[1]
L. Dong, M. N. Satpute, W. Wu, and D. Z. Du, Two-phase multidocument summarization through content-attention-based subtopic detection, IEEE Trans. Comput. Soc. Syst., vol. 8, no. 6, pp. 1379–1392, 2021.
[2]
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, Attention is all you need, arXiv preprint arXiv: 1706.03762, 2017.
[3]
M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov, and L. Zettlemoyer, BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension, in Proc. 58th Annual Meeting of the Association for Computational Linguistics, Virtual Event, 2020, pp. 7871–7880.
[4]
N. Zmandar, A. Singh, M. El-Haj, and P. Rayson, Joint abstractive and extractive method for long financial document summarization, in Proc. 3rd Financial Narrative Processing Workshop, Lancaster, UK, 2021, pp. 99–105.
[5]
J. Pilault, R. Li, S. Subramanian, and C. Pal, On extractive and abstractive neural document summarization with transformer language models, in Proc. 2020 Conf. Empirical Methods in Natural Language Processing (EMNLP), Virtual Event, 2020, pp. 9308–9319.
[6]
S. Cho, K. Song, X. Wang, F. Liu, and D. Yu, Toward unifying text segmentation and long document summarization, in Proc. 2022 Conf. Empirical Methods in Natural Language Processing, Abu Dhabi, United Arab Emirates, 2022, pp. 106–118.
[7]
Y. Zhang, A. Ni, Z. Mao, C. H. Wu, C. Zhu, B. Deb, A. Awadallah, D. Radev, and R. Zhang, SummN: A multi-stage summarization framework for long input dialogues and documents: A multi-stage summarization framework for long input dialogues and documents, in Proc. 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Dublin, Ireland, 2022, pp. 1592–1604.
[8]
S. Cao and L. Wang, HIBRIDS: Attention with hierarchical biases for structure-aware long document summarization, in Proc. 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Dublin, Ireland, 2022, pp. 786–807.
[9]
A. Cohan, F. Dernoncourt, D. S. Kim, T. Bui, S. Kim, W. Chang, and N. Goharian, A discourse-aware attention model for abstractive summarization of long documents, in Proc. 2018 Conf. North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), New Orleans, LA, USA, 2018, pp. 615–621.
[10]
OpenAI, GPT-4 technical report, Technical report, OpenAI, San Francisco, CA, USA, 2023.
[11]
H. Touvron, T. Lavril, G. Izacard, X. Martinet, M. A. Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, et al., LLaMA: Open and efficient foundation language models, arXiv preprint arXiv: 2302.13971, 2023.
[15]
M. Völske, M. Potthast, S. Syed, and B. Stein, TL;DR: Mining reddit to learn automatic summarization, in Proc. Workshop on New Frontiers in Summarization, Copenhagen, Denmark, 2017, pp. 59–63.
[16]
S. Narayan, S. B. Cohen, and M. Lapata, Don’t give me the details, just the summary! Topic-aware convolutional neural networks for extreme summarization, in Proc. 2018 Conf. Empirical Methods in Natural Language Processing, Brussels, Belgium, 2018, pp. 1797–1807.
[17]
Y. Liu, A. Ni, L. Nan, B. Deb, C. Zhu, A. H. Awadallah, and D. Radev, Leveraging locality in abstractive text summarization, in Proc. 2022 Conf. Empirical Methods in Natural Language Processing, Abu Dhabi, United Arab Emirates, 2022, pp. 6081–6093.
[18]
A. Bajaj, P. Dangati, K. Krishna, P. A. Kumar, R. Uppaal, B. Windsor, E. Brenner, D. Dotterrer, R. Das, and A. McCallum, Long document summarization in a low resource setting using pretrained language models, in Proc. 59th Annual Meeting of the Association for Computational Linguistics and the 11th Int. Joint Conf. Natural Language Processing: Student Research Workshop, Virtual Event, 2021, pp. 71–80.
[19]
I. Beltagy, M. E. Peters, and A. Cohan, Longformer: The long-document transformer, arXiv preprint arXiv: 2004.05150, 2020.
[21]
M. Zaheer, G. Guruganesh, A. Dubey, J. Ainslie, C. Alberti, S. Ontanon, P. Pham, A. Ravula, Q. Wang, L. Yang, et al., Big bird: Transformers for longer sequences, arXiv preprint arXiv: 2007.14062, 2020.
[22]
X. Zhang, F. Wei, and M. Zhou, HIBERT: Document level pre-training of hierarchical bidirectional transformers for document summarization, in Proc. 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 2019, pp. 5059–5069.
[23]
J. Lim and H. J. Song, Improving multi-stage long document summarization with enhanced coarse summarizer, in Proc. 4th New Frontiers in Summarization Workshop, Singapore, 2023, pp. 135–144.
