In the past 10 years, perovskite solar cells (PSCs) have undergone extremely rapid development, with a record certified power conversion efficiency (PCE) of 26.7%, which is very close to the limit efficiency. However, the inherent instability caused by ion migration impedes the realization of long-term operationally stable PSCs. In this review, the types and mechanisms of ion migration occurring in various functional layers of negative-intrinsic-positive (n-i-p) PSCs are summarized. Additionally, methods of suppressing ion migration are systematically discussed. Finally, the prospects of current challenges and future development directions are proposed to advance the achievement of high-performance regular PSCs with high stability and PCE.
Paik, M. J., Kim, Y. Y., Kim, J., Park, J., Seok, S. I. (2024). Ultrafine SnO2 colloids with enhanced interface quality for high-efficiency perovskite solar cells. Joule, 8: 2073–2086.
Zhou, J., Tan, L., Liu, Y., Li, H., Liu, X., Li, M., Wang, S., Zhang, Y., Jiang, C., Hua, R., et al. (2024). Highly efficient and stable perovskite solar cells via a multifunctional hole transporting material. Joule, 8: 1691–1706.
Gao, Y., Song, Z., Fu, Q., Chen, Y., Yang, L., Hu, Z., Chen, Y., Liu, Y. (2024). Controlled nucleation and oriented crystallization of methylammonium-free perovskites via in situ generated 2D perovskite phases. Advanced Materials, 36: 2405921.
Luo, C., Zheng, G., Gao, F., Wang, X., Zhan, C., Gao, X., Zhao, Q. (2023). Engineering the buried interface in perovskite solar cells via lattice-matched electron transport layer. Nature Photonics, 17: 856–864.
Liu, L., Yang, Y., Du, M., Cao, Y., Ren, X., Zhang, L., Wang, H., Zhao, S., Wang, K., Liu, S. F. (2023). Self-assembled amphiphilic monolayer for efficient and stable wide-bandgap perovskite solar cells. Advanced Energy Materials, 13: 2202802.
Liu, B., Zhou, Q., Li, Y., Chen, Y., He, D., Ma, D., Han, X., Li, R., Yang, K., Yang, Y., et al. (2024). Polydentate ligand reinforced chelating to stabilize buried interface toward high-performance perovskite solar cells. Angewandte Chemie, 63: e202317185.
Liu, B., Ren, X., Li, R., Chen, Y., He, D., Li, Y., Zhou, Q., Ma, D., Han, X., Shai, X., et al. (2024). Stabilizing top interface by molecular locking strategy with polydentate chelating biomaterials toward efficient and stable perovskite solar cells in ambient air. Advanced Materials, 36: e2312679.
Zhou, Q., Liu, B., Chen, Y., Ma, D., Han, X., He, D., Zhang, Z., Yang, H., Zhao, P., Hou, J., et al. (2024). Managing photons and carriers by multisite chiral molecules achieving high-performance perovskite solar cells fabricated in ambient air. Nano Energy, 124: 109512.
Le, T. H., Driscoll, H., Hou, C. H., Montgomery, A., Li, W., Stein, J. S., Nie, W. (2023). Perovskite solar module: Promise and challenges in efficiency, meta-stability, and operational lifetime. Advanced Electronic Materials, 9: 2300093.
Zhang, Z., Li, M., Li, R., Zhuang, X., Wang, C., Shang, X., He, D., Chen, J., Chen, C. (2024). Suppressing ion migration by synergistic engineering of anion and cation toward high-performance inverted perovskite solar cells and modules. Advanced Materials, 36: e2313860.
Bai, L., Yao, F., Wang, R., Liu, B., He, D., Zhou, Q., Wang, W., Xu, C., Hu, X., Chen, S., et al. (2022). Ion migration suppression mechanism via 4-sulfobenzoic acid monopotassium salt for 22.7% stable perovskite solar cells. Science China Materials, 65: 3368–3381.
Fei, C., Kuvayskaya, A., Shi, X., Wang, M., Shi, Z., Jiao, H., Silverman, T. J., Owen-Bellini, M., Dong, Y., Xian, Y., et al. (2024). Strong-bonding hole-transport layers reduce ultraviolet degradation of perovskite solar cells. Science, 384: 1126–1134.
Meng, H., Mao, K., Cai, F., Zhang, K., Yuan, S., Li, T., Cao, F., Su, Z., Zhu, Z., Feng, X., et al. (2024). Inhibition of halide oxidation and deprotonation of organic cations with dimethylammonium formate for air-processed p–i–n perovskite solar cells. Nature Energy, 9: 536–547.
