Journal Home > Online First

Age-related diseases are serious threats to modern life. To treat these diseases and to extend lifespan or healthspan, scientists devoted a lot of effort to research, and a scientific, efficient, and convenient animal model is a necessary tool. However, it is difficult to construct an appropriate animal model to simulate the pathology of human beings, and thus this limits the clinical application. In this review, after recapitulating the history and characteristics of common animal models used in age-related diseases, especially cardiovascular diseases and carcinoma, we summarized three conditions of animal models simulating age-related diseases: (1) the same animal model can simulate different diseases in the same system, (2) the same animal model can simulate different courses or subclasses of the same disease, and (3) the same animal model can simulate different diseases across different systems. At last, we pointed out that the body is a cohesive whole and the metabolism connects the physiological and pathological processes, so we should consider the metabolism when constructing animal models and treating diseases.


menu
Abstract
Full text
Outline
About this article

Animal models and age-related diseases

Show Author's information Jia-Hua Qu1,2( )
Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA

Abstract

Age-related diseases are serious threats to modern life. To treat these diseases and to extend lifespan or healthspan, scientists devoted a lot of effort to research, and a scientific, efficient, and convenient animal model is a necessary tool. However, it is difficult to construct an appropriate animal model to simulate the pathology of human beings, and thus this limits the clinical application. In this review, after recapitulating the history and characteristics of common animal models used in age-related diseases, especially cardiovascular diseases and carcinoma, we summarized three conditions of animal models simulating age-related diseases: (1) the same animal model can simulate different diseases in the same system, (2) the same animal model can simulate different courses or subclasses of the same disease, and (3) the same animal model can simulate different diseases across different systems. At last, we pointed out that the body is a cohesive whole and the metabolism connects the physiological and pathological processes, so we should consider the metabolism when constructing animal models and treating diseases.

Keywords: metabolism, animal model, age-related disease, cardiovascular disorder (CVD)

References(195)

[1]

Machalińska, A. Age-related macular degeneration as a local manifestation of atherosclerosis - a novel insight into pathogenesis. Klinika Oczna, 2013, 115: 74–78.

[2]

Olivieri, F., Recchioni, R., Marcheselli, F., Marie Abbatecola, A., Santini, G., Borghetti, G., Antonicelli, R., Domenico Procopio, A. Cellular senescence in cardiovascular diseases: Potential age-related mechanisms and implications for treatment. Current Pharmaceutical Design, 2013, 19: 1710–1719. https://doi.org/10.2174/1381612811319090018

[3]

Hyman, L. Hypertension, cardiovascular disease, and age-related macular degeneration. Archives of Ophthalmology, 2000, 118: 351–358. https://doi.org/10.1001/archopht.118.3.351

[4]

Khansari, N., Shakiba, Y., Mahmoudi, M. Chronic inflammation and oxidative stress as a major cause of age- related diseases and cancer. Recent Patents on Inflammation & Allergy Drug Discovery, 2009, 3: 73–80. https://doi.org/10.2174/187221309787158371

[5]

Kiecolt-Glaser, J. K., Preacher, K. J., MacCallum, R. C., Atkinson, C., Malarkey, W. B., Glaser, R. Chronic stress and age-related increases in the proinflammatory cytokine IL-6. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100: 9090–9095. https://doi.org/10.1073/pnas.1531903100

[6]
Age-Related Eye Disease Study Research Group. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E and beta carotene for age-related cataract and vision loss. Archives of Ophthalmology, 2001, 119: 1439. https://doi.org/10.1001/archopht.119.10.1439
DOI
[7]

Pietschmann, P., Rauner, M., Sipos, W., Kerschan-Schindl, K. Osteoporosis: An age-related and gender-specific disease–A mini-review. Gerontology, 2008, 55: 3–12. https://doi.org/10.1159/000166209

[8]

Facchini, F. S., Hua, N., Abbasi, F., Reaven, G. M. Insulin resistance as a predictor of age-related diseases. The Journal of Clinical Endocrinology & Metabolism, 2001, 86: 3574–3578. https://doi.org/10.1210/jcem.86.8.7763

[9]

Bartzokis, G. Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer’s disease. Neurobiology of Aging, 2004, 25: 5–18. https://doi.org/10.1016/j.neurobiolaging.2003.03.001

[10]
de Grey, A. D. N. J. Life span extension research and public debate: Societal considerations. Studies in Ethics, Law, and Technology, 2007, 1. https://doi.org/10.2202/1941-6008.1011
DOI
[11]
Medicine, I. O., Fuster, V., Kelly, B. B. Promoting cardiovascular health in the developing world: a critical challenge to achieve global health. Washington: National Academies Press, 2010.
[12]

Thomas, H., Diamond, J., Vieco, A., Chaudhuri, S., Shinnar, E., Cromer, S., Perel, P., Mensah, G. A., Narula, J., Johnson, C. O. et al. Global atlas of cardiovascular disease 2000-2016: The path to prevention and control. Global Heart, 2018, 13: 143. https://doi.org/10.1016/j.gheart.2018.09.511

[13]

Finegold, J. A., Asaria, P., Francis, D. P. Mortality from ischaemic heart disease by country, region, and age: Statistics from World Health Organisation and United Nations. International Journal of Cardiology, 2013, 168: 934–945. https://doi.org/10.1016/j.ijcard.2012.10.046

[14]
Cooper, G. M. Elements of Human Cancer. Jones and Bartlett Publishers, 1992.
[15]

Middleton, D. Dorland’s illustrated medical dictionary. Nursing Standard, 1988, 3: 38. https://doi.org/10.7748/ns.3.6.38.s58

[16]
World Health Organization. Cancer. Available at Cancer (who.int)
[17]

Feuerstein, M. Defining cancer survivorship. Journal of Cancer Survivorship: Research and Practice, 2007, 1: 5–7. https://doi.org/10.1007/s11764-006-0002-x

[18]

de Martel, C., Ferlay, J., Franceschi, S., et al. Global burden of cancers attributable to infections in 2008: A review and synthetic analysis. The Lancet Oncology, 2012, 13: 607–615. https://doi.org/10.1016/S1470-2045(12)70137-7

[19]

Zaragoza, C., Gomez-Guerrero, C., Martin-Ventura, J. L., et al. Animal models of cardiovascular diseases. Journal of Biomedicine and Biotechnology, 2011, 2011: 497841. https://doi.org/10.1155/2011/497841

[20]

Hasenfuss, G. Animal models of human cardiovascular disease, heart failure and hypertrophy. Cardiovascular Research, 1998, 39: 60–76. https://doi.org/10.1016/s0008-6363(98)00110-2

[21]

Kari, G., Rodeck, U., Dicker, A. P. Zebrafish: An emerging model system for human disease and drug discovery. Clinical Pharmacology & Therapeutics, 2007, 82: 70–80. https://doi.org/10.1038/sj.clpt.6100223

[22]

Chakraborty, C., Hsu, C., Wen, Z., Lin, C., Agoramoorthy, G. Zebrafish: A complete animal model for in vivo drug discovery and development. Current Drug Metabolism, 2009, 10: 116–124. https://doi.org/10.2174/138920009787522197

[23]

Harvey, L., Boksa, P. Prenatal and postnatal animal models of immune activation: Relevance to a range of neurodevelopmental disorders. Developmental Neurobiology, 2012, 72: 1335–1348. https://doi.org/10.1002/dneu.22043

[24]

Davidson, M. K., Lindsey, J. R., Davis, J. K. Requirements and selection of an animal model. Israel Journal of Medical Sciences, 1987, 23: 551–555.

