Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
T cell development and remodeling during aging are crucial for immune health in late life and human healthspan. In this review, we delve into the mechanisms underlying these processes, with a focus on thymus development and involution, and their implications in immune function for older adults. We examine T cell subset development, including conventional naïve and regulatory T cells, effector and memory subsets, and unique subsets like γδ T cells, mucosal-associated invariant T (MAIT) cells, and natural killer T (NKT) cells. Our insights highlight the importance of enhancing immune function in older individuals and suggest potential strategies for overcoming the obstacles in studying T cell development and aging.
Kumar, B. V., Connors, T. J., Farber, D. L. Human T cell development, localization, and function throughout life. Immunity, 2018, 48(2): 202–213. https://doi.org/10.1016/j.immuni.2018.01.007.
Gameiro, J., Nagib, P., Verinaud, L. The thymus microenvironment in regulating thymocyte differentiation. Cell Adhesion & Migration, 2010, 4(3): 382–390. https://doi.org/10.4161/cam.4.3.11789.
Klein, L., Kyewski, B., Allen, P. M., Hogquist, K. A. Positive and negative selection of the T cell repertoire: What thymocytes see (and don’t see). Nature Reviews Immunology, 2014, 14(6): 377–391. https://doi.org/10.1038/nri3667.
Riley, J. S., McClain, L. E., Stratigis, J. D., Coons, B. E., Ahn, N. J., Li, H. Y., Loukogeorgakis, S. P., Fachin, C. G., Dias, A. I. B. S., Flake, A. W. et al. Regulatory T cells promote alloengraftment in a model of late-gestation in utero hematopoietic cell transplantation. Blood Advances, 2020, 4(6): 1102–1114. https://doi.org/10.1182/bloodadvances.2019001208.
Cupedo, T., Nagasawa, M., Weijer, K., Blom, B., Spits, H. Development and activation of regulatory T cells in the human fetus. European Journal of Immunology, 2005, 35(2): 383–390. https://doi.org/10.1002/eji.200425763.
Li, Y., Li, K., Zhu, L. B., Li, B., Zong, D. D., Cai, P. F., Jiang, C., Du, P. C., Lin, J., Qu, K. Development of double-positive thymocytes at single-cell resolution. Genome Medicine, 2021, 13(1): 49. https://doi.org/10.1186/s13073-021-00861-7.
Lynch, H. E., Goldberg, G. L., Chidgey, A., van den Brink, M. R., Boyd, R., Sempowski, G. D. Thymic involution and immune reconstitution. Trends in Immunology, 2009, 30(7): 366–373. https://doi.org/10.1016/j.it.2009.04.003.
Liang, Z. F., Dong, X., Zhang, Z. Q., Zhang, Q., Zhao, Y. Age-related thymic involution: Mechanisms and functional impact. Aging Cell, 2022, 21(8): e13671. https://doi.org/10.1111/acel.13671.
Thapa, P., Farber, D. L. The role of the thymus in the immune response. Thoracic Surgery Clinics, 2019, 29(2): 123–131. https://doi.org/10.1016/j.thorsurg.2018.12.001.
Miller Jacques F A P. The function of the thymus and its impact on modern medicine. Science, 2020, 369(6503): eaba2429. https://doi.org/10.1126/science.aba2429.
Taub, D. D., Murphy, W. J., Longo, D. L. Rejuvenation of the aging thymus: Growth hormone-mediated and ghrelin-mediated signaling pathways. Current Opinion in Pharmacology, 2010, 10(4): 408–424. https://doi.org/10.1016/j.coph.2010.04.015.
Mešťanová, V., Varga, I. Morphological view on the evolution of the immunity and lymphoid organs of vertebrates, focused on thymus. Biologia, 2016, 71(10): 1080–1097. https://doi.org/10.1515/biolog-2016-0137.
