Journal Home > Volume 1 , Issue 1

Antigen receptors (AgRs) expressed on B and T cells provide the adaptive immune system with ability to detect numerous foreign antigens. Epigenetic features of B cell receptor (BCR) and T cell receptor (TCR) genes were previously studied in lymphocytes, but little is known about their epigenetic features in other cells. Here, we explored histone modifications and transcription markers at the BCR and TCR loci in lymphocytes (pro-B, DP T cells, and mature CD4+ T cells), compared to embryonic stem (ES) cells and neurons. In B cells, the BCR loci exhibited active histone modifications and transcriptional markers indicative of active loci. Similar results were observed at the TCR loci in T cells. All loci were largely inactive in neurons. Surprisingly, in ES cells all AgR loci displayed a high degree of active histone modifications and markers of active transcription. Locations of these active histone modifications in ES cells were largely distinct from those in pro-B cells, and co-localized at numerous binding locations for transcription factors Oct4, Sox2, and Nanog. ES and pro-B cells also showed distinct binding patterns for the ubiquitous transcription factor YY1 and chromatin remodeler Brg1. On the contrary, there were many overlapping CCCTC-binding factor (CTCF) binding patterns when comparing ES cells, pro-B cells, and neurons. Our study identifies epigenetic features in ES cells and lymphocytes that may be related to ES cell pluripotency and lymphocyte tissue-specific activation at the AgR loci.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Multiple lineage-specific epigenetic landscapes at the antigen receptor loci

Show Author's information Xiang Qiu1,2,§( )Guanxiang Liang1,§Weiqiang Zhou3Ranjan Sen2Michael L. Atchison1( )
Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland 21224, USA
Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA

§These authors contributed equally to this work.

Abstract

Antigen receptors (AgRs) expressed on B and T cells provide the adaptive immune system with ability to detect numerous foreign antigens. Epigenetic features of B cell receptor (BCR) and T cell receptor (TCR) genes were previously studied in lymphocytes, but little is known about their epigenetic features in other cells. Here, we explored histone modifications and transcription markers at the BCR and TCR loci in lymphocytes (pro-B, DP T cells, and mature CD4+ T cells), compared to embryonic stem (ES) cells and neurons. In B cells, the BCR loci exhibited active histone modifications and transcriptional markers indicative of active loci. Similar results were observed at the TCR loci in T cells. All loci were largely inactive in neurons. Surprisingly, in ES cells all AgR loci displayed a high degree of active histone modifications and markers of active transcription. Locations of these active histone modifications in ES cells were largely distinct from those in pro-B cells, and co-localized at numerous binding locations for transcription factors Oct4, Sox2, and Nanog. ES and pro-B cells also showed distinct binding patterns for the ubiquitous transcription factor YY1 and chromatin remodeler Brg1. On the contrary, there were many overlapping CCCTC-binding factor (CTCF) binding patterns when comparing ES cells, pro-B cells, and neurons. Our study identifies epigenetic features in ES cells and lymphocytes that may be related to ES cell pluripotency and lymphocyte tissue-specific activation at the AgR loci.

Keywords: epigenetics, histone modifications, transcription, antigen receptors (AgRs), cell specificity

References(84)

[1]
Cobb, R. M., Oestreich, K. J., Osipovich, O. A., Oltz, E. M. Accessibility control of V(D)J recombination. In: Advances in Immunology. Amsterdam: Elsevier, 2006, 91: 45–109. https://doi.org/10.1016/S0065-2776(06)91002-5
DOI
[2]

Degner-Leisso, S. C., Feeney, A. J Epigenetic and 3-dimensional regulation of V(D)J rearrangement of immunoglobulin genes, Seminars in Immunology 2010, 22, 346–352. https://doi.org/10.1016/j.smim.2010.08.002.

