Age-related diseases are serious threats to modern life. To treat these diseases and to extend lifespan or healthspan, scientists devoted a lot of effort to research, and a scientific, efficient, and convenient animal model is a necessary tool. However, it is difficult to construct an appropriate animal model to simulate the pathology of human beings, and thus this limits the clinical application. In this review, after recapitulating the history and characteristics of common animal models used in age-related diseases, especially cardiovascular diseases and carcinoma, we summarized three conditions of animal models simulating age-related diseases: (1) the same animal model can simulate different diseases in the same system, (2) the same animal model can simulate different courses or subclasses of the same disease, and (3) the same animal model can simulate different diseases across different systems. At last, we pointed out that the body is a cohesive whole and the metabolism connects the physiological and pathological processes, so we should consider the metabolism when constructing animal models and treating diseases.
Machalińska, A. Age-related macular degeneration as a local manifestation of atherosclerosis - a novel insight into pathogenesis. Klinika Oczna, 2013, 115: 74–78.
Olivieri, F., Recchioni, R., Marcheselli, F., Marie Abbatecola, A., Santini, G., Borghetti, G., Antonicelli, R., Domenico Procopio, A. Cellular senescence in cardiovascular diseases: Potential age-related mechanisms and implications for treatment. Current Pharmaceutical Design, 2013, 19: 1710–1719. https://doi.org/10.2174/1381612811319090018
Hyman, L. Hypertension, cardiovascular disease, and age-related macular degeneration. Archives of Ophthalmology, 2000, 118: 351–358. https://doi.org/10.1001/archopht.118.3.351
Khansari, N., Shakiba, Y., Mahmoudi, M. Chronic inflammation and oxidative stress as a major cause of age- related diseases and cancer. Recent Patents on Inflammation & Allergy Drug Discovery, 2009, 3: 73–80. https://doi.org/10.2174/187221309787158371
Kiecolt-Glaser, J. K., Preacher, K. J., MacCallum, R. C., Atkinson, C., Malarkey, W. B., Glaser, R. Chronic stress and age-related increases in the proinflammatory cytokine IL-6. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100: 9090–9095. https://doi.org/10.1073/pnas.1531903100
Pietschmann, P., Rauner, M., Sipos, W., Kerschan-Schindl, K. Osteoporosis: An age-related and gender-specific disease–A mini-review. Gerontology, 2008, 55: 3–12. https://doi.org/10.1159/000166209
Facchini, F. S., Hua, N., Abbasi, F., Reaven, G. M. Insulin resistance as a predictor of age-related diseases. The Journal of Clinical Endocrinology & Metabolism, 2001, 86: 3574–3578. https://doi.org/10.1210/jcem.86.8.7763
Bartzokis, G. Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer’s disease. Neurobiology of Aging, 2004, 25: 5–18. https://doi.org/10.1016/j.neurobiolaging.2003.03.001
Thomas, H., Diamond, J., Vieco, A., Chaudhuri, S., Shinnar, E., Cromer, S., Perel, P., Mensah, G. A., Narula, J., Johnson, C. O. et al. Global atlas of cardiovascular disease 2000-2016: The path to prevention and control. Global Heart, 2018, 13: 143. https://doi.org/10.1016/j.gheart.2018.09.511
Finegold, J. A., Asaria, P., Francis, D. P. Mortality from ischaemic heart disease by country, region, and age: Statistics from World Health Organisation and United Nations. International Journal of Cardiology, 2013, 168: 934–945. https://doi.org/10.1016/j.ijcard.2012.10.046
Middleton, D. Dorland’s illustrated medical dictionary. Nursing Standard, 1988, 3: 38. https://doi.org/10.7748/ns.3.6.38.s58
Feuerstein, M. Defining cancer survivorship. Journal of Cancer Survivorship: Research and Practice, 2007, 1: 5–7. https://doi.org/10.1007/s11764-006-0002-x
de Martel, C., Ferlay, J., Franceschi, S., et al. Global burden of cancers attributable to infections in 2008: A review and synthetic analysis. The Lancet Oncology, 2012, 13: 607–615. https://doi.org/10.1016/S1470-2045(12)70137-7
Zaragoza, C., Gomez-Guerrero, C., Martin-Ventura, J. L., et al. Animal models of cardiovascular diseases. Journal of Biomedicine and Biotechnology, 2011, 2011: 497841. https://doi.org/10.1155/2011/497841
Hasenfuss, G. Animal models of human cardiovascular disease, heart failure and hypertrophy. Cardiovascular Research, 1998, 39: 60–76. https://doi.org/10.1016/s0008-6363(98)00110-2
Kari, G., Rodeck, U., Dicker, A. P. Zebrafish: An emerging model system for human disease and drug discovery. Clinical Pharmacology & Therapeutics, 2007, 82: 70–80. https://doi.org/10.1038/sj.clpt.6100223
Chakraborty, C., Hsu, C., Wen, Z., Lin, C., Agoramoorthy, G. Zebrafish: A complete animal model for in vivo drug discovery and development. Current Drug Metabolism, 2009, 10: 116–124. https://doi.org/10.2174/138920009787522197
Harvey, L., Boksa, P. Prenatal and postnatal animal models of immune activation: Relevance to a range of neurodevelopmental disorders. Developmental Neurobiology, 2012, 72: 1335–1348. https://doi.org/10.1002/dneu.22043
Davidson, M. K., Lindsey, J. R., Davis, J. K. Requirements and selection of an animal model. Israel Journal of Medical Sciences, 1987, 23: 551–555.