Shanley, D. P., Aw, D., Manley, N. R., Palmer, D. B. An evolutionary perspective on the mechanisms of immunosenescence. Trends in Immunology, 2009, 30(7): 374–381. https://doi.org/10.1016/j.it.2009.05.001.
Cowan, J. E., Takahama, Y., Bhandoola, A., Ohigashi, I. Postnatal involution and counter-involution of the thymus. Frontiers in Immunology, 2020, 11: 897. https://doi.org/10.3389/fimmu.2020.00897.
Luo, M. L., Xu, L. X., Qian, Z. Y., Sun, X. Infection-associated thymic atrophy. Frontiers in Immunology, 2021, 12: 652538. https://doi.org/10.3389/fimmu.2021.652538.
Vaidya, H. J., Briones Leon, A., Blackburn, C. C. FOXN1 in thymus organogenesis and development. European Journal of Immunology, 2016, 46(8): 1826–1837. https://doi.org/10.1002/eji.201545814.
Dixit, V. D. Thymic fatness and approaches to enhance thymopoietic fitness in aging. Current Opinion in Immunology, 2010, 22(4): 521–528. https://doi.org/10.1016/j.coi.2010.06.010.
Ferrando-Martínez, S., Ruiz-Mateos, E., Dudakov, J. A., Velardi, E., Grillari, J., Kreil, D. P., Muñoz-Fernandez, M. Á., van den Brink, M. R. M., Leal, M. WNT signaling suppression in the senescent human thymus. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 2015, 70(3): 273–281. https://doi.org/10.1093/gerona/glu030.
Cron, M. A., Guillochon, É., Kusner, L., Le Panse, R. Role of miRNAs in normal and myasthenia gravis thymus. Frontiers in Immunology, 2020, 11: 1074. https://doi.org/10.3389/fimmu.2020.01074.
Barbouti, A., Vasileiou, P. V. S., Evangelou, K., Vlasis, K. G., Papoudou-Bai, A., Gorgoulis, V. G., Kanavaros, P. Implications of oxidative stress and cellular senescence in age-related thymus involution. Oxidative Medicine and Cellular Longevity, 2020, 2020: 7986071. https://doi.org/10.1155/2020/7986071.
Coder, B. D., Wang, H. J., Ruan, L. H., Su, D. M. Thymic involution perturbs negative selection leading to autoreactive T cells that induce chronic inflammation. The Journal of Immunology, 2015, 194(12): 5825–5837. https://doi.org/10.4049/jimmunol.1500082.
Duah, M., Li, L.L., Shen, J.Y., Lan, Q., Pan, B., Xu, K.L. Thymus degeneration and regeneration. Froniers in Immunology, 2021, 12: 706244. https://doi.org/10.3389/fimmu.2021.706244.
Call, M. E., Wucherpfennig, K. W. Molecular mechanisms for the assembly of the T cell receptor–CD3 complex. Molecular Immunology, 2004, 40(18): 1295–1305. https://doi.org/10.1016/j.molimm.2003.11.017.
Call, M. E., Pyrdol, J., Wiedmann, M., Wucherpfennig, K. W. The organizing principle in the formation of the T cell receptor-CD3 complex. Cell, 2002, 111(7): 967–979. https://doi.org/10.1016/s0092-8674(02)01194-7.
Roels, J., Van Hulle, J., Lavaert, M., Kuchmiy, A., Strubbe, S., Putteman, T., Vandekerckhove, B., Leclercq, G., Van Nieuwerburgh, F., Boehme, L. et al. Transcriptional dynamics and epigenetic regulation of E and ID protein encoding genes during human T cell development. Frontiers in Immunology, 2022, 13: 960918. https://doi.org/10.3389/fimmu.2022.960918.
Borowski, C., Li, X. Y., Aifantis, I., Gounari, F., von Boehmer, H. Pre-TCRα and TCRα are not interchangeable partners of TCRβ during T lymphocyte development. The Journal of Experimental Medicine, 2004, 199(5): 607–615. https://doi.org/10.1084/jem.20031973.