[3]

Jung, D., Giallourakis, C., Mostoslavsky, R., Alt, F. W Mechanism and control of V(D)J recombination at the immunoglobulin heavy chain locus, Annual Review of Immunology 2006, 24, 541–570. https://doi.org/10.1146/annurev.immunol.23.021704.115830.

[4]
Carico, Z., Krangel, M. S. Chromatin dynamics and the development of the TCRα and TCRδ repertoires. In: Advances in Immunology. Amsterdam: Elsevier, 2015, 128: 307–361.
DOI
[5]

Prakash, K., Fournier, D Evidence for the implication of the histone code in building the genome structure, Biosystems 2018, 164, 49–59. https://doi.org/10.1016/j.biosystems.2017.11.005.

[6]

Gates, L. A., Foulds, C. E., O’Malley, B. W Histone marks in the ‘driver’s seat’: Functional roles in steering the transcription cycle, Trends in Biochemical Sciences 2017, 42, 977–989. https://doi.org/10.1016/j.tibs.2017.10.004.

[7]

Hyun, K., Jeon, J., Park, K., Kim, J Writing, erasing and reading histone lysine methylations, Experimental & Molecular Medicine 2017, 49, e324. https://doi.org/10.1038/emm.2017.11.

[8]

Qin, H., Zhao, A. D., Zhang, C. P., Fu, X. B Epigenetic control of reprogramming and transdifferentiation by histone modifications, Stem Cell Reviews and Reports 2016, 12, 708–720. https://doi.org/10.1007/s12015-016-9682-4.

[9]

Calo, E., Wysocka, J Modification of enhancer chromatin: What, how, and why, Molecular Cell 2013, 49, 825–837. https://doi.org/10.1016/j.molcel.2013.01.038.

[10]

Ji, Y. H., Resch, W., Corbett, E., Yamane, A., Casellas, R., Schatz, D. G The in vivo pattern of binding of RAG1 and RAG2 to antigen receptor loci, Cell 2010, 141, 419–431. https://doi.org/10.1016/j.cell.2010.03.010.

[11]

Schatz, D. G., Ji, Y. H Recombination centres and the orchestration of V(D)J recombination, Nature Reviews Immunology 2011, 11, 251–263. https://doi.org/10.1038/nri2941.

[12]

Farago, M., Rosenbluh, C., Tevlin, M., Fraenkel, S., Schlesinger, S., Masika, H., Gouzman, M., Teng, G., Schatz, D., Rais, Y. et al Clonal allelic predetermination of immunoglobulin-κ rearrangement, Nature 2012, 490, 561–565. https://doi.org/10.1038/nature11496.

[13]

Matheson, L. S., Bolland, D. J., Chovanec, P., Krueger, F., Andrews, S., Koohy, H., Corcoran, A. E Local chromatin features including PU.1 and IKAROS binding and H3K4 methylation shape the repertoire of immunoglobulin kappa genes chosen for V(D)J recombination, Frontiers in Immunology 2017, 8, 1550. https://doi.org/10.3389/fimmu.2017.01550.

[14]
de Almeida, C. R., Hendriks, R. W., Stadhouders, R. Dynamic control of long-range genomic interactions at the immunoglobulin κ light-chain locus. In: Advances in Immunology. Amsterdam: Elsevier, 2015, 128: 183–271. https://doi.org/10.1016/bs.ai.2015.07.004
DOI
[15]

Stadhouders, R., de Bruijn, M. J., Rother, M. B., Yuvaraj, S., Ribeiro de Almeida, C., Kolovos, P., van Zelm, M. C., van Ijcken, W., Grosveld, F., Soler, E. et al Pre-B cell receptor signaling induces immunoglobulin κ locus accessibility by functional redistribution of enhancer-mediated chromatin interactions, PLoS Biology 2014, 12, e1001791. https://doi.org/10.1371/journal.pbio.1001791.