[25]

Anderson, R. M., Shanmuganayagam, D., Weindruch, R. Caloric restriction and aging: Studies in mice and monkeys. Toxicologic Pathology, 2009, 37: 47–51. https://doi.org/10.1177/0192623308329476

[26]

Colman, R. J., Anderson, R. M., Johnson, S. C., Kastman, E. K., Kosmatka, K. J., Beasley, T. M., Allison, D. B., Cruzen, C., Simmons, H. A., Kemnitz, J. W. et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science, 2009, 325: 201–204. https://doi.org/10.1126/science.1173635

[27]

Mattison, J. A., Roth, G. S., Beasley, T. M., Tilmont, E. M., Handy, A. M., Herbert, R. L., Longo, D. L., Allison, D. B., Young, J. E., Bryant, M. et al. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature, 2012, 489: 318–321. https://doi.org/10.1038/nature11432

[28]

Colman, R. J., Beasley, T. M., Kemnitz, J. W., Johnson, S. C., Weindruch, R., Anderson, R. M. Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nature Communications, 2014, 5: 3557. https://doi.org/10.1038/ncomms4557

[29]

Nogueira, L. M., Dunlap, S. M., Ford, N. A., Hursting, S. D. Calorie restriction and rapamycin inhibit MMTV-Wnt-1 mammary tumor growth in a mouse model of postmenopausal obesity. Endocrine-Related Cancer, 2012, 19: 57–68. https://doi.org/10.1530/erc-11-0213

[30]

Mulrooney, T. J., Marsh, J., Urits, I., Seyfried, T. N., Mukherjee, P. Influence of caloric restriction on constitutive expression of NF-κB in an experimental mouse astrocytoma. PLoS One, 2011, 6: e18085. https://doi.org/10.1371/journal.pone.0018085

[31]
Azizi, M. H., Nayernouri, T., Azizi, F. A brief history of the discovery of the circulation of blood in the human body. Archives of Iranian Medicine, 2008, 11(3): 345–350.
[32]

Karamanou, M., Androutsos, G. Antoine-Laurent de Lavoisier (1743–1794) and the birth of respiratory physiology. Thorax, 2013, 68: 978–979. https://doi.org/10.1136/thoraxjnl-2013-203840

[33]
Partridge, L. D., Partridge, L. D. Internal transmission of information. In: Nervous System Actions and Interactions. Boston: Springer, 2003: 69–91. https://doi.org/10.1007/978-1-4615-0425-2_5
DOI
[34]
Südhof, T. C., Stevens, C. F. A brief history of synapses and synaptic transmission. In: Synapses. Johns Hopkins University Press, 2001: 1–87.
[35]

Hubel, D. H., Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of Physiology, 1962, 160: 106–154. https://doi.org/10.1113/jphysiol.1962.sp006837

[36]

Browning, C. H. Emil Behring and Paul Ehrlich: Their contributions to science. Nature, 1955, 175: 616–619. https://doi.org/10.1038/175616a0

[37]
King, K. M., Rubin, G. A history of diabetes: From antiquity to discovering insulin. British Journal of Nursing, 2003, 12: 1091–1095. https://doi.org/10.12968/bjon.2003.12.18.11775
DOI
[38]

Schatz, A., Bugle, E., Waksman, S. A. Streptomycin, a substance exhibiting antibiotic activity against gram-positive and gram-negative bacteria. Experimental Biology and Medicine, 1944, 55: 66–69. https://doi.org/10.3181/00379727-55-14461

[39]
Plotkin, S. L., Plotkin, S. A. A short history of vaccination. In: Vaccines. Amsterdam: Elsevier, 2008: 1–16. https://doi.org/10.1016/b978-1-4160-3611-1.50005-2
DOI
[40]

Starr, A., Edwards, M. L. Mitral replacement. Annals of Surgery, 1961, 154: 726. https://doi.org/10.1097/00000658-196110000-00017

[41]

Weinberger, L. M., Gibbon, M. H., Gibbon, J. H. Temporary arrest of the circulation to the central nervous system. Archives of Neurology & Psychiatry, 1940, 43: 615. https://doi.org/10.1001/archneurpsyc.1940.02280040002001

[42]

Aoyama, T., Murase, Y., Kato, T., Iwata, T. Efficacy of an acellular pertussis vaccine in Japan. The Journal of Pediatrics, 1985, 107: 180–183. https://doi.org/10.1016/S0022-3476(85)80121-9

[43]

Moore, F. D. Therapeutic innovation: Ethical boundaries in the initial clinical trials of new drugs and surgical procedures. CA: A Cancer Journal for Clinicians, 1970, 20: 212–227. https://doi.org/10.3322/canjclin.20.4.212

[44]

Chorro, F. J., Such-Belenguer, L., López-Merino, V. Animal models of cardiovascular disease. Revista Española De Cardiología, 2009, 62: 69–84. https://doi.org/10.1016/s1885-5857(09)71516-6

[45]

Budhu, S., Wolchok, J., Merghoub, T. The importance of animal models in tumor immunity and immunotherapy. Current Opinion in Genetics & Development, 2014, 24: 46–51. https://doi.org/10.1016/j.gde.2013.11.008

[46]

Donaldson, Z. R., Hen, René. From psychiatric disorders to animal models: A bidirectional and dimensional approach. Biological Psychiatry, 2015, 77: 15–21. https://doi.org/10.1016/j.biopsych.2014.02.004

[47]

Gold, R., Linington, C., Lassmann, H. Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain, 2006, 129: 1953–1971. https://doi.org/10.1093/brain/awl075

[48]

Longo, V. D., Kennedy, B. K. Sirtuins in aging and age-related disease. Cell, 2006, 126: 257–268. https://doi.org/10.1016/j.cell.2006.07.002

[49]

Taubes, G. Unraveling the obesity-cancer connection. Science, 2012, 335: 28–32. https://doi.org/10.1126/science.335.6064.28

[50]

Fierz, Y., Novosyadlyy, R., Vijayakumar, A., Yakar, S., LeRoith, D. Insulin-sensitizing therapy attenuates type 2 diabetes-mediated mammary tumor progression. Diabetes, 2010, 59: 686–693. https://doi.org/10.2337/db09-1291

[51]

Barone, B. B. Long-term all-cause mortality in cancer patients with preexisting diabetes mellitus. JAMA, 2008, 300: 2754–2764. https://doi.org/10.1001/jama.2008.824

[52]

Coughlin, S. S., Calle, E. E., Teras, L. R., Petrelli, J., Thun, M. J. Diabetes mellitus as a predictor of cancer mortality in a large cohort of US adults. American Journal of Epidemiology, 2004, 159: 1160–1167. https://doi.org/10.1093/aje/kwh161

[53]

Lipscombe, L. L., Goodwin, P. J., Zinman, B., McLaughlin, J. R., Hux, J. E. The impact of diabetes on survival following breast cancer. Breast Cancer Research and Treatment, 2008, 109: 389–395. https://doi.org/10.1007/s10549-007-9654-0