Newton, L. M., Wiede, F., Tiganis, T., Humbert, P. O., Johnstone, R. W., Russell, S. M. Stepwise progression of β-selection during T cell development involves histone deacetylation. Life Science Alliance, 2023, 6(1): e202201645. https://doi.org/10.26508/lsa.202201645.
Baldwin, T. A., Sandau, M. M., Jameson, S. C., Hogquist, K. A. The timing of TCRα expression critically influences T cell development and selection. The Journal of Experimental Medicine, 2005, 202(1): 111–121. https://doi.org/10.1084/jem.20050359.
Egorov, E. S., Kasatskaya, S. A., Zubov, V. N., Izraelson, M., Nakonechnaya, T. O., Staroverov, D. B., Angius, A., Cucca, F., Mamedov, I. Z., Rosati, E. et al. The changing landscape of naive T cell receptor repertoire with human aging. Frontiers in Immunology, 2018, 9: 1618. https://doi.org/10.3389/fimmu.2018.01618.
Lanfermeijer, J., Borghans, J. A. M., van Baarle, D. How age and infection history shape the antigen-specific CD8+ T-cell repertoire: Implications for vaccination strategies in older adults. Aging Cell, 2020, 19(11): e13262. https://doi.org/10.1111/acel.13262.
Yager, E. J., Ahmed, M., Lanzer, K., Randall, T. D., Woodland, D. L., Blackman, M. A. Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and impaired immunity to influenza virus. The Journal of Experimental Medicine, 2008, 205(3): 711–723. https://doi.org/10.1084/jem.20071140.
Restifo, N. P., Gattinoni, L. Lineage relationship of effector and memory T cells. Current Opinion in Immunology, 2013, 25(5): 556–563. https://doi.org/10.1016/j.coi.2013.09.003.
Mahnke, Y. D., Brodie, T. M., Sallusto, F., Roederer, M., Lugli, E. The who’s who of T-cell differentiation: Human memory T-cell subsets. European Journal of Immunology, 2013, 43(11): 2797–2809. https://doi.org/10.1002/eji.201343751.
Giles, J. R., Manne, S., Freilich, E., Oldridge, D. A., Baxter, A. E., George, S., Chen, Z. Y., Huang, H., Chilukuri, L., Carberry, M. et al. Human epigenetic and transcriptional Tcell differentiation atlas for identifying functional Tcell-specific enhancers. Immunity, 2022, 55(3): 557–574.e7. https://doi.org/10.1016/j.immuni.2022.02.004.
Chang, J. T., Wherry, E. J., Goldrath, A. W. Molecular regulation of effector and memory T cell differentiation. Nature Immunology, 2014, 15(12): 1104–1115. https://doi.org/10.1038/ni.3031.
Goronzy, J. J., Weyand, C. M. Understanding immunosenescence to improve responses to vaccines. Nature Immunology, 2013, 14(5): 428–436. https://doi.org/10.1038/ni.2588.
Qi, Q., Zhang, D. W., Weyand, C. M., Goronzy, J. J. Mechanisms shaping the naïve T cell repertoire in the elderly—Thymic involution or peripheral homeostatic proliferation. Experimental Gerontology, 2014, 54: 71–74. https://doi.org/10.1016/j.exger.2014.01.005.
Aiello, A., Farzaneh, F., Candore, G., Caruso, C., Davinelli, S., Gambino, C. M., Ligotti, M. E., Zareian, N., Accardi, G. Immunosenescence and its hallmarks: How to oppose aging strategically? A review of potential options for therapeutic intervention. Frontiers in Immunology, 2019, 10: 2247. https://doi.org/10.3389/fimmu.2019.02247.
Moro-García, M. A. When aging reaches CD4+ T-cells: Phenotypic and functional changes. Frontiers in Immunology, 2013, 4: 107. https://doi.org/10.3389/fimmu.2013.00107.
