AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (964.6 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

A comprehensive prognostic and immune analysis of FDX1 in brain lower grade glioma

Lina Zhang1,2Tenghui Ma2,5,§Yanling Wang3,4,§Jiamin Chen2( )Wenwen Fu2( )
The First Clinical Medical College Guangzhou University of Chinese Medicine, Guangzhou 510080, China
Department of Clinical Nutrition and Microbiome; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
The Second Clinical Medical College Guangzhou University of Chinese Medicine, Guangzhou 510120, China
Department of Rehabilitation Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang 222004, China
Department of Colorectal Anal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China

§ These authors contributed equally to this work.

Show Author Information

Abstract

To investigate the prognostic and immune values of ferredoxin 1 (FDX1) in brain lower grade glioma (LGG). Data from the Cancer Gene Atlas Database and the Genotype and Gene Expression Correlation Database were collected to compare the expression difference of FDX1 between glioma tissues and normal tissues, along with immunohistochemical method. Cox regression analysis was used to evaluate the relationship between FDX1 expression and survival indicators. The Kaplan–Meier method was used to assess independent risk of FDX1 in LGG survival probability. The Tumor Immune Estimation Resource database was used to evaluate the correlation between FDX1 expression and immune cell infiltration. FDX1 was overexpressed in LGG than normal tissues. The Kaplan–Meier analysis showed high FDX1 expression was significantly correlated with poor overall survival, disease specific survival and progress free interval (P < 0.001). A positive correlation was found between FDX1 expression and infiltration of B cells, CD4+ T cells, CD8+ T cells, macrophages, neutrophils and dendritic cells. FDX1 was positively correlated with immune checkpoints in LGG. FDX1 may serve as a specific prognostic and therapeutic biomarker for LGG.

References

[1]
Romera-Giner, S., Andreu Martínez, Z., García-García, F., Hilalgo, M. R. Common pathways and functional profiles reveal underlying patterns in Breast, Kidney and Lung cancers. Biology Direct, 2021 , 16: 9. https://doi.org/10.1186/s13062-021-00293-8
[2]

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 2021, 71(3): 209–249. https://doi.org/10.3322/caac.21660

[3]

Minniti, G., Lombardi, G., Paolini, S. Glioblastoma in elderly patients: current management and future perspectives. Cancers, 2019, 11(3): 336. https://doi.org/10.3390/cancers11030336

[4]

Louis, D. N., Perry, A., Wesseling, P., Brat, D. J., Cree, I. A., Figarella-Branger, D., Hawkins, C., Ng, H. K., Pfister, S. M., Reifenberger, G., et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro-Oncology, 2021, 23(8): 1231–1251. https://doi.org/10.1093/neuonc/noab106

[5]

Qiu, X. W., Tian, Y. H., Xu, J. N., Jiang, X., Liu, Z. Y., Qi, X. W., Chang, X., Zhao, J. X., Huang, J. C. Development and validation of an immune-related long non-coding RNA Prognostic model in glioma. Journal of Cancer, 2021, 12(14): 4264–4276. https://doi.org/10.7150/jca.53831

[6]

Jin, H., Zhang, X. X., Su, J., Teng, Y. Q., Ren, H., Yang, L. Z. RNA interference-mediated knockdown of translationally controlled tumor protein induces apoptosis, and inhibits growth and invasion in glioma cells. Molecular Medicine Reports, 2015, 12(5): 6617–6625. https://doi.org/10.3892/mmr.2015.4280

[7]

Quail, D. F., Joyce, J. A. The microenvironmental landscape of brain tumors. Cancer Cell, 2017, 31(3): 326–341. https://doi.org/10.1016/j.ccell.2017.02.009

[8]
Cui, G., Wu, J., Lin, J., Liu, W., Chen, P., Yu, M., Zhou, D., Yao, G. Journal of Nanobiotechnology, 2021 , 19(1): 211. https://doi.org/10.1186/s12951-021-00902-8
[9]

