AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Computational History: Challenges and Opportunities of Formal Approaches

Jürgen Jost1,2( )Roberto Lalli3Manfred D. Laubichler4,2,3Eckehard Olbrich1Jürgen Renn3Guillermo Restrepo1Peter F. Stadler5,1,2Dirk Wintergrün3
Max Planck Institute for Mathematics in the Sciences, Leipzig 04103, Germany
Santa Fe Institute, Santa Fe, NM 87501, USA
Max Planck Institute for the History of Science, Berlin 14195, Germany
School of Complex Adaptive Systems and the Global Biosocial Complexity Initiative, Arizona State University, Tempe, AZ 85287, USA
Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig 04109, Germany
Show Author Information

Abstract

We propose a program for a computational analysis, based on large scale datasets, of deep conceptual and formal structures, representing the mechanisms of historical transformations in different domains ranging from biological to social, cultural, and knowledge systems. We conceptualize such systems as consisting of complex multi-layer networks. Structural properties of such networks may explain the spreading of innovations. Temporal relations between the dynamics of interacting networks may help to identify causalities. Complex systems may show path and context dependencies. We illustrate our approach by case studies from all those types of systems.

References

[1]

M. D. Laubichler, J. Maienschein, and J. Renn, Computational history of knowledge: Challenges and opportunities, Isis, vol. 110, no. 3, pp. 502–512, 2019.

[2]
J. Jost and G. Restrepo, Modelling the evolution of chemical knowledge, in The Evolution of Chemical Knowledge, Cham, Switzerland: Springer, 2022, pp. 23–33.
[3]
D. H. Wolpert, M. H. Price, S. A. Crabtree, T. A. Kohler, J. Jost, J. Evans, P. F. Stadler, H. Shimao, and M. D. Laubichler, The past as a stochastic process, arXiv preprint arXiv: 2112.05876, 2021.
[4]

M. D. Laubichler, J. Maienschein, and J. Renn, Computational perspectives in the history of science: To the memory of Peter Damerow, Isis, vol. 104, no. 1, pp. 119–130, 2013.

[5]

J. Maienschein, M. Laubichler, and A. Loettgers, How can history of science matter to scientists? Isis, vol. 99, no. 2, pp. 341–349, 2008.

[6]
J. Jost, Biologie und Mathematik. Wiesbaden, Germany: Springer Spektrum, 2019.
[7]

G. Restrepo, Computational history of chemistry, Bulletin for the History of Chemistry, vol. 47, no. 1, pp. 91–106, 2022.

[8]

J. A. Goldstone, Initial conditions, general laws, path dependence, and explanation in historical sociology, Am. J. Sociol., vol. 104, no. 3, pp. 829–845, 1998.

[9]
E. Szathmáry, Path dependence and historical contingency in biology, in Understanding Change, A. Wimmer and R. Kössler, eds. London, UK: Palgrave Macmillan London, 2006, pp. 140–157.
[10]
A. Mesoudi, Cultural Evolution. Chicago, IL, USA: University of Chicago Press, 2021.
[11]

M. D. Laubichler and J. Renn, Extended evolution: A conceptual framework for integrating regulatory networks and niche construction, J. Exp. Zool. B Mol. Dev. Evol., vol. 324, no. 7, pp. 565–577, 2015.

[12]
J. Renn and M. Laubichler, Extended evolution and the history of knowledge, in Integrated History and Philosophy of Science, F. Stadler, ed. Cham, Switzerland: Springer International Publishing, 2017, pp. 109–125.
[13]

J. Renn, D. Wintergrün, R. Lalli, M. Laubichler, and M. Valleriani, Netzwerke als wissensspeicher, Die Zukunft der Wissensspeicher: Forschen, Sammeln und Vermitteln im, vol. 21, pp. 35–79, 2016.

[14]
D. Wintergrün, Netzwerkanalysen und semantische Datenmodellierung als heuristische Instrumente für die historische Forschung, PhD dissertation, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen, Germany, 2019.
[15]
R. Mulas, D. Horak, and J. Jost, Graphs, simplicial complexes and hypergraphs: Spectral theory and topology, in Higher-Order Systems, F. Battiston and G. Petri, eds. Cham, Switzerland: Springer International Publishing, 2022, pp. 1–58.
[16]

L. Wu, D. Wang, and J. A. Evans, Large teams develop and small teams disrupt science and technology, Nature, vol. 566, no. 7744, pp. 378–382, 2019.