Soerens, A. G., Künzli, M., Quarnstrom, C. F., Scott, M. C., Swanson, L., Locquiao, J., Ghoneim, H. E., Zehn, D., Youngblood, B., Vezys, V. et al. Functional T cells are capable of supernumerary cell division and longevity. Nature, 2023, 614(7949): 762–766. https://doi.org/10.1038/s41586-022-05626-9.
Den Braber, I., Mugwagwa, T., Vrisekoop, N., Westera, L., Mögling, R., Bregje de Boer, A., Willems, N., Schrijver, E. R., Spierenburg, G., Gaiser, K. et al. Maintenance of peripheral naive T cells is sustained by thymus output in mice but not humans. Immunity, 2012, 36(2): 288–297. https://doi.org/10.1016/j.immuni.2012.02.006.
Vrisekoop, N., den Braber, I., de Boer, A. B., Ruiter, A. F., Ackermans, M. T., van der Crabben, S. N., Schrijver, E. H., Spierenburg, G., Sauerwein, H. P., Hazenberg, M. D. et al. Sparse production but preferential incorporation of recently produced naive T cells in the human peripheral pool. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(16): 6115–6120. https://doi.org/10.1073/pnas.0709713105.
Flynn, J. K., Gorry, P. R. Stem memory T cells (TSCM)—Their role in cancer and HIV immunotherapies. Clinical & Translational Immunology, 2014, 3: e20. https://doi.org/10.1038/cti.2014.16.
Hong, H., Gu, Y., Sheng, S. Y., Lu, C. G., Zou, J. Y., Wu, C. Y. The distribution of human stem cell–like memory T cell in lung cancer. Journal of Immunotherapy, 2016, 39(6): 233–240. https://doi.org/10.1097/cji.0000000000000128.
Fuertes Marraco, S. A., Soneson, C., Cagnon, L., Gannon, P. O., Allard, M., Abed Maillard, S., Montandon, N., Rufer, N., Waldvogel, S., Delorenzi, M. et al. Long-lasting stem cell–like memory CD8 + T cells with a naïve-like profile upon yellow fever vaccination. Science Translational Medicine, 2015, 7(282): eaaa3700. https://doi.org/10.1126/scitranslmed.aaa3700.
Cieri, N., Camisa, B., Cocchiarella, F., Forcato, M., Oliveira, G., Provasi, E., Bondanza, A., Bordignon, C., Peccatori, J., Ciceri, F. et al. IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors. Blood, 2013, 121(4): 573–584. https://doi.org/10.1182/blood-2012-05-431718.
Zhang, Y., Joe, G., Hexner, E., Zhu, J., Emerson, S. G. Host-reactive CD8+ memory stem cells in graft-versus-host disease. Nature Medicine, 2005, 11(12): 1299–1305. https://doi.org/10.1038/nm1326.
Costa del Amo, P., Lahoz-Beneytez, J., Boelen, L., Ahmed, R., Miners, K. L., Zhang, Y., Roger, L., Jones, R. E., Marraco, S. A. F., Speiser, D. E. et al. Human TSCM cell dynamics in vivo are compatible with long-lived immunological memory and stemness. PLoS Biology, 2018, 16(6): e2005523. https://doi.org/10.1371/journal.pbio.2005523.
Sallusto, F., Lenig, D., Förster, R., Lipp, M., Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature, 1999, 401(6754): 708–712. https://doi.org/10.1038/44385.
Gasper, D. J., Tejera, M. M., Suresh, M. CD4 T-cell memory generation and maintenance. Critical Reviews in Immunology, 2014, 34(2): 121–146. https://doi.org/10.1615/critrevimmunol.2014010373.
Golubovskaya, V., Wu, L. J. Different subsets of T cells, memory, effector functions, and CAR-T immunotherapy. Cancers, 2016, 8(3): 36. https://doi.org/10.3390/cancers8030036.