[16]

Chakraborty, T., Chowdhury, D., Keyes, A., Jani, A., Subrahmanyam, R., Ivanova, I., Sen, R Repeat organization and epigenetic regulation of the DH-Cμ domain of the immunoglobulin heavy-chain gene locus, Molecular Cell 2007, 27, 842–850. https://doi.org/10.1016/j.molcel.2007.07.010.

[17]

Chakraborty, T., Perlot, T., Subrahmanyam, R., Jani, A., Goff, P. H., Zhang, Y., Ivanova, I., Alt, F. W., Sen, R A 220-nucleotide deletion of the intronic enhancer reveals an epigenetic hierarchy in immunoglobulin heavy chain locus activation, The Journal of Experimental Medicine 2009, 206, 1019–1027. https://doi.org/10.1084/jem.20081621.

[18]
Kumari, G., Sen, R. Chromatin interactions in the control of immunoglobulin heavy chain gene assembly. In: Advances in Immunology. Amsterdam: Elsevier, 2015, 128: 41–92. https://doi.org/10.1016/bs.ai.2015.08.001
DOI
[19]

Majumder, K., Koues, O. I., Chan, E. A., Kyle, K. E., Horowitz, J. E., Yang-Iott, K., Bassing, C. H., Taniuchi, I., Krangel, M. S., Oltz, E. M Lineage-specific compaction of Tcrb requires a chromatin barrier to protect the function of a long-range tethering element, The Journal of Experimental Medicine 2015, 212, 107–120. https://doi.org/10.1084/jem.20141479.

[20]

Teng, G., Maman, Y., Resch, W., Kim, M., Yamane, A., Qian, J., Kieffer-Kwon, K. R., Mandal, M., Ji, Y. H., Meffre, E. et al RAG represents a widespread threat to the lymphocyte genome, Cell 2015, 162, 751–765. https://doi.org/10.1016/j.cell.2015.07.009.

[21]

Local, A., Huang, H., Albuquerque, C. P., Singh, N., Lee, A. Y., Wang, W., Wang, C. C., Hsia, J. E., Shiau, A. K., Ge, K. et al Identification of H3K4me1-associated proteins at mammalian enhancers, Nature Genetics 2018, 50, 73–82. https://doi.org/10.1038/s41588-017-0015-6.

[22]

Placek, K., Hu, G. Q., Cui, K. R., Zhang, D. F., Ding, Y., Lee, J. E., Jang, Y., Wang, C. C., Konkel, J. E., Song, J. Z. et al MLL4 prepares the enhancer landscape for Foxp3 induction via chromatin looping, Nature Immunology 2017, 18, 1035–1045. https://doi.org/10.1038/ni.3812.

[23]

Ntziachristos, P., Tsirigos, A., Vlierberghe, P. V., Nedjic, J., Trimarchi, T., Flaherty, M. S., Ferres-Marco, D., da Ros, V., Tang, Z. J., Siegle, J. et al Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia, Nature Medicine 2012, 18, 298–302. https://doi.org/10.1038/nm.2651.

[24]

Xing, S. J., Li, F. Y., Zeng, Z. H., Zhao, Y. J., Yu, S. Y., Shan, Q., Li, Y. L., Phillips, F. C., Maina, P. K., Qi, H. H. et al Tcf1 and Lef1 transcription factors establish CD8+ T cell identity through intrinsic HDAC activity, Nature Immunology 2016, 17, 695–703. https://doi.org/10.1038/ni.3456.

[25]

Peschansky, V. J., Wahlestedt, C Non-coding RNAs as direct and indirect modulators of epigenetic regulation, Epigenetics 2014, 9, 3–12. https://doi.org/10.4161/epi.27473.

[26]

Takeshi, Isoda, Non-coding transcription instructs chromatin folding and compartmentalization to dictate enhancer-promoter communication and T cell fate, Cell 2017, 171, 103–119.e18. https://doi.org/10.1016/j.cell.2017.09.001.