Anderson, R. M., Shanmuganayagam, D., Weindruch, R. Caloric restriction and aging: Studies in mice and monkeys. Toxicologic Pathology, 2009, 37: 47–51. https://doi.org/10.1177/0192623308329476
Colman, R. J., Anderson, R. M., Johnson, S. C., Kastman, E. K., Kosmatka, K. J., Beasley, T. M., Allison, D. B., Cruzen, C., Simmons, H. A., Kemnitz, J. W. et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science, 2009, 325: 201–204. https://doi.org/10.1126/science.1173635
Mattison, J. A., Roth, G. S., Beasley, T. M., Tilmont, E. M., Handy, A. M., Herbert, R. L., Longo, D. L., Allison, D. B., Young, J. E., Bryant, M. et al. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature, 2012, 489: 318–321. https://doi.org/10.1038/nature11432
Colman, R. J., Beasley, T. M., Kemnitz, J. W., Johnson, S. C., Weindruch, R., Anderson, R. M. Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nature Communications, 2014, 5: 3557. https://doi.org/10.1038/ncomms4557
Nogueira, L. M., Dunlap, S. M., Ford, N. A., Hursting, S. D. Calorie restriction and rapamycin inhibit MMTV-Wnt-1 mammary tumor growth in a mouse model of postmenopausal obesity. Endocrine-Related Cancer, 2012, 19: 57–68. https://doi.org/10.1530/erc-11-0213
Mulrooney, T. J., Marsh, J., Urits, I., Seyfried, T. N., Mukherjee, P. Influence of caloric restriction on constitutive expression of NF-κB in an experimental mouse astrocytoma. PLoS One, 2011, 6: e18085. https://doi.org/10.1371/journal.pone.0018085
Karamanou, M., Androutsos, G. Antoine-Laurent de Lavoisier (1743–1794) and the birth of respiratory physiology. Thorax, 2013, 68: 978–979. https://doi.org/10.1136/thoraxjnl-2013-203840
Hubel, D. H., Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of Physiology, 1962, 160: 106–154. https://doi.org/10.1113/jphysiol.1962.sp006837
Browning, C. H. Emil Behring and Paul Ehrlich: Their contributions to science. Nature, 1955, 175: 616–619. https://doi.org/10.1038/175616a0
Schatz, A., Bugle, E., Waksman, S. A. Streptomycin, a substance exhibiting antibiotic activity against gram-positive and gram-negative bacteria. Experimental Biology and Medicine, 1944, 55: 66–69. https://doi.org/10.3181/00379727-55-14461
Starr, A., Edwards, M. L. Mitral replacement. Annals of Surgery, 1961, 154: 726. https://doi.org/10.1097/00000658-196110000-00017
Weinberger, L. M., Gibbon, M. H., Gibbon, J. H. Temporary arrest of the circulation to the central nervous system. Archives of Neurology & Psychiatry, 1940, 43: 615. https://doi.org/10.1001/archneurpsyc.1940.02280040002001
Aoyama, T., Murase, Y., Kato, T., Iwata, T. Efficacy of an acellular pertussis vaccine in Japan. The Journal of Pediatrics, 1985, 107: 180–183. https://doi.org/10.1016/S0022-3476(85)80121-9
Moore, F. D. Therapeutic innovation: Ethical boundaries in the initial clinical trials of new drugs and surgical procedures. CA: A Cancer Journal for Clinicians, 1970, 20: 212–227. https://doi.org/10.3322/canjclin.20.4.212
Chorro, F. J., Such-Belenguer, L., López-Merino, V. Animal models of cardiovascular disease. Revista Española De Cardiología, 2009, 62: 69–84. https://doi.org/10.1016/s1885-5857(09)71516-6
Budhu, S., Wolchok, J., Merghoub, T. The importance of animal models in tumor immunity and immunotherapy. Current Opinion in Genetics & Development, 2014, 24: 46–51. https://doi.org/10.1016/j.gde.2013.11.008
Donaldson, Z. R., Hen, René. From psychiatric disorders to animal models: A bidirectional and dimensional approach. Biological Psychiatry, 2015, 77: 15–21. https://doi.org/10.1016/j.biopsych.2014.02.004
Gold, R., Linington, C., Lassmann, H. Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain, 2006, 129: 1953–1971. https://doi.org/10.1093/brain/awl075
Longo, V. D., Kennedy, B. K. Sirtuins in aging and age-related disease. Cell, 2006, 126: 257–268. https://doi.org/10.1016/j.cell.2006.07.002
Taubes, G. Unraveling the obesity-cancer connection. Science, 2012, 335: 28–32. https://doi.org/10.1126/science.335.6064.28
Fierz, Y., Novosyadlyy, R., Vijayakumar, A., Yakar, S., LeRoith, D. Insulin-sensitizing therapy attenuates type 2 diabetes-mediated mammary tumor progression. Diabetes, 2010, 59: 686–693. https://doi.org/10.2337/db09-1291
Barone, B. B. Long-term all-cause mortality in cancer patients with preexisting diabetes mellitus. JAMA, 2008, 300: 2754–2764. https://doi.org/10.1001/jama.2008.824
Coughlin, S. S., Calle, E. E., Teras, L. R., Petrelli, J., Thun, M. J. Diabetes mellitus as a predictor of cancer mortality in a large cohort of US adults. American Journal of Epidemiology, 2004, 159: 1160–1167. https://doi.org/10.1093/aje/kwh161
Lipscombe, L. L., Goodwin, P. J., Zinman, B., McLaughlin, J. R., Hux, J. E. The impact of diabetes on survival following breast cancer. Breast Cancer Research and Treatment, 2008, 109: 389–395. https://doi.org/10.1007/s10549-007-9654-0
Fei, X., B., M. K. Diabetes, metabolic syndrome, and breast cancer: A review of the current evidence. The American Journal of Clinical Nutrition, 2007, 86: 823S–835S. https://doi.org/10.1093/ajcn/86.3.823S
Novosyadlyy, R., Lann, D. E., Vijayakumar, A., Rowzee, A., Lazzarino, D. A., Fierz, Y., Carboni, J. M., Gottardis, M. M., Pennisi, P. A., Molinolo, A. A. et al. Insulin-mediated acceleration of breast cancer development and progression in a nonobese model of type 2 diabetes. Cancer Research, 2010, 70: 741–751. https://doi.org/10.1158/0008-5472.can-09-2141
Glass, C. K., Witztum, J. L. Atherosclerosis: The road ahead. Cell, 2001, 104: 503–516. https://doi.org/10.1016/s0092-8674(01)00238-0
Lusis, A. J. Atherosclerosis. Nature, 2000, 407: 233–241. https://doi.org/10.1038/35025203
Klink, A., Hyafil, F., Rudd, J., Faries, P., Fuster, V., Mallat, Z., Meilhac, O., Mulder, W. J. M., Michel, J. B., Ramirez, F. et al. Diagnostic and therapeutic strategies for small abdominal aortic aneurysms. Nature Reviews Cardiology, 2011, 8: 338–347. https://doi.org/10.1038/nrcardio.2011.1
Nordon, I. M., Hinchliffe, R. J., Loftus, I. M., Thompson, M. M. Pathophysiology and epidemiology of abdominal aortic aneurysms. Nature Reviews Cardiology, 2011, 8: 92–102. https://doi.org/10.1038/nrcardio.2010.180
Jawień, J., Nastałek, P., Korbut, R. Mouse models of experimental atherosclerosis. Journal of Physiology and Pharmacology, 2004, 55: 503–517.
