Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
To investigate the prognostic and immune values of ferredoxin 1 (FDX1) in brain lower grade glioma (LGG). Data from the Cancer Gene Atlas Database and the Genotype and Gene Expression Correlation Database were collected to compare the expression difference of FDX1 between glioma tissues and normal tissues, along with immunohistochemical method. Cox regression analysis was used to evaluate the relationship between FDX1 expression and survival indicators. The Kaplan–Meier method was used to assess independent risk of FDX1 in LGG survival probability. The Tumor Immune Estimation Resource database was used to evaluate the correlation between FDX1 expression and immune cell infiltration. FDX1 was overexpressed in LGG than normal tissues. The Kaplan–Meier analysis showed high FDX1 expression was significantly correlated with poor overall survival, disease specific survival and progress free interval (P < 0.001). A positive correlation was found between FDX1 expression and infiltration of B cells, CD4+ T cells, CD8+ T cells, macrophages, neutrophils and dendritic cells. FDX1 was positively correlated with immune checkpoints in LGG. FDX1 may serve as a specific prognostic and therapeutic biomarker for LGG.
Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 2021, 71(3): 209–249. https://doi.org/10.3322/caac.21660
Minniti, G., Lombardi, G., Paolini, S. Glioblastoma in elderly patients: current management and future perspectives. Cancers, 2019, 11(3): 336. https://doi.org/10.3390/cancers11030336
Louis, D. N., Perry, A., Wesseling, P., Brat, D. J., Cree, I. A., Figarella-Branger, D., Hawkins, C., Ng, H. K., Pfister, S. M., Reifenberger, G., et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro-Oncology, 2021, 23(8): 1231–1251. https://doi.org/10.1093/neuonc/noab106
Qiu, X. W., Tian, Y. H., Xu, J. N., Jiang, X., Liu, Z. Y., Qi, X. W., Chang, X., Zhao, J. X., Huang, J. C. Development and validation of an immune-related long non-coding RNA Prognostic model in glioma. Journal of Cancer, 2021, 12(14): 4264–4276. https://doi.org/10.7150/jca.53831
Jin, H., Zhang, X. X., Su, J., Teng, Y. Q., Ren, H., Yang, L. Z. RNA interference-mediated knockdown of translationally controlled tumor protein induces apoptosis, and inhibits growth and invasion in glioma cells. Molecular Medicine Reports, 2015, 12(5): 6617–6625. https://doi.org/10.3892/mmr.2015.4280
Quail, D. F., Joyce, J. A. The microenvironmental landscape of brain tumors. Cancer Cell, 2017, 31(3): 326–341. https://doi.org/10.1016/j.ccell.2017.02.009
Hsu, H.-P., Wang, C.-Y., Hsieh, P.-Y., Fang, J.-H., Chen, Y.-L. Knockdown of serine/threonine-protein kinase 24 promotes tumorigenesis and myeloid-derived suppressor cell expansion in an orthotopic immunocompetent gastric cancer animal model. Journal of Cancer, 2020, 11(1): 213–228. https://doi.org/10.7150/jca.35821
Tsvetkov, P., Coy, S., Petrova, B., Dreishpoon, M., Verma, A., Abdusamad, M., Rossen, J., Joesch-Cohen, L., Humeidi, R., Spangler, R. D., et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science, 2022, 375(6586): 1254–1261. https://doi.org/10.1126/science.abf0529
Sheftel, A. D., Stehling, O., Pierik, A. J., Elsasser, H. P., Muhlenhoff, U., Webert, H., Hobler, A., Hannemann, F., Bernhardt, R., Lill, R. Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis. Proceedings of the National Academy of Sciences, 2010, 107(26): 11775–11780. https://doi.org/10.1073/pnas.1004250107
Ewen, K. M., Ringle, M., Bernhardt, R. Adrenodoxin—A versatile ferredoxin. IUBMB Life, 2012, 64(6): 506–512. https://doi.org/10.1002/iub.1029
Wang, M. J., Zhou, Z. J., Zheng, J. L., Xiao, W. X., Zhu, J. M., Zhang, C. C., Jiang, X. B. Identification and validation of a prognostic immune-related alternative splicing events signature for glioma. Frontiers in Oncology, 2021, 11: 650153. https://doi.org/10.3389/fonc.2021.650153
Xiao, C., Yang, L. H., Jin, L. Z., Lin, W. G., Zhang, F. Q., Huang, S. X., Huang, Z. J. Prognostic and immunological role of cuproptosis-related protein FDX1 in pan-cancer. Frontiers in Genetics, 2022, 13: 962028. https://doi.org/10.3389/fgene.2022.962028
Lu, H. W., Zhou, L. W., Zhang, B. C., Xie, Y. Y., Yang, H. Y., Wang, Z. X. Cuproptosis key gene FDX1 is a prognostic biomarker and associated with immune infiltration in glioma. Frontiers in Medicine, 2022, 9: 939776. https://doi.org/10.3389/fmed.2022.939776
Xu, J. H., Hu, Z. G., Cao, H., Zhang, H., Luo, P., Zhang, J., Wang, X. Y., Cheng, Q., Li, J. B. Multi-omics pan-cancer study of cuproptosis core gene FDX1 and its role in kidney renal clear cell carcinoma. Frontiers in Immunology, 2022, 13: 981764. https://doi.org/10.3389/fimmu.2022.981764
Zhang, B. H., Xie, L., Ouyang, L. P., He, M. L. The expression and prognostic significance of FDX1 in glioma. Lingnan Modern Clinics in Surgery, 2022, 22(05): 509–511.