[27]

Ebert, A., McManus, S., Tagoh, H., Medvedovic, J., Salvagiotto, G., Novatchkova, M., Tamir, I., Sommer, A., Jaritz, M., Busslinger, M The distal VH gene cluster of the igh locus contains distinct regulatory elements with Pax5 transcription factor-dependent activity in pro-B cells, Immunity 2011, 34, 175–187. https://doi.org/10.1016/j.immuni.2011.02.005.

[28]

Choi, N. M., Feeney, A. J CTCF and ncRNA regulate the three-dimensional structure of antigen receptor loci to facilitate V(D)J recombination, Frontiers in Immunology 2014, 5, 49. https://doi.org/10.3389/fimmu.2014.00049.

[29]

Choi, N. M., Loguercio, S., Verma-Gaur, J., Degner, S. C., Torkamani, A., Su, A. I., Oltz, E. M., Artyomov, M., Feeney, A. J Deep sequencing of the murine Igh repertoire reveals complex regulation of nonrandom V gene rearrangement frequencies, The Journal of Immunology 2013, 191, 2393–2402. https://doi.org/10.4049/jimmunol.1301279.

[30]

Xiao, C. C., Ren, Z. Y., Zhang, B., Mao, L. P., Zhu, G. D., Gao, L. J., Su, J., Ye, J. Z., Long, Z., Zhu, Y. et al Insufficient epitope-specific T cell clones are responsible for impaired cellular immunity to inactivated SARS-CoV-2 vaccine in older adults, Nature Aging 2023, 3, 418–435. https://doi.org/10.1038/s43587-023-00379-0.

[31]

Blanco, E., Pérez-Andrés, M., Arriba-Méndez, S., Contreras-Sanfeliciano, T., Criado, I., Pelak, O., Serra-Caetano, A., Romero, A., Puig, N., Remesal, A. et al Age-associated distribution of normal B-cell and plasma cell subsets in peripheral blood, The Journal of Allergy and Clinical Immunology 2018, 141, 2208–2219.e16. https://doi.org/10.1016/j.jaci.2018.02.017.

[32]

Gibcus, J. H., Dekker, J The hierarchy of the 3D genome, Molecular Cell 2013, 49, 773–782. https://doi.org/10.1016/j.molcel.2013.02.011.

[33]

Gorkin, D. U., Leung, D., Ren, B The 3D genome in transcriptional regulation and pluripotency, Cell Stem Cell 2014, 14, 762–775. https://doi.org/10.1016/j.stem.2014.05.017.

[34]

Hnisz, D., Day, D. S., Yong, R. A Insulated neighborhoods: Structural and functional units of mammalian gene control, Cell 2016, 167, 1188–1200. https://doi.org/10.1016/j.cell.2016.10.024.

[35]

Barajas-Mora, E. M., Kleiman, E., Xu, J., Carrico, N. C., Lu, H. B., Oltz, E. M., Murre, C., Feeney, A. J A B-cell-specific enhancer orchestrates nuclear architecture to generate a diverse antigen receptor repertoire, Molecular Cell 2019, 73, 48–60.e5. https://doi.org/10.1016/j.molcel.2018.10.013.

[36]

Chen, S. W., Luperchio, T. R., Wong, X., Doan, E. B., Byrd, A. T., Roy Choudhury, K., Reddy, K. L., Krangel, M. S A lamina-associated domain border governs nuclear lamina interactions, transcription, and recombination of the Tcrb locus, Cell Reports 2018, 25, 1729–1740.e6. https://doi.org/10.1016/j.celrep.2018.10.052.

[37]

Hsu, S. C., Gilgenast, T. G., Bartman, C. R., Edwards, C. R., Stonestrom, A. J., Huang, P., Emerson, D. J., Evans, P., Werner, M. T., Keller, C. A. et al The BET protein BRD2 cooperates with CTCF to enforce transcriptional and architectural boundaries, Molecular Cell 2017, 66, 102–116.e7. https://doi.org/10.1016/j.molcel.2017.02.027.