Paigen. B., Morrow, A., Brandon, C., Mitchell, D., Holmes, P. Variation in susceptibility to atherosclerosis among inbred strains of mice. Atherosclerosis, 1985, 57: 65–73. https://doi.org/10.1016/0021-9150(85)90138-8
Liao, F., Andalibi, A., de Beer, F. C., Fogelman, A. M., Lusis, A. J. Genetic control of inflammatory gene induction and NF-kappa B-like transcription factor activation in response to an atherogenic diet in mice. Journal of Clinical Investigation, 1993, 91: 2572–2579. https://doi.org/10.1172/JCI116495
Breslow, J. L. Mouse models of atherosclerosis. Science, 1996, 272: 685–688. https://doi.org/10.1126/science.272.5262.68
Daugherty, A., Cassis, L. A. Mouse models of abdominal aortic aneurysms. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24: 429–434. https://doi.org/10.1161/01.atv.0000118013.72016.ea
Bentzon, J. F., Falk, E. Atherosclerotic lesions in mouse and man: Is it the same disease. Current Opinion in Lipidology, 2010, 21: 434–440. https://doi.org/10.1097/mol.0b013e32833ded6a
Zadelaar, S., Kleemann, R., Verschuren, L., de Veries-Van der Weij, Jitske, van der Hoorn, José, Princen, H. M., Kooistra, T. Mouse models for atherosclerosis and pharmaceutical modifiers. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27: 1706–1721. https://doi.org/10.1161/ATVBAHA.107.142570
Plump, A. S., Smith, J. D., Hayek, T., Aalto-Setälä, K., Walsh, A., Verstuyft, J. G., Rubin, E. M., Breslow, J. L. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell, 1992, 71: 343–353. https://doi.org/10.1016/0092-8674(92)90362-G
Zhang, S. H., Reddick, R. L., Piedrahita, J. A., Maeda, N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science, 1992, 258: 468–471. https://doi.org/10.1126/science.1411543
Ishibashi, S., Goldstein, J. L., Brown, M. S., Herz, J., Burns, D. K. Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice. Journal of Clinical Investigation, 1994, 93: 1885–1893. https://doi.org/10.1172/jci117179
Weiss, D., Kools, J. J., Taylor, W. R. Angiotensin II-induced hypertension accelerates the development of atherosclerosis in apoE-deficient mice. Circulation, 2001, 103: 448–454. https://doi.org/10.1161/01.CIR.103.3.448
de Nigris, F., D’Armiento, F.P., Somma, P., Casini, A., Andreini, I., Sarlo, F., Mansueto, G., De Rosa, G., Bonaduce, D., Condorelli, M., et al. Chronic treatment with sulfhydryl angiotensin-converting enzyme inhibitors reduce susceptibility of plasma LDL to in vitro oxidation, formation of oxidation-specific epitopes in the arterial wall, and atherogenesis in apolipoprotein E knockout mice. International Journal of Cardiology, 2001, 81: 107–115. https://doi.org/10.1016/S0167-5273(01)00542-3
Hayek, T., Attias, J., Smith, J., Breslow, J. L., Keidar, S. Antiatherosclerotic and antioxidative effects of captopril in apolipoprotein E-deficient mice. Journal of Cardiovascular Pharmacology, 1998, 31: 540–544. https://doi.org/10.1097/00005344-199804000-00011
Daugherty, A., Rateri, D. L., Lu, H., Inagami, T., Cassis, L. A. Hypercholesterolemia stimulates angiotensin peptide synthesis and contributes to atherosclerosis through the AT1A receptor. Circulation, 2004, 110: 3849–3857. https://doi.org/10.1161/01.CIR.0000150540.54220.C4
Wassmann, S., Czech, T., van Eickels, M., Fleming, I., Böhm, M., Nickenig, G. Inhibition of diet-induced atherosclerosis and endothelial dysfunction in apolipoprotein E/angiotensin II type 1A receptor double-knockout mice. Circulation, 2004, 110: 3062–3067. https://doi.org/10.1161/01.CIR.0000137970.47771.AF
Thakur, S., Li, L., Gupta, S. NF-κB-mediated integrin-linked kinase regulation in angiotensin II-induced pro-fibrotic process in cardiac fibroblasts. Life Sciences, 2014, 107: 68–75. https://doi.org/10.1016/j.lfs.2014.04.030
Tham, D. M., Martin-McNulty, B., Wang, Y. X., Wilson, D. W., Vergona, R., Sullivan, M. E., Dole, W., Rutledge, J. C. Angiotensin II is associated with activation of NF-κB-mediated genes and downregulation of PPARs. Physiological Genomics, 2002, 11: 21–30. https://doi.org/10.1152/physiolgenomics.00062.2002
Thomas, M., Gavrila, D., McCormick, M. L., Miller Jr. F. J., Daugherty, A., Cassis, L. A., Dellsperger, K. C., Weintraub, N. L. Deletion of p47phox attenuates angiotensin II–induced abdominal aortic aneurysm formation in apolipoprotein E–deficient mice. Circulation, 2006, 114: 404–413. https://doi.org/10.1161/CIRCULATIONAHA.105.607168
Yoshimura, K., Aoki, H., Ikeda, Y., Fujii, K., Akiyama, N., Furutani, A., Hoshii, Y., Tanaka, N., Ricci, R., Ishihara, T. et al. Regression of abdominal aortic aneurysm by inhibition of c-Jun N-terminal kinase. Nature Medicine, 2005, 11: 1330–1338. https://doi.org/10.1038/nm1335
Yoshimura, K., Aoki, H., Ikeda, Y., Furutani, A., Hamano, K., Matsuzaki, M. Regression of abdominal aortic aneurysm by inhibition of c-Jun N-terminal kinase in mice. Annals of the New York Academy of Sciences, 2006, 1085: 74–81. https://doi.org/10.1196/annals.1383.031