He, D., Ma, D., Li, R., Liu, B., Zhou, Q., Yang, H., Lu, S., Zhang, Z., Li, C., Li, X., et al. (2024). Synergistically stabilizing hole transport layer and dual interface enables high-performance perovskite solar cells. ACS Energy Letters, 9: 2615–2625.
Mosconi, E., De Angelis, F. (2016). Mobile ions in organohalide perovskites: Interplay of electronic structure and dynamics. ACS Energy Letters, 1: 182–188.
Li, N., Jia, Y., Guo, Y., Zhao, N. (2022). Ion migration in perovskite light-emitting diodes: Mechanism, characterizations, and material and device engineering. Advanced Materials, 34: e2108102.
Zai, H., Ma, Y., Chen, Q., Zhou, H. (2021). Ion migration in halide perovskite solar cells: Mechanism, characterization, impact and suppression. Journal of Energy Chemistry, 63: 528–549.
Chen, J., Park, N. G. (2020). Materials and methods for interface engineering toward stable and efficient perovskite solar cells. ACS Energy Letters, 5: 2742–2786.
Chen, J., Park, N. G. (2019). Causes and solutions of recombination in perovskite solar cells. Advanced Materials, 31: e1803019.
Kim, S., Bae, S., Lee, S. W., Cho, K., Lee, K. D., Kim, H., Park, S., Kwon, G., Ahn, S. W., Lee, H. M., et al. (2017). Relationship between ion migration and interfacial degradation of CH3NH3PbI3 perovskite solar cells under thermal conditions. Scientific Reports, 7: 1200.
Walsh, A., Scanlon, D. O., Chen, S., Gong, X. G., Wei, S. H. (2015). Self-regulation mechanism for charged point defects in hybrid halide perovskites. Angewandte Chemie, 54: 1791–1794.
Vineyard, G. H. (1957). Frequency factors and isotope effects in solid state rate processes. Journal of Physics and Chemistry of Solids, 3: 121–127.
Mizusaki, J., Arai, K., Fueki, K. (1983). Ionic conduction of the perovskite-type halides. Solid State Ionics, 11: 203–211.
Yuan, Y., Wang, Q., Shao, Y., Lu, H., Li, T., Gruverman, A., Huang, J. (2016). Electric-field-driven reversible conversion between methylammonium lead triiodide perovskites and lead iodide at elevated temperatures.Advanced Energy Materials, 6: 1501803.
Li, G., Rivarola, F. W. R., Davis, N. J. L. K., Bai, S., Jellicoe, T. C., de la Peña, F., Hou, S., Ducati, C., Gao, F., Friend, R. H., et al. (2016). Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Advanced Materials, 28: 3528–3534.
Teng, P., Reichert, S., Xu, W., Yang, S. C., Fu, F., Zou, Y., Yin, C., Bao, C., Karlsson, M., Liu, X., et al. (2021). Degradation and self-repairing in perovskite light-emitting diodes. Matter, 4: 3710–3724.
Li, C., Guerrero, A., Huettner, S., Bisquert, J. (2018). Unravelling the role of vacancies in lead halide perovskite through electrical switching of photoluminescence. Nature Communications, 9: 5113.
Brennan, M. C., Ruth, A., Kamat, P. V., Kuno, M. (2020). Photoinduced anion segregation in mixed halide perovskites. Trends in Chemistry, 2: 282–301.
De Bastiani, M., Dell’Erba, G., Gandini, M., D’Innocenzo, V., Neutzner, S., Kandada, A. R. S., Grancini, G., Binda, M., Prato, M., Ball, J. M., et al. (2016). Ion migration and the role of preconditioning cycles in the stabilization of the J– V characteristics of inverted hybrid perovskite solar cells. Advanced Energy Materials, 6: 1501453.
Carrillo, J., Guerrero, A., Rahimnejad, S., Almora, O., Zarazua, I., Mas-Marza, E., Bisquert, J., Garcia-Belmonte, G. (2016). Ionic reactivity at contacts and aging of methylammonium lead triiodide perovskite solar cells. Advanced Energy Materials, 6: 1502246.
Mao, W., Hall, C. R., Bernardi, S., Cheng, Y. B., Widmer-Cooper, A., Smith, T. A., Bach, U. (2021). Light-induced reversal of ion segregation in mixed-halide perovskites. Nature Materials, 20: 55–61.