Ye, Z., Zhang, S. Q., Cai, J. Y., Ye, L. G., Gao, L., Wang, Y. X., Tong, S. A., Sun, Q., Wu, Y., Xiong, X. X., Chen, Q. X. Development and validation of cuproptosis-associated prognostic signatures in WHO 2/3 glioma. Frontiers in Oncology, 2022, 12: 967159. https://doi.org/10.3389/fonc.2022.967159
Wang, J.-J., Wang, H., Zhu, B.-L., Wang, X., Qian, Y.-H., Xie, L., Wang, W.-J., Zhu, J., Chen, X.-Y., Wang, J.-M., Ding, Z.-L. Development of a prognostic model of glioma based on immune-related genes. Oncology Letters, 2021, 21(2): 116. https://doi.org/10.3892/ol.2020.12377
Bruni, D., Angell, H. K., Galon, J. The immune contexture and immunoscore in cancer prognosis and therapeutic efficacy. Nature Reviews Cancer, 2020, 20(11): 662–680. https://doi.org/10.1038/s41568-020-0285-7
Zhang, E. K., Ding, C. S., Li, S. C., Zhou, X. L., Aikemu, B., Fan, X. D., Sun, J., Zheng, M. H., Yang, X. Roles and mechanisms of tumour-infiltrating B cells in human cancer: a new force in immunotherapy. Biomarker Research, 2023, 11(1): 28. https://doi.org/10.1186/s40364-023-00460-1
Yang, X. D., Liu, X. S., Li, J. J., Zhang, P. P., Li, H. J., Chen, G. Q., Zhang, W., Wang, T. F., Frazer, I., Ni, G. Y. Caerin 1.1/1.9 enhances antitumour immunity by activating the IFN-α response signalling pathway of tumour macrophages. Cancers, 2022, 14(23): 5785. https://doi.org/10.3390/cancers14235785
Chen, Y. B., Song, Y. C., Du, W., Gong, L. L., Chang, H. C., Zou, Z. Z. Tumor-associated macrophages: an accomplice in solid tumor progression. Journal of Biomedical Science, 2019, 26(1): 78. https://doi.org/10.1186/s12929-019-0568-z
Vivian, J., Rao, A. A., Nothaft, F. A., Ketchum, C., Armstrong, J., Novak, A., Pfeil, J., Narkizian, J., Deran, A. D., Musselman-Brown, A., et al. Toil enables reproducible, open source, big biomedical data analyses. Nature Biotechnology, 2017, 35(4): 314–316. https://doi.org/ 10.1038/nbt.3772
Liu, J. F., Lichtenberg, T., Hoadley, K. A, Poissan, L. M., Lazar, A. J., Cherniack, A. D., Kovatich, A. J., Benz, C. C., Levine, D. A., Lee, A. V., et al. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell, 2018, 173(2): 400–416. https://doi.org/10.1016/j.cell.2018.02.052
Ceccarelli, M., Barthel, F. P., Malta, T. M., Sabedot, T. S., Salama, S. R., Murray, B. A., Morozova, O., Newton, Y., Radenbaugh, A., Pagnotta, S. M., et al. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell, 2016, 164(3): 550–563. https://doi.org/10.1016/j.cell.2015.12.028
Park, S. Y. Nomogram: An analogue tool to deliver digital knowledge. The Journal of Thoracic and Cardiovascular Surgery, 2018, 155(4): 1793. https://doi.org/10.1016/j.jtcvs.2017.12.107
Li, B., Severson, E., Pignon, J. C., Zhao, H. Q., Li, T. W., Novak, J., Jiang, P., Shen, H., Aster, J. C., Rodig, S., et al. Comprehensive analyses of tumor immunity: Implications for cancer immunotherapy. Genome Biology, 2016, 17(1): 174. https://doi.org/10.1186/s13059-016-1028-7
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.