[17]

F. Furet, Quantitative history, Daedalus, vol. 100, no. 1, pp. 151–167, 1971.

[18]

R. W. Fogel, The limits of quantitative methods in history, Am Hist Rev, vol. 80, no. 2, pp. 329–350, 1975.

[19]
P. Hudson and M. Ishizu, History by Numbers: An Introduction to Quantitative Approaches. London, UK: Bloomsbury Publishing, 2016.
[20]
B. M. Roehner and T. Syme, Pattern and Repertoire in History. Cambridge, MA, USA: Harvard University Press, 2002.
[21]

T. A. Kohler, D. Bird, and D. H. Wolpert, Social scale and collective computation: Does information processing limit rate of growth in scale? Journal of Social Computing, vol. 3, no. 1, pp. 1–17, 2022.

[22]

J. Shin, M. H. Price, D. H. Wolpert, H. Shimao, B. Tracey, and T. A. Kohler, Scale and information-processing thresholds in holocene social evolution, Nat. Commun., vol. 11, no. 1, p. 2394, 2020.

[23]

D. C. Krakauer, J. P. Collins, D. Erwin, J. C. Flack, W. Fontana, M. D. Laubichler, S. J. Prohaska, G. B. West, and P. F. Stadler, The challenges and scope of theoretical biology, J. Theor. Biol., vol. 276, no. 1, pp. 269–276, 2011.

[24]

N. Retzlaff and P. F. Stadler, Phylogenetics beyond biology, Theory Biosci., vol. 137, no. 2, pp. 133–143, 2018.

[25]

O. Pfante, N. Bertschinger, E. Olbrich, N. Ay, and J. Jost, Comparison between different methods of level identification, Advs. Complex Syst., vol. 17, no. 2, p. 1450007, 2014.

[26]

Y. Hu and M. J. Buehler, Deep language models for interpretative and predictive materials science, APL Mach. Learn., vol. 1, no. 1, p. 010901, 2023.

[27]

N. Ay, E. Olbrich, N. Bertschinger, and J. Jost, A geometric approach to complexity, Chaos, vol. 21, no. 3, p. 037103, 2011.

[28]
T. Efer, G. Heyer, and J. Jost, Text Mining am Beispiel der Dramen Shakespeares: Welche neuen Erkenntnisse kӧnnen moderne formale Methoden liefern? in Shakespeare unter den Deutschen: Vortrӓge des Symposiums vom 15. bis 17. Mai 2014 in der Akademie der Wissenschaften und der Literatur, Mainz, ser. Abhandlungen der Geistes- und Sozialwissenschaftlichen Klasse, C. Jansohn, W. Habicht, D. Mehl, and P. Redl, eds. Stuttgart, Germany: Franz Steiner, 2015, pp. 217–230.
[29]

D. A. Baum, S. D. Smith, and S. S. S. Donovan, The tree-thinking challenge, Science, vol. 310, no. 5750, pp. 979–980, 2005.

[30]
D. A. Baum and S. D. Smith, Tree Thinking: An Introduction to Phylogenetic Biology. Greenwood Village, CO, USA: Roberts and Company Publishers, 2013.
[31]
D. H. Huson, R. Rupp, and C. Scornavacca, Phylogenetic Networks: Concepts, Algorithms and Applications. Cambridge, UK: Cambridge University Press, 2010.
[32]
A. L. Panchen, Classification, Evolution, and the Nature of Biology. Cambridge, UK: Cambridge University Press, 1992.
[33]
S. Q. Ye, ed., Big Data Analysis for Bioinformatics and Biomedical Discoveries. Boca Raton, FL, USA: Chapman and Hall/CRC, 2016.
[34]
G. S. Ginsburg and H. F. Willard, Genomic and Precision Medicine: Foundations, Translation and Implementation. London, UK: Academic Press, 2017.
[35]

B. Malinowski, The group and the individual in functional analysis, Am. J. Sociol., vol. 44, no. 6, pp. 938–964, 1939.

[36]
C. Lévi-Strauss, Structural Anthropology. New York, NY, USA: Basic Books, 2004.
[37]
T. A. Appel, The Cuvier-Geoffroy Debate: French Biology in the Decades before Darwin. Oxford, UK: Oxford University Press, 1987.
[38]
M. J. S. Rudwick, Georges Cuvier, Fossil Bones, and Geological Catastrophes: New Translations and Interpretations of the Primary Texts. Chicago, IL, USA: University of Chicago Press, 2008.
[39]
A. L. Panchen, Richard Owen and the concept of homology, in Homology: The Hierarchical Basis of Comparative Biology, B. K. Hall, ed. Amsterdam, the Netherlands: Elsevier, 1994. pp. 21–62.
[40]

