb0.5I3) for all-perovskite tandem solar cells. Advanced Energy Materials, 10: 1902583.

[125]

Eperon, G. E., Leijtens, T., Bush, K. A., Prasanna, R., Green, T., Wang, J. T. W., McMeekin, D. P., Volonakis, G., Milot, R. L., May, R., et al. (2016). Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science, 354: 861–865.

[126]

Zhao, D., Wang, C., Song, Z., Yu, Y., Chen, C., Zhao, X., Zhu, K., Yan, Y. (2018). Four-terminal all-perovskite tandem solar cells achieving power conversion efficiencies exceeding 23%. ACS Energy Letters, 3: 305–306.

[127]

Guan, H., Zhou, S., Fu, S., Pu, D., Chen, X., Ge, Y., Wang, S., Wang, C., Cui, H., Liang, J., et al. (2024). Regulating crystal orientation via ligand anchoring enables efficient wide-bandgap perovskite solar cells and tandems. Advanced Materials, 36: 2307987.

[128]

Wang, C., Zhao, Y., Ma, T., An, Y., He, R., Zhu, J., Chen, C., Ren, S., Fu, F., Zhao, D., et al. (2022). A universal close-space annealing strategy towards high-quality perovskite absorbers enabling efficient all-perovskite tandem solar cells. Nature Energy, 7: 744–753.

[129]

Tang, Z., George, Z., Ma, Z., Bergqvist, J., Tvingstedt, K., Vandewal, K., Wang, E., Andersson, L. M., Andersson, M. R., Zhang, F., et al. (2012). Semi-transparent tandem organic solar cells with 90% internal quantum efficiency. Advanced Energy Materials, 2: 1467–1476.

[130]

Li, G., Wang, C., Fu, S., Zheng, W., Shen, W., Jia, P., Huang, L., Zhou, S., Zhou, J., Wang, C., et al. (2024). Boosting all-perovskite tandem solar cells by revitalizing the buried tin-lead perovskite interface. Advanced Materials, 36: 2401698.

[131]

Zhao, D., Yu, Y., Wang, C., Liao, W., Shrestha, N., Grice, C. R., Cimaroli, A. J., Guan, L., Ellingson, R. J., Zhu, K., et al. (2017). Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nature Energy, 2: 17018.

[132]

Hu, H., Moghadamzadeh, S., Azmi, R., Li, Y., Kaiser, M., Fischer, J. C., Jin, Q., Maibach, J., Hossain, I. M., Paetzold, U. W., et al. (2022). Sn-Pb mixed perovskites with fullerene-derivative interlayers for efficient four-terminal all-perovskite tandem solar cells. Advanced Functional Materials, 32: 2107650.

[133]

Saeed, A., Wang, L., Miao, Q. (2024). High‐performance perovskite‐based tandem solar cells: Recent advancement, challenges, and steps toward industrialization. Solar RRL, 8: 2400172

[134]

Mahato, M. K., Roy, S., Prasad, E. (2024). Investigating static–dynamic heterogeneities and enhanced charge-separation in CdS QDs with a phenothiazine-based donor−π–acceptor (D−π–A) molecular system. The Journal of Physical Chemistry C, 128: 12503–12510.

[135]

Wang, X., Song, Z., Tang, H., Li, Y., Zhong, H., Wu, J., Wang, W., Chen, S., Zhang, W., Fang, F., et al. (2024). Synergic surface modifications of PbS quantum dots by sodium acetate in solid-state ligand exchange toward short-wave infrared photodetectors. ACS Applied Materials & Interfaces, 16: 44164–44173.

[136]

Coffey, B., Skytte, E., Ahmed, T., Vasileiadou, E. S., Lin, E. Y., Hua, A. S., Cook, E., Tenney, S. M., Sletten, E. M., Caram, J. R. (2024). Ultrasmall HgTe quantum dots with near-unity photoluminescent quantum yields in the near and shortwave infrared. Chemistry of Materials, 36: 7561–7569.

[137]

Manekkathodi, A., Chen, B., Kim, J., Baek, S. W., Scheffel, B., Hou, Y., Ouellette, O., Saidaminov, M. I., Voznyy, O., Madhavan, V. E., et al. (2019). Solution-processed perovskite-colloidal quantum dot tandem solar cells for photon collection beyond 1000 nm. Journal of Materials Chemistry A, 7: 26020–26028.

[138]

Zhu, J., Lu, K., Li, J., Liu, Z., Ma, W. (2024). Tandem solar cells based on quantum dots. Materials Chemistry Frontiers, 8: 1792–1807.

