AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (6.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

Identification of aging-related genes in Helicobacter pylori infection

Honghao LiYuanyuan DengHonglie ZengShaowei CaiMing XuHongli Zhao( )
Department of Internal Medicine II, Minhang Campus, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
Show Author Information

Abstract

Background

Helicobacter pylori (HP) infection is common worldwide, leading to many systemic diseases. The reasons for aging have been explored, but there is no unified conclusion. The aim of this study was to explore aging-related genes involved in HP infection.

Results

A total of 70 aging-related differentially expressed genes (DEGs) were identified between HP infection and control groups, including 64 upregulated genes and 6 downregulated genes. Functional enrichment analysis revealed that multiple signaling pathways are closely linked to HP infection. In addition, the cytoHubba plugin identified 10 important hub genes, namely, ITGB2, PTPRC, HCLS1, LAPTM5, CD53, LYN, HLA-DRA, HLA-DPA1, HLA-DQB1, and CXCL8. Additionally, the correlation analysis of immune cell fractions revealed that immune infiltration plays an important role in HP infection. The nomogram containing CD53, ITGB2, and CXCL8 confirmed the favorable prediction ability of HP infection.

Conclusion

Ten aging-related hub genes involved in HP infection were identified. This study revealed an association between aging and HP infection, and they may have a causal relationship.

Methods

Microarray data for HP infection were obtained from the Gene Expression Omnibus (GEO) database. Aging-related genes were obtained from the Molecular Signature Database (https://www.gsea-msigdb.org). Differential gene expression analysis was analysed using R software and the limma package to find DEGs. In addition, functional enrichment analysis of DEGs by using GO and KEGG and construction of protein‒protein interactions (PPIs) and hub genes were determined by using the STRING database and Cytoscape software. Additionally, immune infiltration and difference analysis between HP infection and control groups were performed with R software. A nomogram was constructed to predict the risk of infection with HP by using some hub genes that were strongly correlated with neutrophils.

References

[1]

Marshall, B., Warren, J. R. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. The Lancet, 1984, 323: 1311–1315. https://doi.org/10.1016/S0140-6736(84)91816-6

[2]

Gobert, A. P., Wilson, K. T. Induction and regulation of the innate immune response in Helicobacter pylori infection. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13: 1347–1363. https://doi.org/10.1016/j.jcmgh.2022.01.022

[3]

Xu, W. T., Xu, L. M., Xu, C. F. Relationship between Helicobacter pylori infection and gastrointestinal microecology. Frontiers in Cellular and Infection Microbiology, 2022, 12: 938608. https://doi.org/10.3389/fcimb.2022.938608

[4]
Ito, N., Tsujimoto, H., Ueno, H., Xie, Q., Shinomiya, N. Helicobacter pylori-mediated immunity and signaling transduction in gastric cancer. Journal of Clinical Medicine, 2020, 9(11): 3699. https://doi.org/10.3390/jcm9113699
[5]

Mentis, A. F A., Boziki, M., Grigoriadis, N., Papavassiliou, A. G. Helicobacter pylori infection and gastric cancer biology: Tempering a double-edged sword. Cellular and Molecular Life Sciences, 2019, 76: 2477–2486. https://doi.org/10.1007/s00018-019-03044-1

[6]
Santos, M. L. C., Brito, B. B. D., Silva, F. A. F. D., Sampaio, M. M., Marques, H. S., Silva, N. O. E., de Magalhães Queiroz, D. M., Melo, F. F. D. Helicobacter pylori infection: Beyond gastric manifestations. World Journal of Gastroenterology, 2020, 26(28): 4076–4093. https://doi.org/10.3748/wjg.v26.i28.4076
[7]
Mladenova, I. Clinical relevance of Helicobacter pylori infection. Journal of Clinical Medicine, 2021, 10(16): 3473. https://doi.org/10.3390/jcm10163473
[8]
de Brito, B. B., da Silva, F. A. F., Soares, A. S., Pereira, V. A., Santos, M. L. C., Sampaio, M. M., Neves, P. H. M., de Melo, F. F. Pathogenesis and clinical management of Helicobacter pylori gastric infection. World Journal of Gastroenterology, 2019, 25(37): 5578–5589. https://doi.org/10.3748/wjg.v25.i37.5578
[9]

Yunhao, Li, MMed,. Global prevalence of Helicobacter pylori infection between 1980 and 2022: A systematic review and meta-analysis. The Lancet Gastroenterology & Hepatology, 2023, 8: 553–564. https://doi.org/10.1016/S2468-1253(23)00070-5

[10]

Ikeda, H., Togashi, Y. Aging, cancer, and antitumor immunity. International Journal of Clinical Oncology, 2022, 27: 316–322. https://doi.org/10.1007/s10147-021-01913-z