Jia, Y., Yu, H., Zhou, Y., Li, N., Guo, Y., Xie, F., Qin, Z., Lu, X., Zhao, N. (2021). Excess ion-induced efficiency roll-off in high-efficiency perovskite light-emitting diodes. ACS Applied Materials & Interfaces, 13: 28546–28554.
Liu, Y., Ievlev, A. V., Borodinov, N., Lorenz, M., Xiao, K., Ahmadi, M., Hu, B., Kalinin, S. V., Ovchinnikova, O. S. (2021). Direct observation of photoinduced ion migration in lead halide perovskites. Advanced Functional Materials, 31: 2008777.
Jong, U. G., Yu, C. J., Ri, G. C., McMahon, A. P., Harrison, N., Barnes, P. R. F., Walsh, A. (2018). Influence of water intercalation and hydration on chemical decomposition and ion transport in methylammonium lead halide perovskites. Journal of Materials Chemistry A, 6: 1067–1074.
Pavlovetc, I. M., Brennan, M. C., Draguta, S., Ruth, A., Moot, T., Christians, J. A., Aleshire, K., Harvey, S. P., Toso, S., Nanayakkara, S. U., et al. (2020). Suppressing cation migration in triple-cation lead halide perovskites. ACS Energy Letters, 5: 2802–2810.
Lu, L., Shen, K. C., Wang, J., Su, Z., Li, Y., Chen, L., Luo, Y., Song, F., Gao, X., Tang, J. X. (2020). Interaction of the cation and vacancy in hybrid perovskites induced by light illumination. ACS Applied Materials & Interfaces, 12: 42369–42377.
Christians, J. A., Schulz, P., Tinkham, J. S., Schloemer, T. H., Harvey, S. P., Tremolet de Villers, B. J., Sellinger, A., Berry, J. J., Luther, J. M. (2018). Tailored interfaces of unencapsulated perovskite solar cells for >1, 000 hour operational stability. Nature Energy, 3: 68–74.
Oranskaia, A., Yin, J., Bakr, O. M., Brédas, J. L., Mohammed, O. F. (2018). Halogen migration in hybrid perovskites: The organic cation matters. The Journal of Physical Chemistry Letters, 9: 5474–5480.
Li, Y., Yuan, S., Miao, S., Wu, J., Wang, H. Y., Wang, Y., Ai, X. C., Zhang, J. P. (2023). Uncovering the influence of cation composition engineering on the ion migration kinetics in perovskite solar cells. The Journal of Physical Chemistry C, 127: 14679–14686.
Zhang, T., Meng, X., Bai, Y., Xiao, S., Hu, C., Yang, Y., Chen, H., Yang, S. (2017). Profiling the organic cation-dependent degradation of organolead halide perovskite solar cells. Journal of Materials Chemistry A, 5: 1103–1111.
Lee, J. W., Kim, D. H., Kim, H. S., Seo, S. W., Cho, S. M., Park, N. G. (2015). Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Advanced Energy Materials, 5: 1501310.
Lin, D., Shi, T., Xie, H., Wan, F., Ren, X., Liu, K., Zhao, Y., Ke, L., Lin, Y., Gao, Y., et al. (2021). Ion migration accelerated reaction between oxygen and metal halide perovskites in light and its suppression by cesium incorporation. Advanced Energy Materials, 11: 2002552.
Yan, X., Fan, W., Cheng, F., Sun, H., Xu, C., Wang, L., Kang, Z., Zhang, Y. (2022). Ion migration in hybrid perovskites: Classification, identification, and manipulation. Nano Today, 44: 101503.
Zeidell, A. M., Tyznik, C., Jennings, L., Zhang, C., Lee, H., Guthold, M., Vardeny, Z. V., Jurchescu, O. D. (2023). Enhanced charge transport in hybrid perovskite field-effect transistors via microstructure control. Advanced Electronic Materials, 9: 1800316.
Yusoff, A. R., Kim, H. P., Li, X., Kim, J., Jang, J., Nazeeruddin, M. K. (2017). Ambipolar triple cation perovskite field effect transistors and inverters. Advanced Materials, 29: 1602940.
Chen, J., Lee, D., Park, N. G. (2017). Stabilizing the Ag electrode and reducing J-V hysteresis through suppression of iodide migration in perovskite solar cells. ACS Applied Materials & Interfaces, 9: 36338–36349.
Aristidou, N., Sanchez-Molina, I., Chotchuangchutchaval, T., Brown, M., Martinez, L., Rath, T., Haque, S. A. (2015). The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers. Angewandte Chemie, 54: 8208–8212.