[139]

Shinde, D. D., Sharma, A., Dambhare, N. V., Mahajan, C., Biswas, A., Mitra, A., Rath, A. K. (2024). Synthesis and processing strategy for high-bandgap PbS quantum dots: A promising candidate for harvesting high-energy photons in solar cells. ACS Applied Materials & Interfaces, 16: 42522–42533.

[140]

Li, M., Yan, J., Zhao, X., Ma, T., Zhang, A., Chen, S., Shen, G., Khalaf, G. M. G., Zhang, J., Chen, C., et al. (2024). Synergistic enhancement of efficient perovskite/quantum dot tandem solar cells based on transparent electrode and band alignment engineering. Advanced Energy Materials, 14: 2400219.

[141]

Jayan K, D., Babu, K. (2025). Luminescent perovskite quantum dots: Progress in fabrication, modelling and machine learning approaches for advanced photonic and quantum computing applications. Journal of Luminescence, 277: 120906.

[142]

Zou, T., Choi, T., Liu, A., Zhu, H., Noh, Y. Y. (2024). Printed quantum dot photodetectors for applications from the high-energy to the infrared region. Nano Energy, 125: 109539.

[143]

Wang, Y., Wang, R., Hu, Y., Zheng, L., Fu, G., Wang, G., Zhou, Y., Xie, Q., Pan, J., Peng, S. (2024). Impact of nanoscale Cu (I) precursors prepared by solution process on large-area CdTe solar cells. Materials Science in Semiconductor Processing, 181: 108652.

[144]

Shukla, A., Wright, J., Henningsson, A., Stieglitz, H., Colegrove, E., Besley, L., Baur, C., De Angelis, S., Stuckelberger, M., Poulsen, H. F., et al. (2024). Grain boundary strain localization in a CdTe solar cell revealed by scanning 3D X-ray diffraction microscopy. Journal of Materials Chemistry A, 12: 16793–16802.

[145]

Menon, H., Yan, F. (2024). Device simulation and experimental validation of perovskite-cadmium telluride 4T tandem solar cell. Frontiers in Energy Research, 12: 1457556.

[146]

Ye, H., Xu, W., Tang, F., Yu, B., Zhang, C., Ma, N., Lu, F., Yang, Y., Shen, K., Duan, W., et al. (2023). Minimizing the ohmic resistance of wide-bandgap perovskite for semitransparent and tandem solar cells. Solar RRL, 7: 2200877.

[147]
Tang, T., Zhang, H., Du, X., Liu, Y., Zhou, H. (2017). Theoretical design of perovskite/CdTe four-terminal tandem solar cells. In: Proceedings of the 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), Washington, DC, USA.
[148]
Rühle, S. (2017). The detailed balance limit of perovskite/silicon and perovskite/CdTe tandem solar cells. Physica Status Solidi (a), 214: 1600955.
[149]

Siegler, T. D., Shimpi, T. M., Sampath, W. S., Korgel, B. A. (2019). Development of wide bandgap perovskites for next-generation low-cost CdTe tandem solar cells. Chemical Engineering Science, 199: 388–397.

[150]

Green, M., Dunlop, E., Hohl‐Ebinger, J., Yoshita, M., Kopidakis, N., Hao, X. (2021). Solar cell efficiency tables (version 57). Progress in Photovoltaics: Research and Applications, 29: 3–15.

[151]

Kakiage, K., Aoyama, Y., Yano, T., Oya, K., Fujisawa, J. I., Hanaya, M. (2015). Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chemical Communications, 51: 15894–15897.

[152]

Cole, J. M., Pepe, G., Al Bahri, O. K., Cooper, C. B. (2019). Cosensitization in dye-sensitized solar cells. Chemical Reviews, 119: 7279–7327.

[153]

Prajapat, K., Dhonde, M., Sahu, K., Bhojane, P., Murty, V., Shirage, P. M. (2023). The evolution of organic materials for efficient dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 55: 100586.

[154]

Kinoshita, T., Nonomura, K., Joong Jeon, N., Giordano, F., Abate, A., Uchida, S., Kubo, T., Seok, S. I., Nazeeruddin, M. K., Hagfeldt, A., et al. (2015). Spectral splitting photovoltaics using perovskite and wideband dye-sensitized solar cells. Nature Communications, 6: 8834.

[155]

Cooper, C. B., Beard, E. J., Vázquez-Mayagoitia, Á., Stan, L., Stenning, G. B. G., Nye, D. W., Vigil, J. A., Tomar, T., Jia, J., Bodedla, G. B., et al. (2019). Design-to-device approach affords panchromatic co-sensitized solar cells. Advanced Energy Materials, 9: 1802820.