Geginat, J., Sallusto, F., Lanzavecchia, A. Cytokine-driven proliferation and differentiation of human naive, central memory, and effector memory CD4+ T cells. The Journal of Experimental Medicine, 2001, 194(12): 1711–1720. https://doi.org/10.1084/jem.194.12.1711.
Schmueck-Henneresse, M., Omer, B., Shum, T., Tashiro, H., Mamonkin, M., Lapteva, N., Sharma, S., Rollins, L., Dotti, G., Reinke, P. et al. Comprehensive approach for identifying the T cell subset origin of CD3 and CD28 antibody–activated chimeric antigen receptor–modified T cells. The Journal of Immunology, 2017, 199(1): 348–362. https://doi.org/10.4049/jimmunol.1601494.
van der Leun, A. M., Thommen, D. S., Schumacher, T. N. CD8+ T cell states in human cancer: Insights from single-cell analysis. Nature Reviews Cancer, 2020, 20(4): 218–232. https://doi.org/10.1038/s41568-019-0235-4.
Libri, V., Azevedo, R. I., Jackson, S. E., Di Mitri, D., Lachmann, R., Fuhrmann, S., Vukmanovic-Stejic, M., Yong, K., Battistini, L., Kern, F. et al. Cytomegalovirus infection induces the accumulation of short-lived, multifunctional CD4+ CD45RA+ CD27–T cells: The potential involvement of interleukin-7 in this process. Immunology, 2011, 132(3): 326–339. https://doi.org/10.1111/j.1365-2567.2010.03386.x.
Poiret, T., Axelsson-Robertson, R., Remberger, M., Luo, X. H., Rao, M., Nagchowdhury, A., Von Landenberg, A., Ernberg, I., Ringden, O., Maeurer, M. Cytomegalovirus-specific CD8+ T-cells with different T-cell receptor affinities segregate T-cell phenotypes and correlate with chronic graft-versus-host disease in patients post-hematopoietic stem cell transplantation. Frontiers in Immunology, 2018, 9: 760. https://doi.org/10.3389/fimmu.2018.00760.
Crooke, S. N., Ovsyannikova, I. G., Poland, G. A., Kennedy, R. B. Immunosenescence and human vaccine immune responses. Immunity & Ageing, 2019, 16(1): 25. https://doi.org/10.1186/s12979-019-0164-9.
Luoma, A. M., Suo, S. B., Wang, Y. F., Gunasti, L., Porter, C. B. M., Nabilsi, N., Tadros, J., Ferretti, A. P., Liao, S. D., Gurer, C. et al. Tissue-resident memory and circulating T cells are early responders to pre-surgical cancer immunotherapy. Cell, 2022, 185(16): 2918–2935.e29. https://doi.org/10.1016/j.cell.2022.06.018.
Szabo, P. A., Miron, M., Farber, D. L. Location, location, location: Tissue resident memory T cells in mice and humans. Science Immunology, 2019, 4(34): eaas9673. https://doi.org/10.1126/sciimmunol.aas9673.
Verma, R., Er, J. Z., Pu, R. W., Sheik Mohamed, J., Soo, R. A., Muthiah, H. M., Tam, J. K. C., Ding, J. L. Eomes expression defines group 1 innate lymphoid cells during metastasis in human and mouse. Frontiers in Immunology, 2020, 11: 1190. https://doi.org/10.3389/fimmu.2020.01190.
Cakala-Jakimowicz, M., Kolodziej-Wojnar, P., Puzianowska-Kuznicka, M. Aging-related cellular, structural and functional changes in the lymph nodes: A significant component of immunosenescence? an overview. Cells, 2021, 10(11): 3148. https://doi.org/10.3390/cells10113148.