Tang, X., Brandl, M., May, B., Levchuk, I., Hou, Y., Richter, M., Chen, H., Chen, S., Kahmann, S., Osvet, A., et al. (2016). Photoinduced degradation of methylammonium lead triiodide perovskite semiconductors. Journal of Materials Chemistry A, 4: 15896–15903.
Lin, Y., Bai, Y., Fang, Y., Wang, Q., Deng, Y., Huang, J. (2017). Suppressed ion migration in low-dimensional perovskites. ACS Energy Letters, 2: 1571–1572.
Kumar, S., Houben, L., Rechav, K., Cahen, D. (2022). Halide perovskite dynamics at work: Large cations at 2D-on-3D interfaces are mobile. Proceedings of the National Academy of Sciences, 119: e2114740119.
Chakkamalayath, J., Hiott, N., Kamat, P. V. (2023). How stable is the 2D/3D interface of metal halide perovskite under light and heat. ACS Energy Letters, 8: 169–171.
Park, J., Kim, J., Yun, H. S., Paik, M. J., Noh, E., Mun, H. J., Kim, M. G., Shin, T. J., Seok, S. I. (2023). Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature, 616: 724–730.
Zhao, Y., Ma, F., Qu, Z., Yu, S., Shen, T., Deng, H. X., Chu, X., Peng, X., Yuan, Y., Zhang, X., et al. (2022). Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science, 377: 531–534.
Kim, M., Jeong, J., Lu, H., Lee, T. K., Eickemeyer, F. T., Liu, Y., Choi, I. W., Choi, S. J., Jo, Y., Kim, H. B., et al. (2022). Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells. Science, 375: 302–306.
Kim, H. S., Seo, J. Y., Park, N. G. (2016). Material and device stability in perovskite solar cells. ChemSusChem, 9: 2528–2540.
Sanehira, E. M., Tremolet de Villers, B. J., Schulz, P., Reese, M. O., Ferrere, S., Zhu, K., Lin, L. Y., Berry, J. J., Luther, J. M. (2016). Influence of electrode interfaces on the stability of perovskite solar cells: Reduced degradation using MoOx/Al for hole collection. ACS Energy Letters, 1: 38–45.
Lee, H., Lee, C. (2018). Analysis of ion-diffusion-induced interface degradation in inverted perovskite solar cells via restoration of the Ag electrode. Advanced Energy Materials, 8: 1702197.
Back, H., Kim, G., Kim, J., Kong, J., Kim, T. K., Kang, H., Kim, H., Lee, J., Lee, S., Lee, K. (2016). Achieving long-term stable perovskite solar cells via ion neutralization. Energy & Environmental Science, 9: 1258–1263.
Li, J., Dong, Q., Li, N., Wang, L. (2017). Direct evidence of ion diffusion for the silver-electrode-induced thermal degradation of inverted perovskite solar cells. Advanced Energy Materials, 7: 1602922.
Guerrero, A., You, J., Aranda, C., Kang, Y. S., Garcia-Belmonte, G., Zhou, H., Bisquert, J., Yang, Y. (2016). Interfacial degradation of planar lead halide perovskite solar cells. ACS Nano, 10: 218–224.
Wang, L., Zhou, H., Hu, J., Huang, B., Sun, M., Dong, B., Zheng, G., Huang, Y., Chen, Y., Li, L., et al. (2019). A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science, 363: 265–270.
Li, X., Fu, S., Liu, S., Wu, Y., Zhang, W., Song, W., Fang, J. (2019). Suppressing the ions-induced degradation for operationally stable perovskite solar cells. Nano Energy, 64: 103962.
Hao, F., Stoumpos, C. C., Guo, P., Zhou, N., Marks, T. J., Chang, R. P. H., Kanatzidis, M. G. (2015). Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. Journal of the American Chemical Society, 137: 11445–11452.
Liu, A., Zhu, H., Reo, Y., Kim, M. G., Chu, H. Y., Lim, J. H., Kim, H. J., Ning, W., Bai, S., Noh, Y. Y. (2022). Modulation of vacancy-ordered double perovskite Cs2SnI6 for air-stable thin-film transistors. Cell Reports Physical Science, 3: 100812.
Zhu, H., Liu, A., Kim, H., Hong, J., Go, J. Y., Noh, Y. Y. (2021). High-performance layered perovskite transistors and phototransistors by binary solvent engineering. Chemistry of Materials, 33: 1174–1181.