Wang, Y. X., Martin-McNulty, B., da Cunha, V., Vincelette, J., Lu, X. R., Feng, Q. P., Halks-Miller, M., Mahmoudi, M., Schroeder, M., Subramanyam, B. et al. Fasudil, a Rho-kinase inhibitor, attenuates angiotensin II-induced abdominal aortic aneurysm in apolipoprotein E-deficient mice by inhibiting apoptosis and proteolysis. Circulation, 2005, 111: 2219–2226. https://doi.org/10.1161/01.CIR.0000163544.17221.BE
Ishibashi, M., Egashira, K., Zhao, Q. W., Hiasa, K. I., Ohtani, K., Ihara, Y., Charo, I. F., Kura, S., Tsuzuki, T., Takeshita, A. et al. Bone marrow-derived monocyte chemoattractant protein-1 receptor CCR2 is critical in angiotensin II-induced acceleration of atherosclerosis and aneurysm formation in hypercholesterolemic mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24: e174–e178. https://doi.org/10.1161/01.ATV.0000143384.69170.2d
Saraff, K., Babamusta, F., Cassis, L. A., Daugherty, A. Aortic dissection precedes formation of aneurysms and atherosclerosis in angiotensin II-infused, apolipoprotein E-deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23: 1621–1626. https://doi.org/10.1161/01.ATV.0000085631.76095.64
Deguchi, J., Huang, H., Libby, P., Aikawa, E., Whittaker, P., Sylvan, J., Lee, R. T., Aikawa, M. Genetically engineered resistance for MMP collagenases promotes abdominal aortic aneurysm formation in mice infused with angiotensin II. Laboratory Investigation, 2009, 89: 315–326. https://doi.org/10.1038/labinvest.2008.167
Deng, G. G., Martin-McNulty, B., Sukovich, D. A., Freay, A., Halks-Miller, M., Thinnes, T., Loskutoff, D. J., Carmeliet, P., Dole, W. P., Wang, Y. X. Urokinase-type plasminogen activator plays a critical role in angiotensin II–induced abdominal aortic aneurysm. Circulation Research, 2003, 92: 510–517. https://doi.org/10.1161/01.res.0000061571.49375.e1
Manning, M. W., Cassis, L. A., Daugherty, A. Differential effects of doxycycline, a broad-spectrum matrix metalloproteinase inhibitor, on angiotensin II-induced atherosclerosis and abdominal aortic aneurysms. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23: 483–488. https://doi.org/10.1161/01.ATV.0000058404.92759.32
Carmeliet, P., Moons, L., Lijnen, R., Baes, M., Lemaître, V., Tipping, P., Drew, A., Eeckhout, Y., Shapiro, S., Lupu, F. et al. Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation. Nature Genetics, 1997, 17: 439–444. https://doi.org/10.1038/ng1297-439
Crowther, M., Goodall, S., Jones, J.L., Bell, P. R. F., Thompson, M. M. Increased matrix metalloproteinase 2 expression in vascular smooth muscle cells cultured from abdominal aortic aneurysms. Journal of Vascular Surgery, 2000, 32: 575–583. https://doi.org/10.1067/mva.2000.108010
David, M., Hovsepian, D. M., Ziporin, S. J., Sakurai, M., K., Lee, J. K., Curci, J. A., Thompson, R. W. Elevated plasma levels of matrix metalloproteinase-9 in patients with abdominal aortic aneurysms: A circulating marker of degenerative aneurysm disease. Journal of Vascular and Interventional Radiology, 2000, 11: 1345–1352. https://doi.org/10.1016/S1051-0443(07)61315-3
Curci, J. A., Liao, S., Huffman, M. D., Shapiro, S. D., Thompson, R. W. Expression and localization of macrophage elastase (matrix metalloproteinase-12) in abdominal aortic aneurysms. Journal of Clinical Investigation, 1998, 102: 1900–1910. https://doi.org/10.1172/jci2182
Boyle, J. R., AcDermott, E., Crowther, M., Wills, A. D., Bell, P. R. F., Thompson, M. M. Doxycycline inhibits elastin degradation and reduces metalloproteinase activity in a model of aneurysmal disease. Journal of Vascular Surgery, 1998, 27: 354–361. https://doi.org/10.1016/S0741-5214(98)70367-2
Gilbertson-Beadling, S., Powers, E. A., Stamp-Cole, M., Scott, P. S., Wallace, T. L., Copeland, J., Petzold, G., Mitchell, M., Ledbetter, S., Poorman, R. The tetracycline analogs minocycline and doxycycline inhibit angiogenesis in vitro by a non-metalloproteinase-dependent mechanism. Cancer Chemotherapy and Pharmacology, 1995, 36: 418–424. https://doi.org/10.1007/BF00686191
Collins, T., Cybulsky, M. I. NF-κB: Pivotal mediator or innocent bystander in atherogenesis. Journal of Clinical Investigation, 2001, 107: 255–264. https://doi.org/10.1172/jci10373
Chen, X. L., Tummala, P. E., Olbrych, M. T., Alexander, R. W., Medford, R. M. Angiotensin II induces monocyte chemoattractant protein-1 gene expression in rat vascular smooth muscle cells. Circulation Research, 1998, 83: 952–959. https://doi.org/10.1161/01.RES.83.9.952
Funakoshi, Y., Ichiki, T., Shimokawa, H., Egashira, K., Takeda, K., Kaibuchi, K., Takeya, M., Yoshimura, T., Takeshita, A. Rho-kinase mediates angiotensin II-induced monocyte chemoattractant protein-1 expression in rat vascular smooth muscle cells. Hypertension, 2001, 38: 100–104. https://doi.org/10.1161/01.hyp.38.1.100