Hsu, H.-P., Wang, C.-Y., Hsieh, P.-Y., Fang, J.-H., Chen, Y.-L. Knockdown of serine/threonine-protein kinase 24 promotes tumorigenesis and myeloid-derived suppressor cell expansion in an orthotopic immunocompetent gastric cancer animal model. Journal of Cancer, 2020, 11(1): 213–228. https://doi.org/10.7150/jca.35821

[10]

Tsvetkov, P., Coy, S., Petrova, B., Dreishpoon, M., Verma, A., Abdusamad, M., Rossen, J., Joesch-Cohen, L., Humeidi, R., Spangler, R. D., et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science, 2022, 375(6586): 1254–1261. https://doi.org/10.1126/science.abf0529

[11]

Sheftel, A. D., Stehling, O., Pierik, A. J., Elsasser, H. P., Muhlenhoff, U., Webert, H., Hobler, A., Hannemann, F., Bernhardt, R., Lill, R. Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis. Proceedings of the National Academy of Sciences, 2010, 107(26): 11775–11780. https://doi.org/10.1073/pnas.1004250107

[12]

Ewen, K. M., Ringle, M., Bernhardt, R. Adrenodoxin—A versatile ferredoxin. IUBMB Life, 2012, 64(6): 506–512. https://doi.org/10.1002/iub.1029

[13]

Wang, M. J., Zhou, Z. J., Zheng, J. L., Xiao, W. X., Zhu, J. M., Zhang, C. C., Jiang, X. B. Identification and validation of a prognostic immune-related alternative splicing events signature for glioma. Frontiers in Oncology, 2021, 11: 650153. https://doi.org/10.3389/fonc.2021.650153

[14]

Xiao, C., Yang, L. H., Jin, L. Z., Lin, W. G., Zhang, F. Q., Huang, S. X., Huang, Z. J. Prognostic and immunological role of cuproptosis-related protein FDX1 in pan-cancer. Frontiers in Genetics, 2022, 13: 962028. https://doi.org/10.3389/fgene.2022.962028

[15]

Lu, H. W., Zhou, L. W., Zhang, B. C., Xie, Y. Y., Yang, H. Y., Wang, Z. X. Cuproptosis key gene FDX1 is a prognostic biomarker and associated with immune infiltration in glioma. Frontiers in Medicine, 2022, 9: 939776. https://doi.org/10.3389/fmed.2022.939776

[16]

Xu, J. H., Hu, Z. G., Cao, H., Zhang, H., Luo, P., Zhang, J., Wang, X. Y., Cheng, Q., Li, J. B. Multi-omics pan-cancer study of cuproptosis core gene FDX1 and its role in kidney renal clear cell carcinoma. Frontiers in Immunology, 2022, 13: 981764. https://doi.org/10.3389/fimmu.2022.981764

[17]

Zhang, B. H., Xie, L., Ouyang, L. P., He, M. L. The expression and prognostic significance of FDX1 in glioma. Lingnan Modern Clinics in Surgery, 2022, 22(05): 509–511.

[18]
Zhu, H. X., Wan, Q. S., Tan, J. C., Ouyang, H. Y., Pan, X. Y., Li, M. H., Zhao, Y. Y. A novel prognostic signature of cuproptosis-related genes and the prognostic value of FDX1 in gliomas. Frontiers in Genetics, 2022 , 13: 992995. https://doi.org/10.3389/fgene.2022.992995
[19]

Ye, Z., Zhang, S. Q., Cai, J. Y., Ye, L. G., Gao, L., Wang, Y. X., Tong, S. A., Sun, Q., Wu, Y., Xiong, X. X., Chen, Q. X. Development and validation of cuproptosis-associated prognostic signatures in WHO 2/3 glioma. Frontiers in Oncology, 2022, 12: 967159. https://doi.org/10.3389/fonc.2022.967159

[20]