[38]

Merkenschlager, M., Nora, E. P CTCF and cohesin in genome folding and transcriptional gene regulation, Annual Review of Genomics and Human Genetics 2016, 17, 17–43. https://doi.org/10.1146/annurev-genom-083115-022339.

[39]

Jiang, T. T., Raviram, R., Snetkova, V., Rocha, P. P., Proudhon, C., Badri, S., Bonneau, R., Skok, J. A., Kluger, Y Identification of multi-loci hubs from 4C-seq demonstrates the functional importance of simultaneous interactions, Nucleic Acids Research 2016, 44, 8714–8725. https://doi.org/10.1093/nar/gkw568.

[40]

Kleiman, E., Loguercio, S., Feeney, A. J Epigenetic enhancer marks and transcription factor binding influence Vκ gene rearrangement in pre-B cells and pro-B cells, Frontiers in Immunology 2018, 9, 2074. https://doi.org/10.3389/fimmu.2018.02074.

[41]
Majumder, K., Bassing, C. H., Oltz, E. M. Regulation of Tcrb gene assembly by genetic, epigenetic, and topological mechanisms. In: Advances in Immunology. Amsterdam: Elsevier, 2015, 128: 273–306. https://doi.org/10.1016/bs.ai.2015.07.001
DOI
[42]

Predeus, A., Gopalakrishnan, S., Huang, Y., Tang, J., Feeney, A., Oltz, E., Artyomov, M Targeted chromatin profiling reveals novel enhancers in lg H and lg L chain loci, The Journal of Immunology 2014, 192, 1064–1070. https://doi.org/10.4049/jimmunol.1302800.

[43]

Lin, Y. C., Benner, C., Mansson, R., Heinz, S., Miyazaki, K., Miyazaki, M., Chandra, V., Bossen, C., Glass, C. K., Murre, C Global changes in the nuclear positioning of genes and intra- and interdomain genomic interactions that orchestrate B cell fate, Nature Immunology 2012, 13, 1196–1204. https://doi.org/10.1038/ni.2432.

[44]

Lin, Y. C., Jhunjhunwala, S., Benner, C., Heinz, S., Welinder, E., Mansson, R., Sigvardsson, M., Hagman, J., Espinoza, C. A., Dutkowski, J. et al A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates B cell fate, Nature Immunology 2010, 11, 635–643. https://doi.org/10.1038/ni.1891.

[45]

Miyazaki, M., Miyazaki, K., Chen, S. W., Itoi, M., Miller, M., Lu, L. F., Varki, N., Chang, A. N., Broide, D. H., Murre, C Id2 and Id3 maintain the regulatory T cell pool to suppress inflammatory disease, Nature Immunology 2014, 15, 767–776. https://doi.org/10.1038/ni.2928.

[46]

Weber, B. N., Chi, A. W. S., Chavez, A., Yashiro-Ohtani, Y., Yang, Q., Shestova, O., Bhandoola, A A critical role for TCF-1 in T-lineage specification and differentiation, Nature 2011, 476, 63–68. https://doi.org/10.1038/nature10279.

[47]
Degner, S. C., Verma-Gaur, J., Wong, T. P., Bossen, C., Iverson, G. M., Torkamani, A., Vettermann, C., Lin, Y. C., Ju, Z. L., Schulz, D. et al. CCCTC-binding factor (CTCF) and cohesin influence the genomic architecture of the Igh locus and antisense transcription in pro-B cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(23): 9566–9571. https://doi.org/10.1073/pnas.1019391108
DOI
[48]

Fuxa, M., Skok, J., Souabni, A., Salvagiotto, G., Roldan, E., Busslinger, M Pax5 inducesV-to-DJ rearrangements and locus contraction of the immunoglobulin heavy-chain gene, Genes & Development 2004, 18, 411–422. https://doi.org/10.1101/gad.291504.