Tummala, P. E., Chen, X. L., Sundell, C. L., Laursen, J. B., Hammes, C. P., Alexander, R. W., Harrison, D. G., Medford, R. M. Angiotensin II induces vascular cell adhesion molecule-1 expression in rat vasculature: A potential link between the renin-angiotensin system and atherosclerosis. Circulation, 1999, 100: 1223–1229. https://doi.org/10.1161/01.CIR.100.11.1223
Gerrity, R. G. The role of the monocyte in atherogenesis: I. Transition of blood-borne monocytes into foam cells in fatty lesions. The American Journal of Pathology, 1981, 103: 181–190.
Manning, M. W., Cassis, L. A., Huang, J., Szilvassy, S. J., Daugherty, A. Abdominal aortic aneurysms: Fresh insights from a novel animal model of the disease. Vascular Medicine, 2002, 7: 45–54. https://doi.org/10.1191/1358863x02vm413ra
Lemarié, C. A., Paradis, P., Schiffrin, E. L. New insights on signaling cascades induced by cross-talk between angiotensin II and aldosterone. Journal of Molecular Medicine, 2008, 86: 673–678. https://doi.org/10.1007/s00109-008-0323-5
Achmad, R. The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis. Acta Medica Indonesiana, 2007, 39: 86–93.
Schwartz, R. J., Schneider, M. D. CAMTA in cardiac hypertrophy. Cell, 2006, 125: 427–429. https://doi.org/10.1016/j.cell.2006.04.015
Olson, E. N., Schneider, M. D. Sizing up the heart: Development redux in disease. Genes & Development, 2003, 17: 1937–1956. https://doi.org/10.1101/gad.1110103
Hill, J. A., Olson, E. N. Cardiac plasticity. The New England Journal of Medicine, 2008, 358: 1370–1380. https://doi.org/10.1056/NEJMra072139
Kim, S., Ohta, K., Hamaguchi, A., Yukimura, T., Miura, K., Iwao, H. Angiotensin II induces cardiac phenotypic modulation and remodeling in vivo in rats. Hypertension, 1995, 25: 1252–1259. https://doi.org/10.1161/01.hyp.25.6.1252
Suzuki, J., Matsubara, H., Urakami, M., Inada, M. Rat angiotensin II (type 1A) receptor mRNA regulation and subtype expression in myocardial growth and hypertrophy. Circulation Research, 1993, 73: 439–447. https://doi.org/10.1161/01.RES.73.3.439
Zablocki, D., Sadoshima, J. Solving the cardiac hypertrophy riddle. Circulation Research, 2013, 113: 1192–1195. https://doi.org/10.1161/circresaha.113.302501
Rajagopalan, S., Kurz, S., Münzel, T., Tarpey, M., Freeman, B. A., Griendling, K. K., Harrison, D. G. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. Journal of Clinical Investigation, 1996, 97: 1916–1923. https://doi.org/10.1172/jci118623
Bendall, J. K., Cave, A. C., Heymes, C., Gall, N., Shah, A. M. Pivotal role of a gp91(phox)-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation, 2002, 105: 293–296. https://doi.org/10.1161/hc0302.103712
Touyz, R. M., Mercure, C., He, Y., Javeshghani, D., Yao, G. Y., Callera, G. E., Yogi, A., Lochard, N., Reudelhuber, T. L. Angiotensin II-dependent chronic hypertension and cardiac hypertrophy are unaffected by gp91phox-containing NADPH oxidase. Hypertension, 2005, 45: 530–537. https://doi.org/10.1161/01.hyp.0000158845.49943.5e
Gupta, S. K., Piccoli, M. T., Thum, T. Non-coding RNAs in cardiovascular ageing. Ageing Research Reviews, 2014, 17: 79–85. https://doi.org/10.1016/j.arr.2014.01.002
Cholewa, B. C., Mattson, D. L. Role of the renin-angiotensin system during alterations of sodium intake in conscious mice. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2001, 281: R987–R993. https://doi.org/10.1152/ajpregu.2001.281.3.r987
Daugherty, A., Manning, M. W., Cassis, L. A. Antagonism of AT2 receptors augments angiotensin II-induced abdominal aortic aneurysms and atherosclerosis. British Journal of Pharmacology, 2001, 134: 865–870. https://doi.org/10.1038/sj.bjp.0704331
Garrington, T. P., Johnson, G. L. Organization and regulation of mitogen-activated protein kinase signaling pathways. Current Opinion in Cell Biology, 1999, 11: 211–218. https://doi.org/10.1016/S0955-0674(99)80028-3
Bueno, O. F. The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. The EMBO Journal, 2000, 19: 6341–6350. https://doi.org/10.1093/emboj/19.23.6341
Lorenz, K., Schmitt, J. P., Vidal, M., Lohse, M. J. Cardiac hypertrophy: Targeting raf/MEK/ERK1/2-signaling. The International Journal of Biochemistry & Cell Biology, 2009, 41: 2351–2355. https://doi.org/10.1016/j.biocel.2009.08.002
Sanna, B., Bueno, O. F., Dai, Y. S., Wilkins, B. J., Molkentin, J. D. Direct and indirect interactions between calcineurin-NFAT and MEK1-extracellular signal-regulated kinase 1/2 signaling pathways regulate cardiac gene expression and cellular growth. Molecular and Cellular Biology, 2005, 25: 865–878. https://doi.org/10.1128/mcb.25.3.865-878.2005
Liao, P., Georgakopoulos, D., Kovacs, A., Zheng, M. Z., Lerner, D., Pu, H. Y., Saffitz, J., Chien, K., Xiao, R. P., Kass, D. A. et al. The in vivo role of p38 MAP kinases in cardiac remodeling and restrictive cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98: 12283–12288. https://doi.org/10.1073/pnas.211086598