Wang, J.-J., Wang, H., Zhu, B.-L., Wang, X., Qian, Y.-H., Xie, L., Wang, W.-J., Zhu, J., Chen, X.-Y., Wang, J.-M., Ding, Z.-L. Development of a prognostic model of glioma based on immune-related genes. Oncology Letters, 2021, 21(2): 116. https://doi.org/10.3892/ol.2020.12377

[21]

Bruni, D., Angell, H. K., Galon, J. The immune contexture and immunoscore in cancer prognosis and therapeutic efficacy. Nature Reviews Cancer, 2020, 20(11): 662–680. https://doi.org/10.1038/s41568-020-0285-7

[22]

Zhang, E. K., Ding, C. S., Li, S. C., Zhou, X. L., Aikemu, B., Fan, X. D., Sun, J., Zheng, M. H., Yang, X. Roles and mechanisms of tumour-infiltrating B cells in human cancer: a new force in immunotherapy. Biomarker Research, 2023, 11(1): 28. https://doi.org/10.1186/s40364-023-00460-1

[23]

Yang, X. D., Liu, X. S., Li, J. J., Zhang, P. P., Li, H. J., Chen, G. Q., Zhang, W., Wang, T. F., Frazer, I., Ni, G. Y. Caerin 1.1/1.9 enhances antitumour immunity by activating the IFN-α response signalling pathway of tumour macrophages. Cancers, 2022, 14(23): 5785. https://doi.org/10.3390/cancers14235785

[24]

Chen, Y. B., Song, Y. C., Du, W., Gong, L. L., Chang, H. C., Zou, Z. Z. Tumor-associated macrophages: an accomplice in solid tumor progression. Journal of Biomedical Science, 2019, 26(1): 78. https://doi.org/10.1186/s12929-019-0568-z

[25]

Vivian, J., Rao, A. A., Nothaft, F. A., Ketchum, C., Armstrong, J., Novak, A., Pfeil, J., Narkizian, J., Deran, A. D., Musselman-Brown, A., et al. Toil enables reproducible, open source, big biomedical data analyses. Nature Biotechnology, 2017, 35(4): 314–316. https://doi.org/ 10.1038/nbt.3772

[26]

Liu, J. F., Lichtenberg, T., Hoadley, K. A, Poissan, L. M., Lazar, A. J., Cherniack, A. D., Kovatich, A. J., Benz, C. C., Levine, D. A., Lee, A. V., et al. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell, 2018, 173(2): 400–416. https://doi.org/10.1016/j.cell.2018.02.052

[27]

Ceccarelli, M., Barthel, F. P., Malta, T. M., Sabedot, T. S., Salama, S. R., Murray, B. A., Morozova, O., Newton, Y., Radenbaugh, A., Pagnotta, S. M., et al. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell, 2016, 164(3): 550–563. https://doi.org/10.1016/j.cell.2015.12.028

[28]

Park, S. Y. Nomogram: An analogue tool to deliver digital knowledge. The Journal of Thoracic and Cardiovascular Surgery, 2018, 155(4): 1793. https://doi.org/10.1016/j.jtcvs.2017.12.107

[29]

Li, B., Severson, E., Pignon, J. C., Zhao, H. Q., Li, T. W., Novak, J., Jiang, P., Shen, H., Aster, J. C., Rodig, S., et al. Comprehensive analyses of tumor immunity: Implications for cancer immunotherapy. Genome Biology, 2016, 17(1): 174. https://doi.org/10.1186/s13059-016-1028-7

Aging Research
Article number: 9340024
Cite this article:
Zhang L, Ma T, Wang Y, et al. A comprehensive prognostic and immune analysis of FDX1 in brain lower grade glioma. Aging Research, 2024, 2(2): 9340024. https://doi.org/10.26599/AGR.2024.9340024

1000

Views

70

Downloads

0

Crossref

Altmetrics

Received: 15 March 2024
Revised: 03 June 2024
Accepted: 03 June 2024
Published: 09 July 2024
© The Author(s) 2024. Aging Research published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return