[49]

Gerasimova, T., Guo, C. Y., Ghosh, A., Qiu, X., Montefiori, L., Verma-Gaur, J., Choi, N. M., Feeney, A. J., Sen, R A structural hierarchy mediated by multiple nuclear factors establishes IgH locus conformation, Genes & Development 2015, 29, 1683–1695. https://doi.org/10.1101/gad.263871.115.

[50]

Guo, C. Y., Gerasimova, T., Hao, H. P., Ivanova, I., Chakraborty, T., Selimyan, R., Oltz, E. M., Sen, R Two forms of loops generate the chromatin conformation of the immunoglobulin heavy-chain gene locus, Cell 2011, 147, 332–343. https://doi.org/10.1016/j.cell.2011.08.049.

[51]
Guo, C. G., Yoon, H. S., Franklin, A., Jain, S., Ebert, A., Cheng, H. L., Hansen, E., Despo, O., Bossen, C., Vettermann, C. et al. CTCF-binding elements mediate control of V(D)J recombination. Nature, 2011, 477(7365): 424–430. https://doi.org/10.1038/nature10495
DOI
[52]
Suvi, Jain, . CTCF-binding elements mediate accessibility of RAG substrates during chromatin scanning. Cell, 2018, 174(1): 102–116.e14. https://doi.org/10.1016/j.cell.2018.04.035
DOI
[53]

Medvedovic, J., Ebert, A., Tagoh, H., Tamir, I., Schwickert, T. A., Novatchkova, M., Sun, Q., Huis in ‘t Veld, P., Guo, C. G., Yoon, H. et al Flexible long-range loops in the VH gene region of the Igh locus facilitate the generation of a diverse antibody repertoire, Immunity 2013, 39, 229–244. https://doi.org/10.1016/j.immuni.2013.08.011.

[54]

Pan, X., Papasani, M., Hao, Y., Calamito, M., Wei, F., Quinn, W. J., Basu, A., Wang, J. W., Hodawadekar, S., Zaprazna, K. et al YY1 controls Igκ repertoire and B-cell development, and localizes with condensin on the Igκ locus, The EMBO Journal 2013, 32, 1168–1182. https://doi.org/10.1038/emboj.2013.66.

[55]

Qiu, X., Kumari, G., Gerasimova, T., Du, H. S., Labaran, L., Singh, A., De, S., Wood, W. H. III, Becker, K. G., Zhou, W. Q. et al Sequential enhancer sequestration dysregulates recombination center formation at the IgH locus, Molecular Cell 2018, 70, 21–33.e6. https://doi.org/10.1016/j.molcel.2018.02.020.

[56]

Verma-Gaur, J., Torkamani, A., Schaffer, L., Head, S. R., Schork, N. J., Feeney, A. J Noncoding transcription within the Igh distal VH region at PAIR elements affects the 3D structure of the Igh locus in pro-B cells, Proceedings of the National Academy of Sciences of the United States of America 2012, 109, 17004–17009. https://doi.org/10.1073/pnas.1208398109.

[57]

Mehra, P., Gerasimova, T., Basu, A., Jha, V., Banerjee, A., Sindhava, V., Gray, F., Berry, C. T., Sen, R., Atchison, M. L YY1 controls Eμ-3’RR DNA loop formation and immunoglobulin heavy chain class switch recombination, Blood Advances 2016, 1, 15–20. https://doi.org/10.1182/bloodadvances.2016000372.

[58]

Bossen, C., Murre, C. S., Chang, A. N., Mansson, R., Rodewald, H. R., Murre, C The chromatin remodeler Brg1 activates enhancer repertoires to establish B cell identity and modulate cell growth, Nature Immunology 2015, 16, 775–784. https://doi.org/10.1038/ni.3170.

[59]

Wöhner, M., Tagoh, H., Bilic, I., Jaritz, M., Kostanova Poliakova, D., Fischer, M., Busslinger, M Molecular functions of the transcription factors E2A and E2-2 in controlling germinal center B cell and plasma cell development, The Journal of Cell Biology 2016, 213, 1201–1221. https://doi.org/10.1084/jem.20152002.