[54]

Fei, X., B., M. K. Diabetes, metabolic syndrome, and breast cancer: A review of the current evidence. The American Journal of Clinical Nutrition, 2007, 86: 823S–835S. https://doi.org/10.1093/ajcn/86.3.823S

[55]

Novosyadlyy, R., Lann, D. E., Vijayakumar, A., Rowzee, A., Lazzarino, D. A., Fierz, Y., Carboni, J. M., Gottardis, M. M., Pennisi, P. A., Molinolo, A. A. et al. Insulin-mediated acceleration of breast cancer development and progression in a nonobese model of type 2 diabetes. Cancer Research, 2010, 70: 741–751. https://doi.org/10.1158/0008-5472.can-09-2141

[56]

Glass, C. K., Witztum, J. L. Atherosclerosis: The road ahead. Cell, 2001, 104: 503–516. https://doi.org/10.1016/s0092-8674(01)00238-0

[57]

Lusis, A. J. Atherosclerosis. Nature, 2000, 407: 233–241. https://doi.org/10.1038/35025203

[58]

Klink, A., Hyafil, F., Rudd, J., Faries, P., Fuster, V., Mallat, Z., Meilhac, O., Mulder, W. J. M., Michel, J. B., Ramirez, F. et al. Diagnostic and therapeutic strategies for small abdominal aortic aneurysms. Nature Reviews Cardiology, 2011, 8: 338–347. https://doi.org/10.1038/nrcardio.2011.1

[59]

Nordon, I. M., Hinchliffe, R. J., Loftus, I. M., Thompson, M. M. Pathophysiology and epidemiology of abdominal aortic aneurysms. Nature Reviews Cardiology, 2011, 8: 92–102. https://doi.org/10.1038/nrcardio.2010.180

[60]
Sidloff, D.A., Stather, P. W., Choke, E., Bowen, M. J., Sayers, R. D. A systematic review and meta-analysis of the association between markers of hemostasis and abdominal aortic aneurysm presence and size. Journal of Vascular Surgery, 2014, 59: 528–535.e4. https://doi.org/10.1016/j.jvs.2013.10.088
DOI
[61]

Jawień, J., Nastałek, P., Korbut, R. Mouse models of experimental atherosclerosis. Journal of Physiology and Pharmacology, 2004, 55: 503–517.

[62]
Wissler, R. W., Vesselinovitch, D. Evaluation of animal models for the study of the pathogenesis of atherosclerosis. In: International Symposium State of Prevention and Therapy in Human Arteriosclerosis and in Animal Models. Abhandlungen der Rheinisch-Westfälischen Akademie der Wissenschaften. VS Verlag für Sozialwissenschaften, Wiesbaden, 1978. https://doi.org/10.1007/978-3-663-06754-2_8
DOI
[63]

Paigen. B., Morrow, A., Brandon, C., Mitchell, D., Holmes, P. Variation in susceptibility to atherosclerosis among inbred strains of mice. Atherosclerosis, 1985, 57: 65–73. https://doi.org/10.1016/0021-9150(85)90138-8

[64]

Liao, F., Andalibi, A., de Beer, F. C., Fogelman, A. M., Lusis, A. J. Genetic control of inflammatory gene induction and NF-kappa B-like transcription factor activation in response to an atherogenic diet in mice. Journal of Clinical Investigation, 1993, 91: 2572–2579. https://doi.org/10.1172/JCI116495

[65]

Breslow, J. L. Mouse models of atherosclerosis. Science, 1996, 272: 685–688. https://doi.org/10.1126/science.272.5262.68

[66]

Daugherty, A., Cassis, L. A. Mouse models of abdominal aortic aneurysms. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24: 429–434. https://doi.org/10.1161/01.atv.0000118013.72016.ea

[67]

Bentzon, J. F., Falk, E. Atherosclerotic lesions in mouse and man: Is it the same disease. Current Opinion in Lipidology, 2010, 21: 434–440. https://doi.org/10.1097/mol.0b013e32833ded6a

[68]
Ishibashi, S., Brown, M. S., Goldstein, J. L., Gerard, R. D., Hammer, R. E., Herz, J. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. Journal of Clinical Investigation, 1993, 92: 883–893. https://doi.org/10.1172/JCI116663
DOI
[69]

Zadelaar, S., Kleemann, R., Verschuren, L., de Veries-Van der Weij, Jitske, van der Hoorn, José, Princen, H. M., Kooistra, T. Mouse models for atherosclerosis and pharmaceutical modifiers. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27: 1706–1721. https://doi.org/10.1161/ATVBAHA.107.142570

[70]

Plump, A. S., Smith, J. D., Hayek, T., Aalto-Setälä, K., Walsh, A., Verstuyft, J. G., Rubin, E. M., Breslow, J. L. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell, 1992, 71: 343–353. https://doi.org/10.1016/0092-8674(92)90362-G

[71]

Zhang, S. H., Reddick, R. L., Piedrahita, J. A., Maeda, N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science, 1992, 258: 468–471. https://doi.org/10.1126/science.1411543

[72]

Ishibashi, S., Goldstein, J. L., Brown, M. S., Herz, J., Burns, D. K. Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice. Journal of Clinical Investigation, 1994, 93: 1885–1893. https://doi.org/10.1172/jci117179

[73]

Weiss, D., Kools, J. J., Taylor, W. R. Angiotensin II-induced hypertension accelerates the development of atherosclerosis in apoE-deficient mice. Circulation, 2001, 103: 448–454. https://doi.org/10.1161/01.CIR.103.3.448

[74]

de Nigris, F., D’Armiento, F.P., Somma, P., Casini, A., Andreini, I., Sarlo, F., Mansueto, G., De Rosa, G., Bonaduce, D., Condorelli, M., et al. Chronic treatment with sulfhydryl angiotensin-converting enzyme inhibitors reduce susceptibility of plasma LDL to in vitro oxidation, formation of oxidation-specific epitopes in the arterial wall, and atherogenesis in apolipoprotein E knockout mice. International Journal of Cardiology, 2001, 81: 107–115. https://doi.org/10.1016/S0167-5273(01)00542-3

[75]

Hayek, T., Attias, J., Smith, J., Breslow, J. L., Keidar, S. Antiatherosclerotic and antioxidative effects of captopril in apolipoprotein E-deficient mice. Journal of Cardiovascular Pharmacology, 1998, 31: 540–544. https://doi.org/10.1097/00005344-199804000-00011

[76]

Daugherty, A., Rateri, D. L., Lu, H., Inagami, T., Cassis, L. A. Hypercholesterolemia stimulates angiotensin peptide synthesis and contributes to atherosclerosis through the AT1A receptor. Circulation, 2004, 110: 3849–3857. https://doi.org/10.1161/01.CIR.0000150540.54220.C4

[77]

Wassmann, S., Czech, T., van Eickels, M., Fleming, I., Böhm, M., Nickenig, G. Inhibition of diet-induced atherosclerosis and endothelial dysfunction in apolipoprotein E/angiotensin II type 1A receptor double-knockout mice. Circulation, 2004, 110: 3062–3067. https://doi.org/10.1161/01.CIR.0000137970.47771.AF

[78]