Petrich, B. G., Molkentin, J. D., Wang, Y. B. Temporal activation of c-Jun N-terminal kinase in adult transgenic heart via cre-loxP-mediated DNA recombination. The FASEB Journal, 2003, 17: 749–751. https://doi.org/10.1096/fj.02-0438fje
Molkentin, J. D. Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovascular Research, 2004, 63: 467–475. https://doi.org/10.1016/j.cardiores.2004.01.021
Tachibana, H., Perrino, C., Takaoka, H., Davis, R. J., Naga Prasad, S. V., Rockman, H. A. JNK1 is required to preserve cardiac function in the early response to pressure overload. Biochemical and Biophysical Research Communications, 2006, 343: 1060–1066. https://doi.org/10.1016/j.bbrc.2006.03.065
Nicol, R. L., Frey, N., Pearson, G., Cobb, M., Richardson, J., Olson, E. N. Activated MEK5 induces serial assembly of sarcomeres and eccentric cardiac hypertrophy. The EMBO Journal, 2001, 20: 2757–2767. https://doi.org/10.1093/emboj/20.11.2757
Heineke, J., Molkentin, J. D. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nature Reviews Molecular Cell Biology, 2006, 7: 589–600. https://doi.org/10.1038/nrm1983
Rockman, H. A., Ross, R. S., Harris, A. N., Knowlton, K. U., Steinhelper, M. E., Field, L. J., Ross, J., Chien, K. R. Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88: 8277–81. https://doi.org/10.1073/pnas.88.21.9907a
Akioka, K., Kawaguchi, H., Kitajima, S., Miura, N., Noguchi, M., Horiuchi, M., Miyoshi, N., Tanimoto, A. Investigation of necessity of sodium cholate and minimal required amount of cholesterol for dietary induction of atherosclerosis in microminipigs. In Vivo, 2014, 28: 81–90.
Heistad, D. D. Arteriosclerosis, thrombosis, and vascular biology, 2006. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26: 2–4. https://doi.org/10.1161/01.ATV.0000198400.82143.3b
Wu, Y. P., Yakar, S., Zhao, L., Hennighausen, L., LeRoith, D. Circulating insulin-like growth factor-I levels regulate colon cancer growth and metastasis. Cancer Research, 2002, 62: 1030–1035.
Milani, A., Zaccaria, R., Bombardieri, G., Gasbarrini, A., Pola, P. Cirrhotic cardiomyopathy. Digestive and Liver Disease, 2007, 39: 507–515. https://doi.org/10.1016/j.dld.2006.12.014
Lee, S. S. Cardiac abnormalities in liver cirrhosis. The Western Journal of Medicine, 1989, 151: 530–535.
Adegboyega, Q., Adigun, MD,. Effect of cirrhosis and liver transplantation on the gender difference in QT interval. The American Journal of Cardiology, 2005, 95: 691–694. https://doi.org/10.1016/j.amjcard.2004.10.054
Dehpour, A., Abbasi, A., Joharimoqaddam, A., Faramarzi, N., Khosravi, M., Jahanzad, I. Opioid receptors blockade modulates apoptosis in a rat model of cirrhotic cardiomyopathy. Annals of Medical and Health Sciences Research, 2014, 4: 404. https://doi.org/10.4103/2141-9248.133468
Fouad, Y., Yehia, R. Hepato-cardiac disorders. World Journal of Hepatology, 2014, 6: 41–54. https://doi.org/10.4254/wjh.v6.i1.41
Matsumori, A. Hepatitis C virus infection and cardiomyopathies. Circulation Research, 2005, 96: 144–147. https://doi.org/10.1161/01.res.0000156077.54903.67
Omura, T., Yoshiyama, M., Hayashi, T., Nishiguchi, S., Kaito, M., Horiike, S., Fukuda, K., Inamoto, S., Kitaura, Y., Nakamura, Y. et al. Core protein of hepatitis C virus induces cardiomyopathy. Circulation Research, 2005, 96: 148–150. https://doi.org/10.1161/01.res.0000154263.70223.13
Møller, S., Bernardi, M. Interactions of the heart and the liver. European Heart Journal, 2013, 34: 2804–2811. https://doi.org/10.1093/eurheartj/eht246
Moller, S., Henriksen, J. H. Cardiovascular complications of cirrhosis. Gut, 2008, 57: 268–278. https://doi.org/10.1136/gut.2006.112177
Pacifico, L., Di Martino, M., De Merulis, A., Bezzi, M., Osborn, J. F., Catalano, C., Chiesa, C. Left ventricular dysfunction in obese children and adolescents with nonalcoholic fatty liver disease. Hepatology, 2014, 59: 461–470. https://doi.org/10.1002/hep.26610
Jackson, H., Solaymani-Dodaran, M., Card, T. R., Aithal, G. P., Logan, R., West, J. Influence of ursodeoxycholic acid on the mortality and malignancy associated with primary biliary cirrhosis: A population-based cohort study. Hepatology, 2007, 46: 1131–1137. https://doi.org/10.1002/hep.21795
Prince, M., Chetwynd, A., Newman, W., Metcalf, J. V., James, O. F. W. Survival and symptom progression in a geographically based cohort of patients with primary biliary cirrhosis: Follow-up for up to 28 years. Gastroenterology, 2002, 123: 1044–1051. https://doi.org/10.1053/gast.2002.36027
Fickert, P., Moustafa, T., Trauner, M. Primary sclerosing cholangitis—the arteriosclerosis of the bile duct. Lipids in Health and Disease, 2007, 6: 3. https://doi.org/10.1186/1476-511X-6-3
Agelopoulou, P., Kapatais, A., Varounis, C., Grassos, C., Kalkandi, E., Kouris, N., Pierakeas, N., Babalis, D. Hepatocellular carcinoma with invasion into the right atrium. Report of two cases and review of the literature. Hepato-gastroenterology, 2007, 54: 2106–2108.