[11]

Hou, Y. J., Dan, X. L., Babbar, M., Wei, Y., Hasselbalch, S. G., Croteau, D. L., Bohr, V. A. Ageing as a risk factor for neurodegenerative disease. Nature Reviews Neurology, 2019, 15: 565–581. https://doi.org/10.1038/s41582-019-0244-7

[12]

López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., Kroemer, G. Hallmarks of aging: An expanding universe. Cell, 2023, 186: 243–278. https://doi.org/10.1016/j.cell.2022.11.001

[13]

Giannoula, Y., Kroemer, G., Pietrocola, F. Cellular senescence and the host immune system in aging and age-related disorders. Biomedical Journal, 2023, 46: 100581. https://doi.org/10.1016/j.bj.2023.02.001

[14]

Xiao, X., Yeoh, B. S., Vijay-Kumar, M. Lipocalin 2: An emerging player in iron homeostasis and inflammation. Annual Review of Nutrition, 2017, 37: 103–130. https://doi.org/10.1146/annurev-nutr-071816-064559

[15]

Xu, W. X., Zhang, J., Hua, Y. T., Yang, S. J., Wang, D. D., Tang, J. H. An integrative pan-cancer analysis revealing LCN2 as an oncogenic immune protein in tumor microenvironment. Frontiers in Oncology, 2020, 10: 605097. https://doi.org/10.3389/fonc.2020.605097

[16]

Qiu, X. X., Chen, C., Chen, X. L. Lipocalin 2 deficiency restrains aging-related reshaping of gut microbiota structure and metabolism. Biomolecules, 2021, 11: 1286. https://doi.org/10.3390/biom11091286

[17]

Iino, C., Shimoyama, T. Impact of Helicobacter pylori infection on gut microbiota. World Journal of Gastroenterology, 2021, 27: 6224–6230. https://doi.org/10.3748/wjg.v27.i37.6224

[18]

Martin-Nuñez, G. M., Cornejo-Pareja, I., Clemente-Postigo, M., Tinahones, F. J. Gut microbiota: The missing link between Helicobacter pylori infection and metabolic disorders. Frontiers in Endocrinology, 2021, 12: 639856. https://doi.org/10.3389/fendo.2021.639856

[19]
Tao, Z. H., Han, J. X., Fang, J. Y. Helicobacter pylori infection and eradication: Exploring their impacts on the gastrointestinal microbiota. Helicobacter, 2020, 25(6): e12754. https://doi.org/10.1111/hel.12754
[20]

Bungau, S. G., Behl, T., Singh, A., Sehgal, A., Singh, S., Chigurupati, S., Vijayabalan, S., Das, S., Palanimuthu, V. R. Targeting probiotics in rheumatoid arthritis. Nutrients, 2021, 13: 3376. https://doi.org/10.3390/nu13103376

[21]

Xu, Q., Ni, J. J., Han, B. X., Yan, S. S., Wei, X. T., Feng, G. J., Zhang, H., Zhang, L., Li, B., Pei, Y. F. Causal relationship between gut microbiota and autoimmune diseases: A two-sample Mendelian randomization study. Frontiers in Immunology, 2021, 12: 746998. https://doi.org/10.3389/fimmu.2021.746998

[22]

Griffith, J. W., Sokol, C. L., Luster, A. D. Chemokines and chemokine receptors: Positioning cells for host defense and immunity. Annual Review of Immunology, 2014, 32: 659–702. https://doi.org/10.1146/annurev-immunol-032713-120145

[23]

Zou, Q., Lei, X., Xu, A. J., Li, Z. Q., He, Q. L., Huang, X. J., Xu, G. X., Tian, F. Q., Ding, Y. L., Zhu, W. Chemokines in progression, chemoresistance, diagnosis, and prognosis of colorectal cancer. Frontiers in Immunology, 2022, 13: 724139. https://doi.org/10.3389/fimmu.2022.724139

[24]

C, V., Grant,. Manipulations of the gut microbiome alter chemotherapy-induced inflammation and behavioral side effects in female mice. Brain, Behavior, and Immunity, 2021, 95: 401–412. https://doi.org/10.1016/j.bbi.2021.04.014

[25]

Aho, V. T. E., Houser, M. C., Pereira, P. A. B., Chang, J. J., Rudi, K., Paulin, L., Hertzberg, V., Auvinen, P., Tansey, M. G., Scheperjans, F. Relationships of gut microbiota, short-chain fatty acids, inflammation, and the gut barrier in Parkinson’s disease. Molecular Neurodegeneration, 2021, 16: 6. https://doi.org/10.1186/s13024-021-00427-6

[26]