Thakur, S., Li, L., Gupta, S. NF-κB-mediated integrin-linked kinase regulation in angiotensin II-induced pro-fibrotic process in cardiac fibroblasts. Life Sciences, 2014, 107: 68–75. https://doi.org/10.1016/j.lfs.2014.04.030

[79]

Tham, D. M., Martin-McNulty, B., Wang, Y. X., Wilson, D. W., Vergona, R., Sullivan, M. E., Dole, W., Rutledge, J. C. Angiotensin II is associated with activation of NF-κB-mediated genes and downregulation of PPARs. Physiological Genomics, 2002, 11: 21–30. https://doi.org/10.1152/physiolgenomics.00062.2002

[80]

Thomas, M., Gavrila, D., McCormick, M. L., Miller Jr. F. J., Daugherty, A., Cassis, L. A., Dellsperger, K. C., Weintraub, N. L. Deletion of p47phox attenuates angiotensin II–induced abdominal aortic aneurysm formation in apolipoprotein E–deficient mice. Circulation, 2006, 114: 404–413. https://doi.org/10.1161/CIRCULATIONAHA.105.607168

[81]

Yoshimura, K., Aoki, H., Ikeda, Y., Fujii, K., Akiyama, N., Furutani, A., Hoshii, Y., Tanaka, N., Ricci, R., Ishihara, T. et al. Regression of abdominal aortic aneurysm by inhibition of c-Jun N-terminal kinase. Nature Medicine, 2005, 11: 1330–1338. https://doi.org/10.1038/nm1335

[82]

Yoshimura, K., Aoki, H., Ikeda, Y., Furutani, A., Hamano, K., Matsuzaki, M. Regression of abdominal aortic aneurysm by inhibition of c-Jun N-terminal kinase in mice. Annals of the New York Academy of Sciences, 2006, 1085: 74–81. https://doi.org/10.1196/annals.1383.031

[83]

Wang, Y. X., Martin-McNulty, B., da Cunha, V., Vincelette, J., Lu, X. R., Feng, Q. P., Halks-Miller, M., Mahmoudi, M., Schroeder, M., Subramanyam, B. et al. Fasudil, a Rho-kinase inhibitor, attenuates angiotensin II-induced abdominal aortic aneurysm in apolipoprotein E-deficient mice by inhibiting apoptosis and proteolysis. Circulation, 2005, 111: 2219–2226. https://doi.org/10.1161/01.CIR.0000163544.17221.BE

[84]

Ishibashi, M., Egashira, K., Zhao, Q. W., Hiasa, K. I., Ohtani, K., Ihara, Y., Charo, I. F., Kura, S., Tsuzuki, T., Takeshita, A. et al. Bone marrow-derived monocyte chemoattractant protein-1 receptor CCR2 is critical in angiotensin II-induced acceleration of atherosclerosis and aneurysm formation in hypercholesterolemic mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24: e174–e178. https://doi.org/10.1161/01.ATV.0000143384.69170.2d

[85]

Saraff, K., Babamusta, F., Cassis, L. A., Daugherty, A. Aortic dissection precedes formation of aneurysms and atherosclerosis in angiotensin II-infused, apolipoprotein E-deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23: 1621–1626. https://doi.org/10.1161/01.ATV.0000085631.76095.64

[86]

Deguchi, J., Huang, H., Libby, P., Aikawa, E., Whittaker, P., Sylvan, J., Lee, R. T., Aikawa, M. Genetically engineered resistance for MMP collagenases promotes abdominal aortic aneurysm formation in mice infused with angiotensin II. Laboratory Investigation, 2009, 89: 315–326. https://doi.org/10.1038/labinvest.2008.167

[87]

Deng, G. G., Martin-McNulty, B., Sukovich, D. A., Freay, A., Halks-Miller, M., Thinnes, T., Loskutoff, D. J., Carmeliet, P., Dole, W. P., Wang, Y. X. Urokinase-type plasminogen activator plays a critical role in angiotensin II–induced abdominal aortic aneurysm. Circulation Research, 2003, 92: 510–517. https://doi.org/10.1161/01.res.0000061571.49375.e1

[88]

Manning, M. W., Cassis, L. A., Daugherty, A. Differential effects of doxycycline, a broad-spectrum matrix metalloproteinase inhibitor, on angiotensin II-induced atherosclerosis and abdominal aortic aneurysms. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23: 483–488. https://doi.org/10.1161/01.ATV.0000058404.92759.32

[89]

Carmeliet, P., Moons, L., Lijnen, R., Baes, M., Lemaître, V., Tipping, P., Drew, A., Eeckhout, Y., Shapiro, S., Lupu, F. et al. Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation. Nature Genetics, 1997, 17: 439–444. https://doi.org/10.1038/ng1297-439

[90]

Crowther, M., Goodall, S., Jones, J.L., Bell, P. R. F., Thompson, M. M. Increased matrix metalloproteinase 2 expression in vascular smooth muscle cells cultured from abdominal aortic aneurysms. Journal of Vascular Surgery, 2000, 32: 575–583. https://doi.org/10.1067/mva.2000.108010

[91]

David, M., Hovsepian, D. M., Ziporin, S. J., Sakurai, M., K., Lee, J. K., Curci, J. A., Thompson, R. W. Elevated plasma levels of matrix metalloproteinase-9 in patients with abdominal aortic aneurysms: A circulating marker of degenerative aneurysm disease. Journal of Vascular and Interventional Radiology, 2000, 11: 1345–1352. https://doi.org/10.1016/S1051-0443(07)61315-3

[92]

Curci, J. A., Liao, S., Huffman, M. D., Shapiro, S. D., Thompson, R. W. Expression and localization of macrophage elastase (matrix metalloproteinase-12) in abdominal aortic aneurysms. Journal of Clinical Investigation, 1998, 102: 1900–1910. https://doi.org/10.1172/jci2182

[93]

Boyle, J. R., AcDermott, E., Crowther, M., Wills, A. D., Bell, P. R. F., Thompson, M. M. Doxycycline inhibits elastin degradation and reduces metalloproteinase activity in a model of aneurysmal disease. Journal of Vascular Surgery, 1998, 27: 354–361. https://doi.org/10.1016/S0741-5214(98)70367-2

[94]

Gilbertson-Beadling, S., Powers, E. A., Stamp-Cole, M., Scott, P. S., Wallace, T. L., Copeland, J., Petzold, G., Mitchell, M., Ledbetter, S., Poorman, R. The tetracycline analogs minocycline and doxycycline inhibit angiogenesis in vitro by a non-metalloproteinase-dependent mechanism. Cancer Chemotherapy and Pharmacology, 1995, 36: 418–424. https://doi.org/10.1007/BF00686191

[95]

Collins, T., Cybulsky, M. I. NF-κB: Pivotal mediator or innocent bystander in atherogenesis. Journal of Clinical Investigation, 2001, 107: 255–264. https://doi.org/10.1172/jci10373

[96]

Chen, X. L., Tummala, P. E., Olbrych, M. T., Alexander, R. W., Medford, R. M. Angiotensin II induces monocyte chemoattractant protein-1 gene expression in rat vascular smooth muscle cells. Circulation Research, 1998, 83: 952–959. https://doi.org/10.1161/01.RES.83.9.952

[97]

Funakoshi, Y., Ichiki, T., Shimokawa, H., Egashira, K., Takeda, K., Kaibuchi, K., Takeya, M., Yoshimura, T., Takeshita, A. Rho-kinase mediates angiotensin II-induced monocyte chemoattractant protein-1 expression in rat vascular smooth muscle cells. Hypertension, 2001, 38: 100–104. https://doi.org/10.1161/01.hyp.38.1.100

[98]

Tummala, P. E., Chen, X. L., Sundell, C. L., Laursen, J. B., Hammes, C. P., Alexander, R. W., Harrison, D. G., Medford, R. M. Angiotensin II induces vascular cell adhesion molecule-1 expression in rat vasculature: A potential link between the renin-angiotensin system and atherosclerosis. Circulation, 1999, 100: 1223–1229. https://doi.org/10.1161/01.CIR.100.11.1223

[99]

Gerrity, R. G. The role of the monocyte in atherogenesis: I. Transition of blood-borne monocytes into foam cells in fatty lesions. The American Journal of Pathology, 1981, 103: 181–190.