[156]

Sobuś, J., Ziółek, M. (2014). Optimization of absorption bands of dye-sensitized and perovskite tandem solar cells based on loss-in-potential values. Physical Chemistry Chemical Physics, 16: 14116–14126.

[157]

Hosseinnezhad, M. (2019). Enhanced performance of dye-sensitized solar cells using perovskite/DSSCs tandem design. Journal of Electronic Materials, 48: 5403–5408.

[158]

Venkatesan, S., Liu, I. P., Lin, J. C., Tsai, M. H., Teng, H., Lee, Y. L. (2018). Highly efficient quasi-solid-state dye-sensitized solar cells using polyethylene oxide (PEO) and poly(methyl methacrylate) (PMMA)-based printable electrolytes. Journal of Materials Chemistry A, 6: 10085–10094.

[159]

Margulis, G. Y., Christoforo, M. G., Lam, D., Beiley, Z. M., Bowring, A. R., Bailie, C. D., Salleo, A., McGehee, M. D. (2013). Spray deposition of silver nanowire electrodes for semitransparent solid-state dye-sensitized solar cells. Advanced Energy Materials, 3: 1657–1663.

[160]

Li, Z., Kim, T. H., Han, S. Y., Yun, Y. J., Jeong, S., Jo, B., Ok, S. A., Yim, W., Lee, S. H., Kim, K., et al. (2020). Wide-bandgap perovskite/gallium arsenide tandem solar cells. Advanced Energy Materials, 10: 1903085.

[161]

Gurudayal, Sabba, D., Kumar, M. H., Wong, L. H., Barber, J., Grätzel, M., Mathews, N. (2015). Perovskite-hematite tandem cells for efficient overall solar driven water splitting. Nano Letters, 15: 3833–3839.

[162]

Edwardes Moore, E., Andrei, V., Zacarias, S., Pereira, I. A. C., Reisner, E. (2020). Integration of a hydrogenase in a lead halide perovskite photoelectrode for tandem solar water splitting. ACS Energy Letters, 5: 232–237.

[163]

Ghadiri, E., Shin, D., Shafiee, A., Warren, W. S., Mitzi, D. B. (2018). Grain-resolved ultrafast photophysics in Cu2BaSnS4– x Se x semiconductors using pump–probe diffuse reflectance spectroscopy and microscopy. ACS Applied Materials & Interfaces, 10: 39615–39623.

[164]

Wessler, G., Zhu, T., Sun, J. P., Harrell, A., Huhn, W. P., Blum, V., Mitzi, D. B. (2018). Band gap tailoring and structure-composition relationship within the alloyed semiconductor Cu2BaGe1– x Sn x Se4. Chemistry of Materials, 30: 6566–6574.

[165]

Kim, Y., Hempel, H., Harvey, S. P., Rivera, N. A., Unold, T., Mitzi, D. B. (2023). Alkali element (Li, Na, K, and Rb) doping of Cu2BaGe1− x Sn x Se4 films. Journal of Materials Chemistry A, 11: 15336–15346.

[166]

Deng, H., Yuan, S., Yang, X., Zhang, J., Khan, J., Zhao, Y., Ishaq, M., Ye, W., Cheng, Y. B., Song, H., et al. (2018). High-throughput method to deposit continuous composition spread Sb2(Se x S1− x )3 thin film for photovoltaic application. Progress in Photovoltaics: Research and Applications, 26: 281–290.

[167]

Volonakis, G., Sakai, N., Snaith, H. J., Giustino, F. (2019). Oxide analogs of halide perovskites and the new semiconductor Ba2AgIO6. The Journal of Physical Chemistry Letters, 10: 1722–1728.

[168]

Schade, L., Wright, A. D., Johnson, R. D., Dollmann, M., Wenger, B., Nayak, P. K., Prabhakaran, D., Herz, L. M., Nicholas, R., Snaith, H. J., et al. (2019). Structural and optical properties of Cs2AgBiBr6 double perovskite. ACS Energy Letters, 4: 299–305.

[169]

Wright, A. D., Buizza, L. R. V., Savill, K. J., Longo, G., Snaith, H. J., Johnston, M. B., Herz, L. M. (2021). Ultrafast excited-state localization in Cs2AgBiBr6 double perovskite. The Journal of Physical Chemistry Letters, 12: 3352–3360.

[170]

Hörantner, M. T., Leijtens, T., Ziffer, M. E., Eperon, G. E., Christoforo, M. G., McGehee, M. D., Snaith, H. J. (2017). The potential of multijunction perovskite solar cells. ACS Energy Letters, 2: 2506–2513.