A. L. Panchen, Étienne Geoffroy St.-Hilaire: Father of “evo-devo”? Evol. Dev., vol. 3, no. 1, pp. 41–46, 2001.

[41]
E. G. Saint-Hilaire, Principes de Philosophie Zoologique. Paris, France: Pichon et Didier, 1830.
[42]

E. M. De Robertis, The molecular ancestry of segmentation mechanisms, Proc. Natl. Acad. Sci. USA, vol. 105, no. 43, pp. 16411–16412, 2008.

[43]

E. W. Sayers, J. Beck, E. E. Bolton, D. Bourexis, J. R. Brister, K. Canese, D. C. Comeau, K. Funk, S. Kim, W. Klimke, et al., Database resources of the national center for biotechnology information, Nucleic Acids Res., vol. 49, no. D1, pp. D10–D17, 2021.

[44]
E. O. Wiley and B. S. Lieberman, Phylogenetics: Theory and Practice of Phylogenetic Systematics, 2nd ed. Hoboken, NJ, USA: Wiley-Blackwell, 2011.
[45]
International Institute of Social History, https://iisg.amsterdam/en, 2020.
[46]
Clio Infra, https://clio-infra.eu/, 2020.
[47]
M. Cannataro, P. H. Guzzo, G. Agapito, C. Zucco, and M. Milano, Artificial Intelligence in Bioinformatics—From Omics Analysis to Deep Learning and Network Mining. Amsterdam, the Netherlands: Elsevier, 2022.
[48]

J. A. Dunne, R. J. Williams, N. D. Martinez, R. A. Wood, and D. H. Erwin, Compilation and network analyses of Cambrian food webs, PLoS Biol., vol. 6, no. 4, p. e102, 2008.

[49]

J. A. Dunne, C. C. Labandeira, and R. J. Williams, Highly resolved early Eocene food webs show development of modern trophic structure after the end-Cretaceous extinction, Proc. Biol. Sci., vol. 281, no. 1782, p. 20133280, 2014.

[50]

S. Boccaletti, G. Bianconi, R. Criado, C. I. del Genio, J. Gómez-Gardeñes, M. Romance, I. Sendiña-Nadal, Z. Wang, and M. Zanin, The structure and dynamics of multilayer networks, Phys. Rep., vol. 544, no. 1, pp. 1–122, 2014.

[51]
R. Tripodi, M. Warglien, S. L. Sullam, and D. Paci, Tracing antisemitic language through diachronic embedding projections: France 1789-1914, arXiv preprint arXiv: 1906.01440, 2019.
[52]
H. Kantz and T. Schreiber, Nonlinear Time Series Analysis. Cambridge, UK: Cambridge University Press, 2003.
[53]

D. T. Painter, F. van der Wouden, M. D. Laubichler, and H. Youn, Quantifying simultaneous innovations in evolutionary medicine, Theory Biosci., vol. 139, no. 4, pp. 319–335, 2020.

[54]

D. T. Painter, B. C. Daniels, and M. D. Laubichler, Innovations are disproportionately likely in the periphery of a scientific network, Theory Biosci., vol. 140, no. 4, pp. 391–399, 2021.

[55]
R. Lalli, R. Howey, and D. Wintergrün, The socio-epistemic networks of general relativity, 1925–1970, in The Renaissance of General Relativity in Context, A. S. Blum, R. Lalli, and J. Renn, eds. Cham, Switzerland: Springer International Publishing, 2020, pp. 15–84.
[56]
J. Renn, The Evolution of Knowledge. Princeton, NJ, USA: Princeton University Press, 2020.
[57]
J. Jost, Mathematical Concepts. Springer, 2015.
[58]

E. J. Llanos, W. Leal, D. H. Luu, J. Jost, P. F. Stadler, and G. Restrepo, Exploration of the chemical space and its three historical regimes, Proc. Natl. Acad. Sci. USA, vol. 116, no. 26, pp. 12660–12665, 2019.

[59]

G. Restrepo, Chemical space: Limits, evolution and modelling of an object bigger than our universal library, Digit. Discov., vol. 1, no. 5, pp. 568–585, 2022.

[60]

T. Bhattacharya, N. Retzlaff, D. E. Blasi, W. Croft, M. Cysouw, D. Hruschka, I. Maddieson, L. Müller, E. Smith, P. F. Stadler, et al., Studying language evolution in the age of big data, Journal of Language Evolution, vol. 3, no. 2, pp. 94–129, 2018.