[100]

Manning, M. W., Cassis, L. A., Huang, J., Szilvassy, S. J., Daugherty, A. Abdominal aortic aneurysms: Fresh insights from a novel animal model of the disease. Vascular Medicine, 2002, 7: 45–54. https://doi.org/10.1191/1358863x02vm413ra

[101]

Lemarié, C. A., Paradis, P., Schiffrin, E. L. New insights on signaling cascades induced by cross-talk between angiotensin II and aldosterone. Journal of Molecular Medicine, 2008, 86: 673–678. https://doi.org/10.1007/s00109-008-0323-5

[102]

Achmad, R. The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis. Acta Medica Indonesiana, 2007, 39: 86–93.

[103]
Molkentin, J. D., Lu, J.-R., Antos, C. L., Markham, B., Richardson, J., Robbins, J., Grant, S. R., Olson, E. N. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell, 1998, 93: 215–228. https://doi.org/10.1016/S0092-8674(00)81573-1
DOI
[104]

Schwartz, R. J., Schneider, M. D. CAMTA in cardiac hypertrophy. Cell, 2006, 125: 427–429. https://doi.org/10.1016/j.cell.2006.04.015

[105]

Olson, E. N., Schneider, M. D. Sizing up the heart: Development redux in disease. Genes & Development, 2003, 17: 1937–1956. https://doi.org/10.1101/gad.1110103

[106]

Hill, J. A., Olson, E. N. Cardiac plasticity. The New England Journal of Medicine, 2008, 358: 1370–1380. https://doi.org/10.1056/NEJMra072139

[107]
Sadoshima, J.-i., Xu, Y. H., Slayter, H. S., et al. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell, 1993, 75: 977–984. https://doi.org/10.1016/0092-8674(93)90541-W
DOI
[108]

Kim, S., Ohta, K., Hamaguchi, A., Yukimura, T., Miura, K., Iwao, H. Angiotensin II induces cardiac phenotypic modulation and remodeling in vivo in rats. Hypertension, 1995, 25: 1252–1259. https://doi.org/10.1161/01.hyp.25.6.1252

[109]

Suzuki, J., Matsubara, H., Urakami, M., Inada, M. Rat angiotensin II (type 1A) receptor mRNA regulation and subtype expression in myocardial growth and hypertrophy. Circulation Research, 1993, 73: 439–447. https://doi.org/10.1161/01.RES.73.3.439

[110]

Zablocki, D., Sadoshima, J. Solving the cardiac hypertrophy riddle. Circulation Research, 2013, 113: 1192–1195. https://doi.org/10.1161/circresaha.113.302501

[111]

Rajagopalan, S., Kurz, S., Münzel, T., Tarpey, M., Freeman, B. A., Griendling, K. K., Harrison, D. G. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. Journal of Clinical Investigation, 1996, 97: 1916–1923. https://doi.org/10.1172/jci118623

[112]
Ushio-Fukai, M., Zafari, A. M., Fukui, T., Ishizaka, N., Griwndling, K. K. p22phox is a critical component of the superoxide-generating NADH/NADPH oxidase system and regulates angiotensin IIinduced hypertrophy in vascular smooth muscle cells. Journal of Biological Chemistry, 1996, 271: 23317–23321. https://doi.org/10.1074/jbc.271.38.23317
DOI
[113]

Bendall, J. K., Cave, A. C., Heymes, C., Gall, N., Shah, A. M. Pivotal role of a gp91(phox)-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation, 2002, 105: 293–296. https://doi.org/10.1161/hc0302.103712

[114]

Touyz, R. M., Mercure, C., He, Y., Javeshghani, D., Yao, G. Y., Callera, G. E., Yogi, A., Lochard, N., Reudelhuber, T. L. Angiotensin II-dependent chronic hypertension and cardiac hypertrophy are unaffected by gp91phox-containing NADPH oxidase. Hypertension, 2005, 45: 530–537. https://doi.org/10.1161/01.hyp.0000158845.49943.5e

[115]

Gupta, S. K., Piccoli, M. T., Thum, T. Non-coding RNAs in cardiovascular ageing. Ageing Research Reviews, 2014, 17: 79–85. https://doi.org/10.1016/j.arr.2014.01.002

[116]
Huang, J. H., Sun, W., Huang, H., Ye, J., Pan, W., Zhong, Y., Cheng, C. F., You, X. Y., Liu, B. R., Xiong, L. G. et al. miR-34a modulates angiotensin II-induced myocardial hypertrophy by direct inhibition of ATG9A expression and autophagic activity. PLoS One, 2014, 9: e94382. https://doi.org/10.1371/journal.pone.0094382
DOI
[117]

Cholewa, B. C., Mattson, D. L. Role of the renin-angiotensin system during alterations of sodium intake in conscious mice. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2001, 281: R987–R993. https://doi.org/10.1152/ajpregu.2001.281.3.r987

[118]

Daugherty, A., Manning, M. W., Cassis, L. A. Antagonism of AT2 receptors augments angiotensin II-induced abdominal aortic aneurysms and atherosclerosis. British Journal of Pharmacology, 2001, 134: 865–870. https://doi.org/10.1038/sj.bjp.0704331

[119]
Krege, J. H., Hodgin, J. B., Hagaman, J. R., Smithies, O. A noninvasive computerized tail-cuff system for measuring blood pressure in mice. Hypertension, 1995, 25: 1111–1115. https://doi.org/10.1161/01.HYP.25.5.1111
DOI
[120]

Garrington, T. P., Johnson, G. L. Organization and regulation of mitogen-activated protein kinase signaling pathways. Current Opinion in Cell Biology, 1999, 11: 211–218. https://doi.org/10.1016/S0955-0674(99)80028-3

[121]

Bueno, O. F. The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. The EMBO Journal, 2000, 19: 6341–6350. https://doi.org/10.1093/emboj/19.23.6341

[122]

Lorenz, K., Schmitt, J. P., Vidal, M., Lohse, M. J. Cardiac hypertrophy: Targeting raf/MEK/ERK1/2-signaling. The International Journal of Biochemistry & Cell Biology, 2009, 41: 2351–2355. https://doi.org/10.1016/j.biocel.2009.08.002

[123]