Kim, H. N., Kim, M. J., Jacobs, J. P., Yang, H. J. Altered gastric microbiota and inflammatory cytokine responses in patients with Helicobacter pylori-negative gastric cancer. Nutrients, 2022, 14: 4981. https://doi.org/10.3390/nu14234981

[27]

Liu, X. Z., Li, M., Han, Q., Zuo, Z. Y., Wang, Q., Su, D. P., Fan, M. M., Chen, T. Exploring a shared genetic signature and immune infiltration between spontaneous intracerebral hemorrhage and Helicobacter pylori infection. Microbial Pathogenesis, 2023, 178: 106067. https://doi.org/10.1016/j.micpath.2023.106067

[28]

Korbecki, J., Szatkowska, I., Kupnicka, P., Żwierełło, W., Barczak, K., Poziomkowska-Gęsicka, I., Wójcik, J., Chlubek, D., Baranowska-Bosiacka, I. The importance of CXCL1 in the physiological state and in noncancer diseases of the oral cavity and abdominal organs. International Journal of Molecular Sciences, 2022, 23: 7151. https://doi.org/10.3390/ijms23137151

[29]

Yi-yun, Tan,. The improvement of nonalcoholic steatohepatitis by Poria cocos polysaccharides associated with gut microbiota and NF-κB/CCL3/CCR1 axis. Phytomedicine, 2022, 103: 154208. https://doi.org/10.1016/j.phymed.2022.154208

[30]

Zhai, L. L., Yang, W. M., Li, D. R., Zhou, W., Cui, M., Yao, P. Network pharmacology and molecular docking reveal the immunomodulatory mechanism of rhubarb peony decoction for the treatment of ulcerative colitis and irritable bowel syndrome. Journal of Pharmacy and Pharmaceutical Science, 2023, 26: 11225. https://doi.org/10.3389/jpps.2023.11225

[31]
Maubach, G., Vieth, M., Boccellato, F., Naumann, M. Helicobacter pylori-induced NF-κB: Trailblazer for gastric pathophysiology. Trends in Molecular Medicine, 2022, 28(3): 210–222. https://doi.org/10.1016/j.molmed.2021.12.005
[32]
Hannah, B., Taylor, . MS-based HLA-II peptidomics combined with multiomics will aid the development of future immunotherapies. Molecular & Cellular Proteomics, 2021, 20: 100116. https://doi.org/10.1016/j.mcpro.2021.100116
[33]

Shao, X. M., Bhattacharya, R., Huang, J., Sivakumar, I. K. A., Tokheim, C., Zheng, L., Hirsch, D., Kaminow, B., Omdahl, A., Bonsack, M. et al. High-throughput prediction of MHC class I and II neoantigens with MHCnuggets. Cancer Immunology Research, 2020, 8: 396–408. https://doi.org/10.1158/2326-6066.cir-19-0464

[34]

Rappazzo, C. G., Huisman, B. D., Birnbaum, M. E. Repertoire-scale determination of class II MHC peptide binding via yeast display improves antigen prediction. Nature Communications, 2020, 11: 4414. https://doi.org/10.1038/s41467-020-18204-2

[35]
Codolo, G., Toffoletto, M., Chemello, F., Coletta, S., Soler Teixidor, G., Battaggia, G., Munari, G., Fassan, M., Cagnin, S., de Bernard, M. Helicobacter pylori dampens HLA-II expression on macrophages via the up-regulation of miRNAs targeting CIITA. Frontiers in Immunology, 2020, 10: 2923. https://doi.org/10.3389/fimmu.2019.02923
[36]

Zhang, X. X., Dong, Y. C., Zhao, M. X., Ding, L., Yang, X. H., Jing, Y., Song, Y. X., Chen, S., Hu, Q. G., Ni, Y. H. ITGB2-mediated metabolic switch in CAFs promotes OSCC proliferation by oxidation of NADH in mitochondrial oxidative phosphorylation system. Theranostics, 2020, 10: 12044–12059. https://doi.org/10.7150/thno.47901

[37]

Liu, H., Dai, X. M., Cao, X. L., Yan, H., Ji, X. Y., Zhang, H. T., Shen, S. Y., Si, Y., Zhang, H. L., Chen, J. F. et al. PRDM 4 mediatesYAP-induced cell invasion by activating leukocyte-specific integrin β2 expression. EMBO Reports, 2018, 19: e45180. https://doi.org/10.15252/embr.201745180

[38]

Blight, B. J., Gill, A. S., Sumsion, J. S., Pollard, C. E., Ashby, S., Oakley, G. M., Alt, J. A., Pulsipher, A. Cell adhesion molecules are upregulated and may drive inflammation in chronic rhinosinusitis with nasal polyposis. Journal of Asthma and Allergy, 2021, 14: 585–593. https://doi.org/10.2147/jaa.s307197