Liu, A., Zhu, H., Bai, S., Reo, Y., Zou, T., Kim, M. G., Noh, Y. Y. (2022). High-performance inorganic metal halide perovskite transistors. Nature Electronics, 5: 78–83.
Liu, Z., Cao, F., Wang, M., Wang, M., Li, L. (2020). Observing defect passivation of the grain boundary with 2-aminoterephthalic acid for efficient and stable perovskite solar cells. Angewandte Chemie, 59: 4161–4167.
Jiang, Q., Zhao, Y., Zhang, X., Yang, X., Chen, Y., Chu, Z., Ye, Q., Li, X., Yin, Z., You, J. (2019). Surface passivation of perovskite film for efficient solar cells. Nature Photonics, 13: 460–466.
Chen, G., Qiu, Y., Gao, H., Zhao, Y., Feng, J., Jiang, L., Wu, Y. (2020). Air-stable highly crystalline formamidinium perovskite 1D structures for ultrasensitive photodetectors. Advanced Functional Materials, 30: 1908894.
Zhao, Y., Li, C., Jiang, J., Wang, B., Shen, L. (2020). Sensitive and stable tin-lead hybrid perovskite photodetectors enabled by double-sided surface passivation for infrared upconversion detection. Small, 16: e2001534.
Zhu, H., Liu, Y., Eickemeyer, F. T., Pan, L., Ren, D., Ruiz-Preciado, M. A., Carlsen, B., Yang, B., Dong, X., Wang, Z., et al. (2020). Tailored amphiphilic molecular mitigators for stable perovskite solar cells with 23.5% efficiency. Advanced Materials, 32: e1907757.
Matsushima, T., Hwang, S., Sandanayaka, A. S. D., Qin, C., Terakawa, S., Fujihara, T., Yahiro, M., Adachi, C. (2016). Solution-processed organic-inorganic perovskite field-effect transistors with high hole mobilities. Advanced Materials, 28: 10275–10281.
Wang, J., Senanayak, S. P., Liu, J., Hu, Y., Shi, Y., Li, Z., Zhang, C., Yang, B., Jiang, L., Di, D., et al. (2019). Investigation of electrode electrochemical reactions in CH3NH3PbBr3 perovskite single-crystal field-effect transistors. Advanced Materials, 31: 1902618.
Peng, Y., Tang, L., Zhou, Z., Xu, J., Li, J., Cai, H., Ni, J., Zhang, J. (2018). Enhancing perovskite TFTs performance by optimizing the interface characteristics of metal/semiconductor contact. Journal of Physics D: Applied Physics, 51: 445101.
Matsushima, T., Mathevet, F., Heinrich, B., Terakawa, S., Fujihara, T., Qin, C., Sandanayaka, A. S. D., Ribierre, J. C., Adachi, C. (2016). N-channel field-effect transistors with an organic-inorganic layered perovskite semiconductor. Applied Physics Letters, 109: 253301.
Lin, C. T., Ngiam, J., Xu, B., Chang, Y. H., Du, T., MacDonald, T. J., Durrant, J. R., McLachlan, M. A. (2020). Enhancing the operational stability of unencapsulated perovskite solar cells through Cu–Ag bilayer electrode incorporation. Journal of Materials Chemistry A, 8: 8684–8691.
Tisdale, J. T., Muckley, E., Ahmadi, M., Smith, T., Seal, C., Lukosi, E., Ivanov, I. N., Hu, B. (2018). Dynamic impact of electrode materials on interface of single-crystalline methylammonium lead bromide perovskite. Advanced Materials Interfaces, 5: 1800476.
Domanski, K., Correa-Baena, J. P., Mine, N., Nazeeruddin, M. K., Abate, A., Saliba, M., Tress, W., Hagfeldt, A., Grätzel, M. (2016). Not all that glitters is gold: Metal-migration-induced degradation in perovskite solar cells. ACS Nano, 10: 6306–6314.
Senanayak, S. P., Abdi-Jalebi, M., Kamboj, V. S., Carey, R., Shivanna, R., Tian, T., Schweicher, G., Wang, J., Giesbrecht, N., Di Nuzzo, D., et al. (2020). A general approach for hysteresis-free, operationally stable metal halide perovskite field-effect transistors. Science Advances, 6: eaaz4948.
Luo, L., Zeng, H., Wang, Z., Li, M., You, S., Chen, B., Maxwell, A., An, Q., Cui, L., Luo, D., et al. (2023). Stabilization of 3D/2D perovskite heterostructures via inhibition of ion diffusion by cross-linked polymers for solar cells with improved performance. Nature Energy, 8: 294–303.