Sanna, B., Bueno, O. F., Dai, Y. S., Wilkins, B. J., Molkentin, J. D. Direct and indirect interactions between calcineurin-NFAT and MEK1-extracellular signal-regulated kinase 1/2 signaling pathways regulate cardiac gene expression and cellular growth. Molecular and Cellular Biology, 2005, 25: 865–878. https://doi.org/10.1128/mcb.25.3.865-878.2005

[124]

Liao, P., Georgakopoulos, D., Kovacs, A., Zheng, M. Z., Lerner, D., Pu, H. Y., Saffitz, J., Chien, K., Xiao, R. P., Kass, D. A. et al. The in vivo role of p38 MAP kinases in cardiac remodeling and restrictive cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98: 12283–12288. https://doi.org/10.1073/pnas.211086598

[125]
Petrich, B. G., Gong, X. H., Lerner, D. L., Wang, X., Brown, J. H., Saffitz, J. E., Wang, Y. B. C-Jun N-terminal kinase activation mediates downregulation of Connexin43 in cardiomyocytes. Circulation Research, 2002, 91: 640–647. https://doi.org/10.1161/01.res.0000035854.11082.01
DOI
[126]

Petrich, B. G., Molkentin, J. D., Wang, Y. B. Temporal activation of c-Jun N-terminal kinase in adult transgenic heart via cre-loxP-mediated DNA recombination. The FASEB Journal, 2003, 17: 749–751. https://doi.org/10.1096/fj.02-0438fje

[127]

Molkentin, J. D. Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovascular Research, 2004, 63: 467–475. https://doi.org/10.1016/j.cardiores.2004.01.021

[128]
Liang, Q. R., Bueno, O. F., Wilkins, B. J., Kuan, C. Y., Xia, Y., Molkentin, J. D. C-Jun N-terminal kinases (JNK) antagonize cardiac growth through cross-talk with calcineurin-NFAT signaling. The EMBO Journal, 2003, 22: 5079–5089. https://doi.org/10.1093/emboj/cdg474
DOI
[129]

Tachibana, H., Perrino, C., Takaoka, H., Davis, R. J., Naga Prasad, S. V., Rockman, H. A. JNK1 is required to preserve cardiac function in the early response to pressure overload. Biochemical and Biophysical Research Communications, 2006, 343: 1060–1066. https://doi.org/10.1016/j.bbrc.2006.03.065

[130]

Nicol, R. L., Frey, N., Pearson, G., Cobb, M., Richardson, J., Olson, E. N. Activated MEK5 induces serial assembly of sarcomeres and eccentric cardiac hypertrophy. The EMBO Journal, 2001, 20: 2757–2767. https://doi.org/10.1093/emboj/20.11.2757

[131]

Heineke, J., Molkentin, J. D. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nature Reviews Molecular Cell Biology, 2006, 7: 589–600. https://doi.org/10.1038/nrm1983

[132]

Rockman, H. A., Ross, R. S., Harris, A. N., Knowlton, K. U., Steinhelper, M. E., Field, L. J., Ross, J., Chien, K. R. Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88: 8277–81. https://doi.org/10.1073/pnas.88.21.9907a

[133]

Akioka, K., Kawaguchi, H., Kitajima, S., Miura, N., Noguchi, M., Horiuchi, M., Miyoshi, N., Tanimoto, A. Investigation of necessity of sodium cholate and minimal required amount of cholesterol for dietary induction of atherosclerosis in microminipigs. In Vivo, 2014, 28: 81–90.

[134]

Heistad, D. D. Arteriosclerosis, thrombosis, and vascular biology, 2006. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26: 2–4. https://doi.org/10.1161/01.ATV.0000198400.82143.3b

[135]

Wu, Y. P., Yakar, S., Zhao, L., Hennighausen, L., LeRoith, D. Circulating insulin-like growth factor-I levels regulate colon cancer growth and metastasis. Cancer Research, 2002, 62: 1030–1035.

[136]

Milani, A., Zaccaria, R., Bombardieri, G., Gasbarrini, A., Pola, P. Cirrhotic cardiomyopathy. Digestive and Liver Disease, 2007, 39: 507–515. https://doi.org/10.1016/j.dld.2006.12.014

[137]

Lee, S. S. Cardiac abnormalities in liver cirrhosis. The Western Journal of Medicine, 1989, 151: 530–535.

[138]

Adegboyega, Q., Adigun, MD,. Effect of cirrhosis and liver transplantation on the gender difference in QT interval. The American Journal of Cardiology, 2005, 95: 691–694. https://doi.org/10.1016/j.amjcard.2004.10.054

[139]

Dehpour, A., Abbasi, A., Joharimoqaddam, A., Faramarzi, N., Khosravi, M., Jahanzad, I. Opioid receptors blockade modulates apoptosis in a rat model of cirrhotic cardiomyopathy. Annals of Medical and Health Sciences Research, 2014, 4: 404. https://doi.org/10.4103/2141-9248.133468

[140]

Fouad, Y., Yehia, R. Hepato-cardiac disorders. World Journal of Hepatology, 2014, 6: 41–54. https://doi.org/10.4254/wjh.v6.i1.41

[141]

Matsumori, A. Hepatitis C virus infection and cardiomyopathies. Circulation Research, 2005, 96: 144–147. https://doi.org/10.1161/01.res.0000156077.54903.67

[142]

Omura, T., Yoshiyama, M., Hayashi, T., Nishiguchi, S., Kaito, M., Horiike, S., Fukuda, K., Inamoto, S., Kitaura, Y., Nakamura, Y. et al. Core protein of hepatitis C virus induces cardiomyopathy. Circulation Research, 2005, 96: 148–150. https://doi.org/10.1161/01.res.0000154263.70223.13

[143]

Møller, S., Bernardi, M. Interactions of the heart and the liver. European Heart Journal, 2013, 34: 2804–2811. https://doi.org/10.1093/eurheartj/eht246

[144]

Moller, S., Henriksen, J. H. Cardiovascular complications of cirrhosis. Gut, 2008, 57: 268–278. https://doi.org/10.1136/gut.2006.112177

[145]

Pacifico, L., Di Martino, M., De Merulis, A., Bezzi, M., Osborn, J. F., Catalano, C., Chiesa, C. Left ventricular dysfunction in obese children and adolescents with nonalcoholic fatty liver disease. Hepatology, 2014, 59: 461–470. https://doi.org/10.1002/hep.26610

[146]

Jackson, H., Solaymani-Dodaran, M., Card, T. R., Aithal, G. P., Logan, R., West, J. Influence of ursodeoxycholic acid on the mortality and malignancy associated with primary biliary cirrhosis: A population-based cohort study. Hepatology, 2007, 46: 1131–1137. https://doi.org/10.1002/hep.21795

[147]

Prince, M., Chetwynd, A., Newman, W., Metcalf, J. V., James, O. F. W. Survival and symptom progression in a geographically based cohort of patients with primary biliary cirrhosis: Follow-up for up to 28 years. Gastroenterology, 2002, 123: 1044–1051. https://doi.org/10.1053/gast.2002.36027

[148]

Fickert, P., Moustafa, T., Trauner, M. Primary sclerosing cholangitis—the arteriosclerosis of the bile duct. Lipids in Health and Disease, 2007, 6: 3. https://doi.org/10.1186/1476-511X-6-3

[149]

Agelopoulou, P., Kapatais, A., Varounis, C., Grassos, C., Kalkandi, E., Kouris, N., Pierakeas, N., Babalis, D. Hepatocellular carcinoma with invasion into the right atrium. Report of two cases and review of the literature. Hepato-gastroenterology, 2007, 54: 2106–2108.