Workman, C. J., Szymczak-Workman, A. L., Collison, L. W., Pillai, M. R., Vignali, D. A. A. The development and function of regulatory T cells. Cellular and Molecular Life Sciences, 2009, 66(16): 2603–2622. https://doi.org/10.1007/s00018-009-0026-2.
Tao, Z. H., Jiang, Y. L., Xia, S. Regulation of thymic T regulatory cell differentiation by TECs in health and disease. Scandinavian Journal of Immunology, 2021, 94(4): e13094. https://doi.org/10.1111/sji.13094.
Schuster, M., Plaza-Sirvent, C., Visekruna, A., Huehn, J., Schmitz, I. Generation of Foxp3+CD25–regulatory T-cell precursors requires c-rel and IκBNS. Frontiers in Immunology, 2019, 10: 1583. https://doi.org/10.3389/fimmu.2019.01583.
Rocamora-Reverte, L., Melzer, F. L., Würzner, R., Weinberger, B. The complex role of regulatory T cells in immunity and aging. Frontiers in Immunology, 2021, 11: 616949. https://doi.org/10.3389/fimmu.2020.616949.
Srinivasan, J., Lancaster, J. N., Singarapu, N., Hale, L. P., Ehrlich, L. I. R., Richie, E. R. Age-related changes in thymic central tolerance. Frontiers in Immunology, 2021, 12: 676236. https://doi.org/10.3389/fimmu.2021.676236.
Li, X. D., Zheng, Y. Regulatory T cell identity: Formation and maintenance. Trends in Immunology, 2015, 36(6): 344–353. https://doi.org/10.1016/j.it.2015.04.006.
Thome, J. J. C., Bickham, K. L., Ohmura, Y., Kubota, M., Matsuoka, N., Gordon, C., Granot, T., Griesemer, A., Lerner, H., Kato, T. et al. Early-life compartmentalization of human T cell differentiation and regulatory function in mucosal and lymphoid tissues. Nature Medicine, 2016, 22(1): 72–77. https://doi.org/10.1038/nm.4008.
Hinks, T. S. C. Mucosal-associated invariant T cells in autoimmunity, immune-mediated diseases and airways disease. Immunology, 2016, 148(1): 1–12. https://doi.org/10.1111/imm.12582.
Eckle, S. B. G., Corbett, A. J., Keller, A. N., Chen, Z. J., Godfrey, D. I., Liu, L. G., Mak, J. Y. W., Fairlie, D. P., Rossjohn, J., McCluskey, J. Recognition of vitamin B precursors and byproducts by mucosal associated invariant T cells. Journal of Biological Chemistry, 2015, 290(51): 30204–30211. https://doi.org/10.1074/jbc.r115.685990.
Legoux, F., Salou, M., Lantz, O. MAIT cell development and functions: The microbial connection. Immunity, 2020, 53(4): 710–723. https://doi.org/10.1016/j.immuni.2020.09.009.
Wong, E. B., Ndung’u, T., Kasprowicz, V. O. The role of mucosal-associated invariant T cells in infectious diseases. Immunology, 2017, 150(1): 45–54. https://doi.org/10.1111/imm.12673.
Chen, P. C., Deng, W. H., Li, D. D., Zeng, T., Huang, L., Wang, Q., Wang, J. L., Zhang, W. G., Yu, X. X., Duan, D. M. et al. Circulating mucosal-associated invariant T cells in a large cohort of healthy Chinese individuals from newborn to elderly. Frontiers in Immunology, 2019, 10: 260. https://doi.org/10.3389/fimmu.2019.00260.
Novak, J., Dobrovolny, J., Novakova, L., Kozak, T. The Decrease in Number and Change in Phenotype of Mucosal-Associated Invariant T cells in the Elderly and Differences in Men and Women of Reproductive Age. Scandinavian Journal of Immunology, 2014, 80(4): 271–275. https://doi.org/10.1111/sji.12193.