[24]
B. Pang, E. Nijkamp, W. Kryscinski, S. Savarese, Y. Zhou, and C. Xiong, Long document summarization with top-down and bottom-up inference, in Proc. Findings of the Association for Computational Linguistics: EACL 2023, Dubrovnik, Croatia, 2023, pp. 1267–1284.
[25]
A. Q. Jiang, A. Sablayrolles, A. Roux, A. Mensch, B. Savary, C. Bamford, D. S. Chaplot, D. de las Casas, E. B. Hanna, F. Bressand, et al., Mixtral of experts, arXiv preprint arXiv: 2401.04088, 2024.
[26]
Meta, Build the future of AI with Meta Llama 3, https://llama.meta.com/llama3/, 2024.
[27]
S. Syed, M. Völske, N. Lipka, B. Stein, H. Schütze, and M. Potthast, Towards summarization for social media—Results of the TL;DR challenge, in Proc. 12th Int. Conf. Natural Language Generation, Tokyo, Japan, 2019, pp. 523–528.
[28]
S. Gehrmann, Z. Ziegler, and A. Rush, Generating abstractive summaries with finetuned language models, in Proc. 12th Int. Conf. Natural Language Generation, Tokyo, Japan, 2019, pp. 516–522.
[29]
H. Choi, L. Ravuru, T. Dryjański, S. Rye, D. Lee, H. Lee, and I. Hwang, VAE-PGN based abstractive model in multi-stage architecture for text summarization, in Proc. 12th Int. Conf. Natural Language Generation, Tokyo, Japan, 2019, pp. 510–515.
[30]
T. Brants, F. Chen, and I. Tsochantaridis, Topic-based document segmentation with probabilistic latent semantic analysis, in Proc. 11th Int. Conf. Information and Knowledge Management, McLean, VA, USA, 2002, pp. 211–218.
[31]
M. A. Hearst, Multi-paragraph segmentation of expository text, arXiv preprint arXiv: cmp-lg/9406037, 1994.
[33]
F. Y. Y. Choi, Advances in domain independent linear text segmentation, arXiv preprint arXiv: cs/0003083, 2000.
[34]
M. Utiyama and H. Isahara, A statistical model for domain-independent text segmentation, in Proc. 39th Annual Meeting on Association for Computational Linguistics, Toulouse, France, 2001, pp. 499–506.
[35]
P. Fragkou, V. Petridis, and A. Kehagias, A dynamic programming algorithm for linear text segmentation, J. Intell. Inf. Syst., vol. 23, no. 2, pp. 179–197, 2004.
[36]
J. Eisenstein, Hierarchical text segmentation from multi-scale lexical cohesion, in Proc. Human Language Technologies: The 2009 Annual Conf. North American Chapter of the Association for Computational Linguistics, Boulder, CO, USA, 2009, pp. 353–361.
[37]
G. Glavaš, F. Nanni, and S. P. Ponzetto, Unsupervised text segmentation using semantic relatedness graphs, in Proc. 5th Joint Conf. Lexical and Computational Semantics, Berlin, Germany, 2016, pp. 125–130.
[38]
J. Li, A. Sun, and S. Joty, SEGBOT: A generic neural text segmentation model with pointer network, in Proc. 27th Int. Joint Conf. Artificial Intelligence, Stockholm, Sweden, 2018, pp. 4166–4172.
[39]
Y. Wang, S. Li, and J. Yang, Toward fast and accurate neural discourse segmentation, in Proc. 2018 Conf. Empirical Methods in Natural Language Processing, Brussels, Belgium, 2018, pp. 962–967.
[40]
Y. Liu, C. Zhu, and M. Zeng, End-to-end segmentation-based news summarization, in Proc. Findings of the Association for Computational Linguistics: ACL 2022, Dublin, Ireland, 2022, pp. 544–554.
[41]
C. Y. Lin, ROUGE: A package for automatic evaluation of summaries, presented at Workshop on Text Summarization Branches Out, Post-Conference Workshop of ACL 2004, Barcelona, Spain, 2004.
[42]
T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi, BERTScore: Evaluating text generation with BERT, arXiv preprint arXiv: 1904.09675, 2019.
[43]
R. Mihalcea and P. Tarau, TextRank: Bringing order into text, in Proc. 2004 Conf. Empirical Methods in Natural Language Processing (EMNLP), Barcelona, Spain, 2004, pp. 404–411.
[44]
P. Li, W. Lam, L. Bing, W. Guo, and H. Li, Cascaded attention based unsupervised information distillation for compressive summarization, in Proc. 2017 Conf. Empirical Methods in Natural Language Processing (EMNLP), Copenhagen, Denmark, 2017, pp. 2081–2090.
[45]
J. Zhang, Y. Zhao, M. Saleh, and P. J. Liu, PEGASUS: Pre-training with extracted gap-sentences for abstractive summarization, arXiv preprint arXiv: 1912.08777, 2019.