[150]

Janssen, H. L. A., Garcia-Pagan, J.-C., Elias, E., Mentha, G., Hadengue, A., Valla, D.-C. Budd-Chiari syndrome: A review by an expert panel. Journal of Hepatology, 2003, 38: 364–371. https://doi.org/10.1016/S0168-8278(02)00434-8

[151]

Okuda, K., Kage, M., Shrestha, S. M. Proposal of a new nomenclature for budd-chiari syndrome: Hepatic vein thrombosis versus thrombosis of the inferior vena cava at its hepatic portion. Hepatology, 1998, 28: 1191–1198. https://doi.org/10.1002/hep.510280505

[152]

Rolla, G. Exhaled nitric oxide and impaired oxygenation in cirrhotic patients before and after liver transplantation. Annals of Internal Medicine, 1998, 129: 375. https://doi.org/10.7326/0003-4819-129-5-199809010-00005

[153]

Raval, Z., Harinstein, M., Skaro, A. I., Erdogan, A., DeWolf, A. M., Shah, S. J., Fix, O. K., Kay, N., Abecassis, M. I., Gheorghiade, M., Flaherty, J. D. Cardiovascular risk assessment of the liver transplant candidate. Journal of the American College of Cardiology, 2011, 58: 223–231. https://doi.org/10.1016/j.jacc.2011.03.026

[154]

Dunn, G. D., Hayes, P., Breen, K. J., Schenker, S. The liver in congestive heart failure. The American Journal of the Medical Sciences, 1973, 265: 174–190. https://doi.org/10.1097/00000441-197303000-00001

[155]

Safran, A. P., Schaffner, F. Chronic passive congestion of the liver in man. Electron microscopic study of cell atrophy and intralobular fibrosis. The American Journal of Pathology, 1967, 50: 447–463.

[156]

Wadia, Y., Etheridge, W., Smart, F., Wood, R. P. Frazier, O. H. Pathophysiology of hepatic dysfunction and intrahepatic cholestasis in heart failure and after left ventricular assist device support. The Journal of Heart and Lung Transplantation, 2005, 24: 361–370. https://doi.org/10.1016/j.healun.2004.09.012

[157]

Chokshi, A., Cheema, F. H., Schaefle, K. J., Jiang, J., Collado, E., Shahzad, K., Khawaja, T., Farr, M., Takayama, H., Naka, Y., Mancini, D. M., Schulze, P. C. Hepatic dysfunction and survival after orthotopic heart transplantation: Application of the MELD scoring system for outcome prediction. The Journal of Heart and Lung Transplantation, 2012, 31: 591–600. https://doi.org/10.1016/j.healun.2012.02.008

[158]

Te, H. S., Anderson, A. S., Millis, J. M., Jeevanandam, V., Jensen, D. M. Current state of combined heart-liver transplantation in the United States. The Journal of Heart and Lung Transplantation, 2008, 27: 753–759. https://doi.org/10.1016/j.healun.2008.04.004

[159]
Kamath, B. M., Piccoli, D. A. Alagille Syndrome. In: Diseases of the Liver in Children. New York: Springer, 2014: 227–246. https://doi.org/10.1007/978-1-4614-9005-0_11
DOI
[160]

Zubiaurre, L., Zapata, E., Bujanda, L., Castillo, M., Oyarzabal, I., Gutiérrez-Stempa, M. A., Cosme, A. Cytomegalovirus hepatitis and myopericarditis. World Journal of Gastroenterology, 2007, 13: 647–648. https://doi.org/10.3748/wjg.v13.i4.647

[161]

Elkiran, O., Karakurt, C., Selimoglu, A., Karabiber, H., Kocak, G., Celik, S. F., Colak, C. Subclinical diastolic dysfunction in children with Wilson’s disease assessed by tissue Doppler echocardiography: A possible early predictor of cardiac involvement. Acta Cardiologica, 2013, 68: 181–187. https://doi.org/10.1080/ac.68.2.2967276

[162]

Hlubocká, Z., Marecek, Z., Linhart, A., Kejková, E., Pospísilová, L., Martásek, P., Aschermann, M. Cardiac involvement in Wilson disease. Journal of Inherited Metabolic Disease, 2002, 25: 269–277. https://doi.org/10.1023/A:1016546223327

[163]

Giakoustidis, A., Cherian, T. P., Antoniadis, N., Giakoustidis, D. Combined cardiac surgery and liver transplantation: Three decades of worldwide results. Journal of Gastrointestinal and Liver Diseases, 2011, 20: 415–421.

[164]

Hegazi, M. O., Ahmed, S. Atypical clinical manifestations of Graves' disease: An analysis in depth. Journal of Thyroid Research, 2012, 2012: 769019. https://doi.org/10.1155/2012/768019

[165]

Estruch, R., Fernandez-Sola, J., Sacanella, E., Paré, C., Rubin, E., Urbano-Marquez, A. Relationship between cardiomyopathy and liver disease in chronic alcoholism*1. Hepatology, 1995, 22: 532–538. https://doi.org/10.1016/0270-9139(95)90576-6

[166]

European Association for the Study of the Liver. EASL clinical practice guidelines on the management of ascites, spontaneous bacterial peritonitis, and hepatorenal syndrome in cirrhosis. Journal of Hepatology, 2010, 53: 397–417. https://doi.org/10.1016/j.jhep.2010.05.004

[167]

Qu, J.-H., Chakir, K., Tarasov, K. V., Riordon, D. R., Perino, M. G., Silvester, A. J., Lakatta, E. G. Reprogramming of the cardiac phosphoproteome in conjunction with proteome and transcriptome creates the enhanced performance and protection circuitry in response to chronic adenylyl cyclase-driven stress. eLife, 2023, 12: RP88732. https://doi.org/10.7554/eLife.88732.1

[168]
Tarasov, K. V., Chakir, K., Riordon, D. R., Lyashkov, A. E., Ahmet, I., Perino, M. G., Silvester, A. J., Wang, M. Y., Lukyanenko, Y. O., Qu, J.-H., et al. A remarkable adaptive paradigm of heart performance and protection emerges in response to the constitutive challenge of marked cardiac-specific overexpression of adenylyl cyclase type 8. Biophysical Journal, 2023, 122: 537a. https://doi.org/10.1016/j.bpj.2022.11.2844
DOI
[169]
Qu, J.-H., Tarasov, K. V., Chakir, K., Lakatta, E. G. Cardiac specific overexpression of adenylyl cyclase 8 reprograms the mouse sinoatrial node transcriptome. bioRxiv, 2023: 2023.09.26.559627. https://doi.org/10.1101/2023.09.26.559627
DOI
[170]
Agrimi, J., Menicucci, D., Qu, J.-H., Laurino, M., Mackey, C. D., Hasnain, L., Tarasova, Y. S., Tarasov, K. V., McDevitt, R. A., Hoover, D. B., et al. Cardiac AC8 over-expression increases locomotion by altering heart-brain communication. JACC: Clinical Electrophysiology, 2023. https://doi.org/10.1016/j.jacep.2023.07.023
DOI
[171]