[60]

Pekowska, A., Benoukraf, T., Zacarias-Cabeza, J., Belhocine, M., Koch, F., Holota, H., Imbert, J., Andrau, J. C., Ferrier, P., Spicuglia, S H3K4 tri-methylation provides an epigenetic signature of active enhancers, The EMBO Journal 2011, 30, 4198–4210. https://doi.org/10.1038/emboj.2011.295.

[61]

Gates, L. A., Shi, J. J., Rohira, A. D., Feng, Q., Zhu, B. K., Bedford, M. T., Sagum, C. A., Jung, S. Y., Qin, J., Tsai, M. J. et al Acetylation on histone H3 lysine 9 mediates a switch from transcription initiation to elongation, The Journal of Biological Chemistry 2017, 292, 14456–14472. https://doi.org/10.1074/jbc.M117.802074.

[62]

Creyghton, M. P., Cheng, A. W., Welstead, G. G., Kooistra, T., Carey, B. W., Steine, E. J., Hanna, J., Lodato, M. A., Frampton, G. M., Sharp, P. A. et al Histone H3K27ac separates active from poised enhancers and predicts developmental state, Proceedings of the National Academy of Sciences of the United States of America 2010, 107, 21931–21936. https://doi.org/10.1073/pnas.1016071107.

[63]

Barski, A., Cuddapah, S., Cui, K. R., Roh, T. Y., Schones, D. E., Wang, Z. B., Wei, G., Chepelev, I., Zhao, K. J High-resolution profiling of histone methylations in the human genome, Cell 2007, 129, 823–837. https://doi.org/10.1016/j.cell.2007.05.009.

[64]

Guenther, M. G., Levine, S. S., Boyer, L. A., Jaenisch, R., Young, R. A A chromatin landmark and transcription initiation at most promoters in human cells, Cell 2007, 130, 77–88. https://doi.org/10.1016/j.cell.2007.05.042.

[65]

Avilion, A. A., Nicolis, S. K., Pevny, L. H., Perez, L., Vivian, N., Lovell-Badge, R Multipotent cell lineages in early mouse development depend on SOX2 function, Genes & Development 2003, 17, 126–140. https://doi.org/10.1101/gad.224503.

[66]

Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M., Takahashi, K., Maruyama, M., Maeda, M., Yamanaka, S The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells, Cell 2003, 113, 631–642. https://doi.org/10.1016/S0092-8674(03)00393-3.

[67]

Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., Schöler, H., Smith, A Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4, Cell 1998, 95, 379–391. https://doi.org/10.1016/S0092-8674(00)81769-9.

[68]

Soufi, A., Garcia, M. F., Jaroszewicz, A., Osman, N., Pellegrini, M., Zaret, K. S Pioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogramming, Cell 2015, 161, 555–568. https://doi.org/10.1016/j.cell.2015.03.017.

[69]

Weintraub, A. S., Li, C. H., Zamudio, A. V., Sigova, A. A., Hannett, N. M., Day, D. S., Abraham, B. J., Cohen, M. A., Nabet, B., Buckley, D. L. et al YY1 is a structural regulator of enhancer-promoter loops, Cell 2017, 171, 1573–1588.e28. https://doi.org/10.1016/j.cell.2017.11.008.

[70]

Loguercio, S., Barajas-Mora, E. M., Shih, H. Y., Krangel, M. S., Feeney, A. J Variable extent of lineage-specificity and developmental stage-specificity of cohesin and CCCTC-binding factor binding within the immunoglobulin and T cell receptor loci, Frontiers in Immunology 2018, 9, 425. https://doi.org/10.3389/fimmu.2018.00425.

[71]

Martello, G., Smith, A The nature of embryonic stem cells, Annual Review of Cell and Developmental Biology 2014, 30, 647–675. https://doi.org/10.1146/annurev-cellbio-100913-013116.