Janssen, H. L. A., Garcia-Pagan, J.-C., Elias, E., Mentha, G., Hadengue, A., Valla, D.-C. Budd-Chiari syndrome: A review by an expert panel. Journal of Hepatology, 2003, 38: 364–371. https://doi.org/10.1016/S0168-8278(02)00434-8
Okuda, K., Kage, M., Shrestha, S. M. Proposal of a new nomenclature for budd-chiari syndrome: Hepatic vein thrombosis versus thrombosis of the inferior vena cava at its hepatic portion. Hepatology, 1998, 28: 1191–1198. https://doi.org/10.1002/hep.510280505
Rolla, G. Exhaled nitric oxide and impaired oxygenation in cirrhotic patients before and after liver transplantation. Annals of Internal Medicine, 1998, 129: 375. https://doi.org/10.7326/0003-4819-129-5-199809010-00005
Raval, Z., Harinstein, M., Skaro, A. I., Erdogan, A., DeWolf, A. M., Shah, S. J., Fix, O. K., Kay, N., Abecassis, M. I., Gheorghiade, M., Flaherty, J. D. Cardiovascular risk assessment of the liver transplant candidate. Journal of the American College of Cardiology, 2011, 58: 223–231. https://doi.org/10.1016/j.jacc.2011.03.026
Dunn, G. D., Hayes, P., Breen, K. J., Schenker, S. The liver in congestive heart failure. The American Journal of the Medical Sciences, 1973, 265: 174–190. https://doi.org/10.1097/00000441-197303000-00001
Safran, A. P., Schaffner, F. Chronic passive congestion of the liver in man. Electron microscopic study of cell atrophy and intralobular fibrosis. The American Journal of Pathology, 1967, 50: 447–463.
Wadia, Y., Etheridge, W., Smart, F., Wood, R. P. Frazier, O. H. Pathophysiology of hepatic dysfunction and intrahepatic cholestasis in heart failure and after left ventricular assist device support. The Journal of Heart and Lung Transplantation, 2005, 24: 361–370. https://doi.org/10.1016/j.healun.2004.09.012
Chokshi, A., Cheema, F. H., Schaefle, K. J., Jiang, J., Collado, E., Shahzad, K., Khawaja, T., Farr, M., Takayama, H., Naka, Y., Mancini, D. M., Schulze, P. C. Hepatic dysfunction and survival after orthotopic heart transplantation: Application of the MELD scoring system for outcome prediction. The Journal of Heart and Lung Transplantation, 2012, 31: 591–600. https://doi.org/10.1016/j.healun.2012.02.008
Te, H. S., Anderson, A. S., Millis, J. M., Jeevanandam, V., Jensen, D. M. Current state of combined heart-liver transplantation in the United States. The Journal of Heart and Lung Transplantation, 2008, 27: 753–759. https://doi.org/10.1016/j.healun.2008.04.004
Zubiaurre, L., Zapata, E., Bujanda, L., Castillo, M., Oyarzabal, I., Gutiérrez-Stempa, M. A., Cosme, A. Cytomegalovirus hepatitis and myopericarditis. World Journal of Gastroenterology, 2007, 13: 647–648. https://doi.org/10.3748/wjg.v13.i4.647
Elkiran, O., Karakurt, C., Selimoglu, A., Karabiber, H., Kocak, G., Celik, S. F., Colak, C. Subclinical diastolic dysfunction in children with Wilson’s disease assessed by tissue Doppler echocardiography: A possible early predictor of cardiac involvement. Acta Cardiologica, 2013, 68: 181–187. https://doi.org/10.1080/ac.68.2.2967276
Hlubocká, Z., Marecek, Z., Linhart, A., Kejková, E., Pospísilová, L., Martásek, P., Aschermann, M. Cardiac involvement in Wilson disease. Journal of Inherited Metabolic Disease, 2002, 25: 269–277. https://doi.org/10.1023/A:1016546223327
Giakoustidis, A., Cherian, T. P., Antoniadis, N., Giakoustidis, D. Combined cardiac surgery and liver transplantation: Three decades of worldwide results. Journal of Gastrointestinal and Liver Diseases, 2011, 20: 415–421.