DeBerardinis, R. J., Mancuso, A., Daikhin, E., Nissim, I., Yudkoff, M., Wehrli, S., Thompson, C. B. Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104: 19345–19350. https://doi.org/10.1073/pnas.0709747104

[172]

Vander Heiden, M. G., Cantley, L. C., Thompson, C. B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science, 2009, 324: 1029–1033. https://doi.org/10.1126/science.1160809

[173]

Buzzai, M., Bauer, D. E., Jones, R. G., DeBerardinis, R. J., Hatzivassiliou, G., Elstrom, R. L., Thompson, C. B. The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid β-oxidation. Oncogene, 2005, 24: 4165–4173. https://doi.org/10.1038/sj.onc.1208622

[174]

Engelman, J. A., Chen, L., Tan, X. H., Crosby, K., Guimaraes, A. R., Upadhyay, R., Maira, M., McNamara, K., Perera, S. A., Song, Y. et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nature Medicine, 2008, 14: 1351–1356. https://doi.org/10.1038/nm.1890

[175]

Ralph, J., DeBerardinis,. The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metabolism, 2008, 7: 11–20. https://doi.org/10.1016/j.cmet.2007.10.002

[176]

Vander Heiden, M. G., Plas, D. R., Rathmell, J. C., Fox, C. J., Harris, M. H., Thompson, C. B. Growth factors can influence cell growth and survival through effects on glucose metabolism. Molecular and Cellular Biology, 2001, 21: 5899–5912. https://doi.org/10.1128/mcb.21.17.5899-5912.2001

[177]
Polak, P., Hall, M. N. mTOR and the control of whole body metabolism. Current Opinion in Cell Biology, 2009, 21: 209–218. https://doi.org/10.1016/j.ceb.2009.01.024
DOI
[178]
Xu, X. J., Ye, L. L., Araki, K., Ahmed, R. mTOR, linking metabolism and immunity. Seminars in Immunology, 2012, 24: 429–435. https://doi.org/10.1016/j.smim.2012.12.005
DOI
[179]
Zoncu, R., Efeyan, A., Sabatini, D. M. mTOR: From growth signal integration to cancer, diabetes and ageing. Nature Reviews Molecular Cell Biology, 2011, 12: 21–35. https://doi.org/10.1038/nrm3025
DOI
[180]

Bleeker, F. E., Lamba, S., Leenstra, S., Troost, D., Hulsebos, T., Vandertop, W. P., Frattini, M., Molinari, F., Knowles, M., Cerrato, A. et al. IDH1mutations at residue p. R132 (IDH1R132) occur frequently in high-grade gliomas but not in other solid tumors. Human Mutation, 2009, 30: 7–11. https://doi.org/10.1002/humu.20937

[181]

Parsons, D. W., Jones, S., Zhang, X. S., Lin, J. C. H., Leary, R. J., Angenendt, P., Mankoo, P., Carter, H., Siu, I. M., Gallia, G. L. et al. An integrated genomic analysis of human glioblastoma multiforme. Science, 2008, 321: 1807–1812. https://doi.org/10.1126/science.1164382

[182]

Thompson, C. B. Metabolic enzymes as oncogenes or tumor suppressors. New England Journal of Medicine, 2009, 360: 813–815. https://doi.org/10.1056/nejme0810213

[183]
Yan, H., Parsons, D. W., Jin, G. L., McLendon, R., Rasheed, B. A., Yuan, W. S., Kos, I., Batinic-Haberle, I., Jones, S., Riggins, G. J., et al. IDH1 and IDH2 mutations in gliomas. New England Journal of Medicine, 2009, 360: 765–773. https://doi.org/10.1056/NEJMoa0808710
DOI
[184]

Anastasiou, D., Yu, Y. M., Israelsen, W. J., Jiang, J. K., Boxer, M. B., Hong, B. S., Tempel, W., Dimov, S., Shen, M., Jha, A. et al. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nature Chemical Biology, 2012, 8: 839–847. https://doi.org/10.1038/nchembio.1060

[185]

Christofk, H. R., Vander Heiden, M. G., Harris, M. H., Ramanathan, A., Gerszten, R. E., Wei, R., Fleming, M. D., Schreiber, S. L., Cantley, L. C. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature, 2008, 452: 230–233. https://doi.org/10.1038/nature06734

[186]

Christofk, H. R., Vander Heiden, M. G., Wu, N., Asara, J. M., Cantley, L. C. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature, 2008, 452: 181–186. https://doi.org/10.1038/nature06667

[187]
Gao, P., Tchernyshyov, I., Chang, T. C., Lee, Y. S., Kita, K., Ochi, T., Zeller, K. I., De Marzo, A. M., Van Eyk, J. E., Mendell, J. T. et al. C-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature, 2009, 458: 762–765. https://doi.org/10.1038/nature07823
DOI
[188]

Yuneva, M., Zamboni, N., Oefner, P., Sachidanandam, R., Lazebnik, Y. Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. The Journal of Cell Biology, 2007, 178: 93–105. https://doi.org/10.1083/jcb.200703099

[189]

Buzzai, M., Jones, R. G., Amaravadi, R. K., Lum, J. J., DeBerardinis, R. J., Zhao, F. P., Viollet, B., Thompson, C. B. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Research, 2007, 67: 6745–6752. https://doi.org/10.1158/0008-5472.can-06-4447

[190]
Ma, W. Z., Sung, H. J., Park, J. Y., Matoba, S., Hwang, P. M. A pivotal role for p53: Balancing aerobic respiration and glycolysis. Journal of Bioenergetics and Biomembranes, 2007, 39: 243–246. https://doi.org/10.1007/s10863-007-9083-0
DOI
[191]

Fontana, L., Partridge, L., Longo, V. D. Extending healthy life span—from yeast to humans. Science, 2010, 328: 321–326. https://doi.org/10.1126/science.1172539

[192]

López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., Kroemer, G. The hallmarks of aging. Cell, 2013, 153: 1194–1217. https://doi.org/10.1016/j.cell.2013.05.039

[193]

Ran, Zhang,. Caloric restriction induces microRNAs to improve mitochondrial proteostasis. iScience, 2019, 17: 155–166. https://doi.org/10.1016/j.isci.2019.06.028

[194]

Beyerstedt, S., Casaro, E. B., Rangel, É. B. COVID-19: Angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. European Journal of Clinical Microbiology & Infectious Diseases, 2021, 40: 905–919. https://doi.org/10.1007/s10096-020-04138-6

[195]

Tajbakhsh, A., Gheibi Hayat, S. M., Taghizadeh, H., Akbari, A., Inabadi, M., Savardashtaki, A., Johnston, T. P., Sahebkar, A. COVID-19 and cardiac injury: Clinical manifestations, biomarkers, mechanisms, diagnosis, treatment, and follow up. Expert Review of Anti-Infective Therapy, 2021, 19: 345–357. https://doi.org/10.1080/14787210.2020.1822737

Publication history
Copyright
Rights and permissions

Publication history

Received: 11 October 2023
Revised: 17 October 2023
Accepted: 22 October 2023
Published: 22 November 2023

Copyright

© The Author(s) 2023. Aging Research published by Tsinghua University Press.

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return