[39]

Zhu, Y., Sun, X. W., Tan, S. L., Lou, C. Y., Zhou, J. Y., Zhang, S. Y., Li, Z. P., Lin, H., Zhang, W. T. M2 macrophage-related gene signature in chronic rhinosinusitis with nasal polyps. Frontiers in Immunology, 2022, 13: 1047930. https://doi.org/10.3389/fimmu.2022.1047930

[40]

Latour, Y. L., Sierra, J. C., Finley, J. L., Asim, M., Barry, D. P., Allaman, M. M., Smith, T. M., McNamara, K. M., Luis, P. B., Schneider, C. et al. Cystathionine γ-lyase exacerbates Helicobacter pylori immunopathogenesis by promoting macrophage metabolic remodeling and activation. JCI Insight, 2022, 7: e155338. https://doi.org/10.1172/jci.insight.155338

[41]

Hubbard, S. R., Till, J. H. Protein tyrosine kinase structure and function. Annual Review of Biochemistry, 2000, 69: 373–398. https://doi.org/10.1146/annurev.biochem.69.1.373

[42]
Liu, Z. C., Li, J. C., Hu, X. S., Xu, H. W. Helicobacter pylori-induced protein tyrosine phosphatase receptor type C as a prognostic biomarker for gastric cancer. Journal of Gastrointestinal Oncology, 2021, 12(3): 1058–1073. https://doi.org/10.21037/jgo-21-305
[43]

Adra, C. N., Zhu, S. C., Ko, J.-L., Guillemot, J-C., Cuervo, A. M., Kobayashi, H., Horiuchi, T., Lelias, J.-M., Rowley, J. D., Lim, B. LAPTM5: A novel lysosomal-associated multispanning membrane protein preferentially expressed in hematopoietic cells. Genomics, 1996, 35: 328–337. https://doi.org/10.1006/geno.1996.0364

[44]
Reyes, V. E., Peniche, A. G. Helicobacter pylori deregulates T and B cell signaling to trigger immune evasion. Current Topics in Microbiology and Immunology. Cham: Springer International Publishing, 2019: 229–265. https://doi.org/10.1007/978-3-030-15138-6_10
[45]

Brian, B. F., Freedman, T. S. The src-family kinase lyn in immunoreceptor signaling. Endocrinology, 2021, 162: 1–13. https://doi.org/10.1210/endocr/bqab152

[46]

Yamanashi, Y., Fukuda, T., Nishizumi, H., Inazu, T., Higashi, K. I., Kitamura, D., Ishida, T., Yamamura, H., Watanabe, T., Yamamoto, T. Role of tyrosine phosphorylation of HS1 in B cell antigen receptor-mediated apoptosis. The Journal of Experimental Medicine, 1997, 185: 1387–1392. https://doi.org/10.1084/jem.185.7.1387

[47]
Sampietro, M., Zamai, M., Díaz Torres, A., Labrador Cantarero, V., Barbaglio, F., Scarfò, L., Scielzo, C., Caiolfa, V. R. 3D-STED super-resolution microscopy reveals distinct nanoscale organization of the hematopoietic cell-specific lyn substrate-1 (HS1) in normal and leukemic B cells. Frontiers in Cell and Developmental Biology, 2021, 9: 655773. https://doi.org/10.3389/fcell.2021.655773
[48]

Dunlock, V. E. Tetraspanin CD53: An overlooked regulator of immune cell function. Medical Microbiology and Immunology, 2020, 209: 545–552. https://doi.org/10.1007/s00430-020-00677-z

[49]

Poto, R., Cristinziano, L., Modestino, L., de Paulis, A., Marone, G., Loffredo, S., Galdiero, M. R., Varricchi, G. Neutrophil extracellular traps, angiogenesis and cancer. Biomedicines, 2022, 10: 431. https://doi.org/10.3390/biomedicines10020431

[50]

Prichard, A., Khuu, L., Whitmore, L. C., Irimia, D., Allen, L. A H. Helicobacter pylori-infected human neutrophils exhibit impaired chemotaxis and a uropod retraction defect. Frontiers in Immunology, 2022, 13: 1038349. https://doi.org/10.3389/fimmu.2022.1038349

Aging Research
Article number: 9340013
Cite this article:
Li H, Deng Y, Zeng H, et al. Identification of aging-related genes in Helicobacter pylori infection. Aging Research, 2023, 1(1): 9340013. https://doi.org/10.26599/AGR.2023.9340013

1658

Views

53

Downloads

0

Crossref

Altmetrics

Received: 21 August 2023
Revised: 30 August 2023
Accepted: 31 August 2023
Published: 23 October 2023
© The Author(s) 2023. Aging Research published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return