Van Kaer, L. Natural killer T cells in health and disease. Frontiers in Bioscience, 2011, S3(1): 236–251. https://doi.org/10.2741/s148.
Girardi, E., Zajonc, D. M. Molecular basis of lipid antigen presentation by CD1d and recognition by natural killer T cells. Immunological Reviews, 2012, 250(1): 167–179. https://doi.org/10.1111/j.1600-065x.2012.01166.x.
Das, R., Sant’Angelo, D. B., Nichols, K. E. Transcriptional control of invariant NKT cell development. Immunological Reviews, 2010, 238(1): 195–215. https://doi.org/10.1111/j.1600-065x.2010.00962.x.
Verykokakis, M., Zook, E. C., Kee, B. L. ID’ing innate and innate-like lymphoid cells. Immunological Reviews, 2014, 261(1): 177–197. https://doi.org/10.1111/imr.12203.
Gapin, L., Matsuda, J. L., Surh, C. D., Kronenberg, M. NKT cells derive from double-positive thymocytes that are positively selected by CD1d. Nature Immunology, 2001, 2(10): 971–978. https://doi.org/10.1038/ni710.
Kumar, V., Delovitch, T. L. Different subsets of natural killer T cells may vary in their roles in health and disease. Immunology, 2014, 142(3): 321–336. https://doi.org/10.1111/imm.12247.
Papadogianni, G., Ravens, I., Dittrich-Breiholz, O., Bernhardt, G., Georgiev, H. Impact of aging on the phenotype of invariant natural killer T cells in mouse thymus. Frontiers in Immunology, 2020, 11: 575764. https://doi.org/10.3389/fimmu.2020.575764.
Qu, G. Y., Wang, S. L., Zhou, Z. L., Jiang, D. W., Liao, A. H., Luo, J. Comparing mouse and human tissue-resident γδ T cells. Frontiers in Immunology, 2022, 13: 891687. https://doi.org/10.3389/fimmu.2022.891687.
Fichtner, A. S., Ravens, S., Prinz, I. Human γδ TCR repertoires in health and disease. Cells, 2020, 9(4): 800. https://doi.org/10.3390/cells9040800.
Xu, W. L., Lau, Z. W. X., Fulop, T., Larbi, A. The aging of γδ T cells. Cells, 2020, 9(5): 1181. https://doi.org/10.3390/cells9051181.
Kaiser, M., Semeraro, M. D., Herrmann, M., Absenger, G., Gerger, A., Renner, W. Immune aging and immunotherapy in cancer. International Journal of Molecular Sciences, 2021, 22(13): 7016. https://doi.org/10.3390/ijms22137016.
Kim, M. Y., Cooper, M. L., Jacobs, M. T., Ritchey, J. K., Hollaway, J., Fehniger, T. A., DiPersio, J. F. CD7-deleted hematopoietic stem cells can restore immunity after CAR T cell therapy. JCI Insight, 2021, 6(16): e149819. https://doi.org/10.1172/jci.insight.149819.
Corrado, M., Pearce, E. L. Targeting memory T cell metabolism to improve immunity. Journal of Clinical Investigation, 2022, 132(1): e148546. https://doi.org/10.1172/jci148546.
von Kobbe, C. Targeting senescent cells: Approaches, opportunities, challenges. Aging, 2019, 11(24): 12844–12861. https://doi.org/10.18632/aging.102557.
Patrick, M., Weng, N. P. Expression and regulation of telomerase in human T cell differentiation, activation, aging and diseases. Cellular Immunology, 2019, 345: 103989. https://doi.org/10.1016/j.cellimm.2019.103989.
Guo, R. Q., Li, W., Li, Y. D., Li, Y. M., Jiang, Z. X., Song, Y. P. Generation and clinical potential of functional T lymphocytes from gene-edited pluripotent stem cells. Experimental Hematology & Oncology, 2022, 11(1): 27. https://doi.org/10.1186/s40164-022-00285-y.
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.