[171]

Werner, J., Dubuis, G., Walter, A., Löper, P., Moon, S. J., Nicolay, S., Morales-Masis, M., De Wolf, S., Niesen, B., Ballif, C. (2015). Sputtered rear electrode with broadband transparency for perovskite solar cells. Solar Energy Materials and Solar Cells, 141: 407–413.

[172]

Yin, J., Lin, N., Lin, Z., Wang, Y., Chen, C., Shi, J., Bao, J., Lin, H., Feng, S., Zhang, W. (2020). Hierarchical porous carbon@PbO1- x composite for high-performance lead-carbon battery towards renewable energy storage. Energy, 193: 116675.

[173]

Jin, J., Li, J., Tai, Q., Chen, Y., Mishra, D. D., Deng, W., Xin, J., Guo, S., Xiao, B., Wang, X. (2021). Efficient and stable flexible perovskite solar cells based on graphene-AgNWs substrate and carbon electrode without hole transport materials. Journal of Power Sources, 482: 228953.

[174]

Kothandaraman, R. K., Jiang, Y., Feurer, T., Tiwari, A. N., Fu, F. (2020). Near-infrared-transparent perovskite solar cells and perovskite-based tandem photovoltaics. Small Methods, 4: 2000395.

[175]

Shahverdi, N., Yaghoubi, M., Goodarzi, M., Soleamani, A. (2019). Optimization of anti-reflection layer and back contact of Perovskite solar cell. Solar Energy, 189: 111–119.

[176]

Mao, L., Tsai, H., Nie, W., Ma, L., Im, J., Stoumpos, C. C., Malliakas, C. D., Hao, F., Wasielewski, M. R., Mohite, A. D., et al. (2016). Role of organic counterion in lead- and tin-based two-dimensional semiconducting iodide perovskites and application in planar solar cells. Chemistry of Materials, 28: 7781–7792.

[177]

Nishimura, K., Kamarudin, M. A., Hirotani, D., Hamada, K., Shen, Q., Iikubo, S., Minemoto, T., Yoshino, K., Hayase, S. (2020). Lead-free tin-halide perovskite solar cells with 13% efficiency. Nano Energy, 74: 104858.

[178]

Zuo, C., Ding, L. (2017). Lead-free perovskite materials (NH4)3Sb2I x Br9− x . Angewandte Chemie, 129: 6628–6632.

[179]

Fang, Z., Wang, S., Yang, S., Ding, L. (2018). CsAg2Sb2I9 solar cells. Inorganic Chemistry Frontiers, 5: 1690–1693.

[180]

Hu, W., He, X., Fang, Z., Lian, W., Shang, Y., Li, X., Zhou, W., Zhang, M., Chen, T., Lu, Y., et al. (2020). Bulk heterojunction gifts bismuth-based lead-free perovskite solar cells with record efficiency. Nano Energy, 68: 104362.

[181]

Zhao, X. G., Yang, J. H., Fu, Y., Yang, D., Xu, Q., Yu, L., Wei, S. H., Zhang, L. (2017). Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. Journal of the American Chemical Society, 139: 2630–2638.

[182]

Eperon, G. E., Hörantner, M. T., Snaith, H. J. (2017). Metal halide perovskite tandem and multiple-junction photovoltaics. Nature Reviews Chemistry, 1: 0095.

[183]

Dupré, O., Niesen, B., De Wolf, S., Ballif, C. (2018). Field performance versus standard test condition efficiency of tandem solar cells and the singular case of perovskites/silicon devices. The Journal of Physical Chemistry Letters, 9: 446–458.

[184]

Li, Z., Klein, T. R., Kim, D. H., Yang, M., Berry, J. J., van Hest, M. F. A. M., Zhu, K. (2018). Scalable fabrication of perovskite solar cells. Nature Reviews Materials, 3: 18017.

[185]

Dai, X., Deng, Y., Van Brackle, C. H., Huang, J. (2019). Meniscus fabrication of halide perovskite thin films at high throughput for large area and low-cost solar panels. International Journal of Extreme Manufacturing, 1: 022004.

[186]

Chang, J., Feng, E., Li, H., Ding, Y., Long, C., Gao, Y., Yang, Y., Yi, C., Zheng, Z., Yang, J. (2023). Crystallization and orientation modulation enable highly efficient doctor-bladed perovskite solar cells. Nano-Micro Letters, 15: 164.

iEnergy
Pages 216-241
Cite this article:
Rafiq M, Li H, Yang J. Four-terminal perovskite tandem solar cells. iEnergy, 2024, 3(4): 216-241. https://doi.org/10.23919/IEN.2024.0025
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return