[72]

Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., Guenther, M. G., Kumar, R. M., Murray, H. L., Jenner, R. G. et al Core transcriptional regulatory circuitry in human embryonic stem cells, Cell 2005, 122, 947–956. https://doi.org/10.1016/j.cell.2005.08.020.

[73]

Loh, Y. H., Wu, Q., Chew, J. L., Vega, V. B., Zhang, W. W., Chen, X., Bourque, G., George, J., Leong, B., Liu, J. et al The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells, Nature Genetics 2006, 38, 431–440. https://doi.org/10.1038/ng1760.

[74]

Liu, H., Schmidt-Supprian, M., Shi, Y., Hobeika, E., Barteneva, N., Jumaa, H., Pelanda, R., Reth, M., Skok, J., Rajewsky, K. et al Yin Yang 1 is a critical regulator of B-cell development, Genes & Development 2007, 21, 1179–1189. https://doi.org/10.1101/gad.1529307.

[75]

Calame, K., Atchison, M YY1 helps to bring loose ends together, Genes & Development 2007, 21, 1145–1152. https://doi.org/10.1101/gad.1559007.

[76]

Atchison, M. L Function of YY1 in long-distance DNA interactions, Frontiers in Immunology 2014, 5, 45. https://doi.org/10.3389/fimmu.2014.00045.

[77]

Hwang, S. S., Kim, Y. U., Lee, S., Jang, S. W., Kim, M. K., Koh, B. H., Lee, W., Kim, J., Souabni, A., Busslinger, M. et al Transcription factor YY1 is essential for regulation of the Th2 cytokine locus and for Th2 cell differentiation, Proc Natl Acad Sci USA 2013, 110, 276–281. https://doi.org/10.1073/pnas.1214682110.

[78]

Langmead, B., Trapnell, C., Pop, M., Salzberg, S. L Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Genome Biology 2009, 10, R25. https://doi.org/10.1186/gb-2009-10-3-r25.

[79]

Feng, J. X., Liu, T., Qin, B., Zhang, Y., Liu, X. S Identifying ChIP-seq enrichment using MACS, Nature Protocols 2012, 7, 1728–1740. https://doi.org/10.1038/nprot.2012.101.

[80]

Jalili, V., Matteucci, M., Masseroli, M., Morelli, M. J Using combined evidence from replicates to evaluate ChIP-seq peaks, Bioinformatics 2018, 34, 2338. https://doi.org/10.1093/bioinformatics/bty119.

[81]

Bolger, A. M., Lohse, M., Usadel, B Trimmomatic: A flexible trimmer for Illumina sequence data, Bioinformatics 2014, 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170.

[82]

Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., Salzberg, S. L TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions, Genome Biology 2013, 14, R36. https://doi.org/10.1186/gb-2013-14-4-r36.

[83]
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., Genome Project Data Processing Subgroup. The sequence alignment/map format and SAMtools. Bioinformatics (Oxford, England), 2009, 25(16): 2078–2079. https://doi.org/10.1093/bioinformatics/btp352
DOI
[84]
Ramírez, F., Ryan, D. P., Grüning, B., Bhardwaj, V., Kilpert, F., Richter, A. S., Heyne, S., Dündar, F., Manke, T. deepTools2: A next generation web server for deep-sequencing data analysis. Nucleic Acids Research, 2016, 44(W1): W160–W165. https://doi.org/10.1093/nar/gkw257
DOI
File
AgingRes-2023-0010_ESM.pdf (4.1 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 24 May 2023
Revised: 28 June 2023
Accepted: 28 June 2023
Published: 24 August 2023
Issue date: September 2023

Copyright

© The Author(s) 2023. Aging Research published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was supported by NIH R01 Grants AI079002 and AI162879 (to MLA), and in part by the Intramural Research Program of the NIH, National Institute on Aging. We thank Kenneth Zaret (University of Pennsylvania) for comments on the manuscript.

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return