Hegazi, M. O., Ahmed, S. Atypical clinical manifestations of Graves' disease: An analysis in depth. Journal of Thyroid Research, 2012, 2012: 769019. https://doi.org/10.1155/2012/768019
Estruch, R., Fernandez-Sola, J., Sacanella, E., Paré, C., Rubin, E., Urbano-Marquez, A. Relationship between cardiomyopathy and liver disease in chronic alcoholism*1. Hepatology, 1995, 22: 532–538. https://doi.org/10.1016/0270-9139(95)90576-6
European Association for the Study of the Liver. EASL clinical practice guidelines on the management of ascites, spontaneous bacterial peritonitis, and hepatorenal syndrome in cirrhosis. Journal of Hepatology, 2010, 53: 397–417. https://doi.org/10.1016/j.jhep.2010.05.004
Qu, J.-H., Chakir, K., Tarasov, K. V., Riordon, D. R., Perino, M. G., Silvester, A. J., Lakatta, E. G. Reprogramming of the cardiac phosphoproteome in conjunction with proteome and transcriptome creates the enhanced performance and protection circuitry in response to chronic adenylyl cyclase-driven stress. eLife, 2023, 12: RP88732. https://doi.org/10.7554/eLife.88732.1
DeBerardinis, R. J., Mancuso, A., Daikhin, E., Nissim, I., Yudkoff, M., Wehrli, S., Thompson, C. B. Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104: 19345–19350. https://doi.org/10.1073/pnas.0709747104
Vander Heiden, M. G., Cantley, L. C., Thompson, C. B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science, 2009, 324: 1029–1033. https://doi.org/10.1126/science.1160809
Buzzai, M., Bauer, D. E., Jones, R. G., DeBerardinis, R. J., Hatzivassiliou, G., Elstrom, R. L., Thompson, C. B. The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid β-oxidation. Oncogene, 2005, 24: 4165–4173. https://doi.org/10.1038/sj.onc.1208622
Engelman, J. A., Chen, L., Tan, X. H., Crosby, K., Guimaraes, A. R., Upadhyay, R., Maira, M., McNamara, K., Perera, S. A., Song, Y. et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nature Medicine, 2008, 14: 1351–1356. https://doi.org/10.1038/nm.1890
Ralph, J., DeBerardinis,. The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metabolism, 2008, 7: 11–20. https://doi.org/10.1016/j.cmet.2007.10.002
Vander Heiden, M. G., Plas, D. R., Rathmell, J. C., Fox, C. J., Harris, M. H., Thompson, C. B. Growth factors can influence cell growth and survival through effects on glucose metabolism. Molecular and Cellular Biology, 2001, 21: 5899–5912. https://doi.org/10.1128/mcb.21.17.5899-5912.2001
Bleeker, F. E., Lamba, S., Leenstra, S., Troost, D., Hulsebos, T., Vandertop, W. P., Frattini, M., Molinari, F., Knowles, M., Cerrato, A. et al. IDH1mutations at residue p. R132 (IDH1R132) occur frequently in high-grade gliomas but not in other solid tumors. Human Mutation, 2009, 30: 7–11. https://doi.org/10.1002/humu.20937
Parsons, D. W., Jones, S., Zhang, X. S., Lin, J. C. H., Leary, R. J., Angenendt, P., Mankoo, P., Carter, H., Siu, I. M., Gallia, G. L. et al. An integrated genomic analysis of human glioblastoma multiforme. Science, 2008, 321: 1807–1812. https://doi.org/10.1126/science.1164382
Thompson, C. B. Metabolic enzymes as oncogenes or tumor suppressors. New England Journal of Medicine, 2009, 360: 813–815. https://doi.org/10.1056/nejme0810213
Anastasiou, D., Yu, Y. M., Israelsen, W. J., Jiang, J. K., Boxer, M. B., Hong, B. S., Tempel, W., Dimov, S., Shen, M., Jha, A. et al. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nature Chemical Biology, 2012, 8: 839–847. https://doi.org/10.1038/nchembio.1060
Christofk, H. R., Vander Heiden, M. G., Harris, M. H., Ramanathan, A., Gerszten, R. E., Wei, R., Fleming, M. D., Schreiber, S. L., Cantley, L. C. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature, 2008, 452: 230–233. https://doi.org/10.1038/nature06734
Christofk, H. R., Vander Heiden, M. G., Wu, N., Asara, J. M., Cantley, L. C. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature, 2008, 452: 181–186. https://doi.org/10.1038/nature06667
Yuneva, M., Zamboni, N., Oefner, P., Sachidanandam, R., Lazebnik, Y. Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. The Journal of Cell Biology, 2007, 178: 93–105. https://doi.org/10.1083/jcb.200703099
Buzzai, M., Jones, R. G., Amaravadi, R. K., Lum, J. J., DeBerardinis, R. J., Zhao, F. P., Viollet, B., Thompson, C. B. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Research, 2007, 67: 6745–6752. https://doi.org/10.1158/0008-5472.can-06-4447
Fontana, L., Partridge, L., Longo, V. D. Extending healthy life span—from yeast to humans. Science, 2010, 328: 321–326. https://doi.org/10.1126/science.1172539
López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., Kroemer, G. The hallmarks of aging. Cell, 2013, 153: 1194–1217. https://doi.org/10.1016/j.cell.2013.05.039
Ran, Zhang,. Caloric restriction induces microRNAs to improve mitochondrial proteostasis. iScience, 2019, 17: 155–166. https://doi.org/10.1016/j.isci.2019.06.028
Beyerstedt, S., Casaro, E. B., Rangel, É. B. COVID-19: Angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. European Journal of Clinical Microbiology & Infectious Diseases, 2021, 40: 905–919. https://doi.org/10.1007/s10096-020-04138-6
Tajbakhsh, A., Gheibi Hayat, S. M., Taghizadeh, H., Akbari, A., Inabadi, M., Savardashtaki, A., Johnston, T. P., Sahebkar, A. COVID-19 and cardiac injury: Clinical manifestations, biomarkers, mechanisms, diagnosis, treatment, and follow up. Expert Review of Anti-Infective Therapy, 2021, 19: 345–357. https://doi.org/10.1080/14787210.2020.1822737