[61]

A. Rocke, What did “theory” mean to nineteenth-century chemists? Found. Chem., vol. 15, no. 2, pp. 145–156, 2013.

[62]
J. R. Partington, A History of Chemistry. London, UK: Macmillan, 1964.
[63]

K. C. Nicolaou, The emergence of the structure of the molecule and the art of its synthesis, Angew. Chem. Int. Ed. Eng., vol. 52, no. 1, pp. 131–146, 2013.

[64]

W. Leal, E. J. Llanos, A. Bernal, P. F. Stadler, J. Jost, and G. Restrepo, The expansion of chemical space in 1826 and in the 1840s prompted the convergence to the periodic system, Proc. Natl. Acad. Sci. USA, vol. 119, no. 30, p. e2119083119, 2022.

[65]

A. M. Bran, P. F. Stadler, J. Jost, and G. Restrepo, The six stages of the convergence of the periodic system to its final structure, Commun. Chem., vol. 6, no. 1, p. 87, 2023.

[66]

K. Kollman, J. H. Miller, and S. E. Page, Adaptive parties in spatial elections, Am. Polit. Sci. Rev., vol. 86, no. 4, pp. 929–937, 1992.

[67]

B. M. R. Stadler, P. F. Stadler, G. P. Wagner, and W. Fontana, The topology of the possible: Formal spaces underlying patterns of evolutionary change, J. Theor. Biol., vol. 213, no. 2, pp. 241–274, 2001.

[68]

J. Jost, Biological information, Theory Biosci., vol. 139, no. 4, pp. 361–370, 2020.

[69]

J. Jost, Biology, geometry and information, Theory Biosci., vol. 141, no. 2, pp. 65–71, 2022.

[70]
W. Leal, M. Eidi, and J. Jost, Curvature-based analysis of directed hypernetworks, in Proc. Complex Networks 2019: The 8th International Conference on Complex Networks and Their Applications, Lisbon, Portugal, 2019, pp. 32–34.
[71]

J. T. Lizier, N. Bertschinger, J. Jost, and M. Wibral, Information decomposition of target effects from multi-source interactions: Perspectives on previous. current and future work, Entropy, vol. 20, no. 4, p. 307, 2018.

[72]
J. Pearl, Causality. Cambridge, UK: Cambridge University Press, 2009.
[73]
J. Peters, D. Janzing, and B. Schölkopf, Elements of Causal Inference: Foundations and Learning Algorithms. Cambridge, MA, USA: The MIT Press, 2017.
[74]

G. B. West and J. H. Brown, Life’s universal scaling laws, Phys. Today, vol. 57, no. 9, pp. 36–42, 2004.

[75]

P. Schuster, W. Fontana, P. F. Stadler, and I. L. Hofacker, From sequences to shapes and back: A case study in RNA secondary structures, Proc. Biol. Sci., vol. 255, no. 1344, pp. 279–284, 1994.

[76]

M. A. Huynen, P. F. Stadler, and W. Fontana, Smoothness within ruggedness: The role of neutrality in adaptation, Proc. Natl. Acad. Sci. USA, vol. 93, no. 1, pp. 397–401, 1996.

[77]

W. Fontana and P. Schuster, Continuity in evolution: On the nature of transitions, Science, vol. 280, no. 5368, pp. 1451–1455, 1998.

[78]
J. Zhai, S. Zhang, J. Chen, and Q. He, Autoencoder and its various variants, in Proc. 2018 IEEE Int. Conf. Systems, Man, and Cybernetics (SMC), Miyazaki, Japan, 2018, pp. 415–419.
[79]

C. Reinhardt, Introduction, Isis, vol. 109, no. 3, pp. 559–564, 2018.

[80]

J. Boström, D. G. Brown, R. J. Young, and G. M. Keserü, Expanding the medicinal chemistry synthetic toolbox, Nat. Rev. Drug Discov., vol. 17, no. 12, p. 922, 2018.

Journal of Social Computing
Pages 232-242
Cite this article:
Jost J, Lalli R, Laubichler MD, et al. Computational History: Challenges and Opportunities of Formal Approaches. Journal of Social Computing, 2023, 4(3): 232-242. https://doi.org/10.23919/JSC.2023.0017

390

Views

12

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 02 June 2023
Accepted: 15 October 2023
Published: 30 September 2023
© The author(s) 2023.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return