Probiotics and synbiotics have been widely used to modulate gut microbiome, which is associated with skeletal muscle aging and overall health in older adults. The aim of this systematic review and meta-analysis was to verify the effect of probiotics and synbiotics on muscle mass, muscle strength, physical performance, and quality of life (QOL) in older adults. PubMed, Embase, and Web of Science were searched from inception to Nov. 2023 for randomized controlled trials (RCTs). RCTs were identified that investigated the effects of supplementations containing probiotics or synbiotics on parameters of muscle mass, muscle strength, physical performance, and QOL in elderly adults. Standardized mean difference (SMD) with their 95%CI was used for the synthesis of the results. In total, 15 studies were included in this review. The administration of probiotics and synbiotics moderately improved muscle strength (k = 7, SMD = 0.667, 95%confidence interval (CI): 0.317–1.017, I2 = 72.5%, p = 0.001) and physical performance (k = 6, SMD = 0.597, 95%CI: 0.118–1.075, I2 = 80.6%, p < 0.001), whereas no significant effect was found on muscle mass (k = 8, SMD = 0.067, 95%CI: –0.090–0.225, I2 = 26.0%, p = 0.221) and QOL (k = 7, SMD = 0.421, 95%CI: –0.054–0.895, I2 = 86.2%, p < 0.001) in older adults. The subgroup analysis showed better performance in studies conducted in Asia, providing extra nutritional supplementation and exercise programs, and using long-term treatment, with more positive effects or lower heterogeneity. Furthermore, some evidence about the effects on gut microbiome, intestinal permeability, and immune and nutritional status was reported. This systematic review and meta-analysis demonstrate the safety and effectiveness of probiotics and synbiotics in improving muscle function among older people, possibly through alleviating intestinal permeability, immunosenescence, and nutritional status. Systematic review registration: https://www.crd.york.ac.uk/prospero/, Identifier: CRD 42023428400.
Beard, J. R., Officer, A., de Carvalho, I. A., Sadana, R., Pot, A. M., Michel, J. P., Lloyd-Sherlock, P., Epping-Jordan, J. E., Peeters, G. M. E. E. G., Mahanani, W. R. et al. The World report on ageing and health: A policy framework for healthy ageing. The Lancet, 2016, 387(10033): 2145–2154. https://doi.org/10.1016/s0140-6736(15)00516-4
Sartori, R., Romanello, V., Sandri, M. Mechanisms of muscle atrophy and hypertrophy: Implications in health and disease. Nature Communications, 2021, 12: 330. https://doi.org/10.1038/s41467-020-20123-1
Baskin, K. K., Winders, B. R., Olson, E. N. Muscle as a “mediator” of systemic metabolism. Cell Metab, 2015, 21(2): 237–248. https://doi.org/10.1016/j.cmet.2014.12.021
Aging Biomarker Consortium, Bao, H. N., Cao, J. N., Chen, M. T., Chen, M., Chen, W., Chen, X., Chen, Y. H., Chen, Y., Chen, Y. T., et al. Biomarkers of aging. Science China Life Sciences, 2023, 66(5): 893–1066. https://doi.org/10.1007/s11427-023-2305-0
Cruz-Jentoft, A. J., Sayer, A. A. Sarcopenia. The Lancet, 2019, 393(10191): 2636–2646. https://doi.org/10.1016/S0140-6736(19)31138-9
Cruz-Jentoft, A. J., Baeyens, J. P., Bauer, J. M., Boirie, Y., Cederholm, T., Landi, F., Martin, F. C., Michel, J., Rolland, Y., Schneider, S. M., et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing, 2010, 39(4): 412–423. https://doi.org/10.1093/ageing/afq034
Wilmanski, T., Diener, C., Rappaport, N., Patwardhan, S., Wiedrick, J., Lapidus, J., Earls, J. C., Zimmer, A., Glusman, G., Robinson, M. et al. Gut microbiome pattern reflects healthy ageing and predicts survival in humans. Nature Metabolism, 2021, 3: 274–286. https://doi.org/10.1038/s42255-021-00348-0
Jackson, M. A., Jeffery, I. B., Beaumont, M., Bell, J. T., Clark, A. G., Ley, R. E., O’Toole, P. W., Spector, T. D., Steves, C. J. Signatures of early frailty in the gut microbiota. Genome Medicine, 2016, 8(1): 8. https://doi.org/10.1186/s13073-016-0262-7
Lee, Y. A., Song, S. W., Jung, S. Y., Bae, J., Hwang, N., Kim, H. N. Sarcopenia in community-dwelling older adults is associated with the diversity and composition of the gut microbiota. Experimental Gerontology, 2022, 167: 111927. https://doi.org/10.1016/j.exger.2022.111927
Zhao, J., Liang, R., Song, Q., Song, S., Yue, J., Wu, C. Investigating association between gut microbiota and sarcopenia-related traits: A Mendelian randomization study. Precision Clinical Medicine, 2023, 6(2): pbad010. https://doi.org/10.1093/pcmedi/pbad010
Picca, A., Ponziani, F. R., Calvani, R., Marini, F., Biancolillo, A., Coelho-Junior, H. J., Gervasoni, J., Primiano, A., Putignani, L., Del Chierico, F. et al. Gut microbial, inflammatory and metabolic signatures in older people with physical frailty and sarcopenia: Results from the BIOSPHERE study. Nutrients, 2019, 12(1): E65. https://doi.org/10.3390/nu12010065
Castro-Mejía, J. L., Khakimov, B., Krych, Ł., Bülow, J., Bechshøft, R. L., Højfeldt, G., Mertz, K. H., Garne, E. S., Schacht, S. R., Ahmad, H. F. et al. Physical fitness in community-dwelling older adults is linked to dietary intake, gut microbiota, and metabolomic signatures. Aging Cell, 2020, 19(3): e13105. https://doi.org/10.1111/acel.13105
Thevaranjan, N., Puchta, A., Schulz, C., Naidoo, A., Szamosi, J. C., Verschoor, C. P., Loukov, D., Schenck, L. P., Jury, J., Foley, K. P. et al. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe, 2017, 21(4): 455–466.e4. https://doi.org/10.1016/j.chom.2017.03.002
Zhang, N., Zhang, Y., Wang, Z., Pan, F., Ren, R., Li, Z., Zhao, H., Luo, X., Li, Z., Wang, L. et al. Regular fecal microbiota transplantation to Senescence Accelerated Mouse-Prone 8 (SAMP8) mice delayed the aging of locomotor and exploration ability by rejuvenating the gut microbiota. Frontiers in Aging Neuroscience, 2022, 14: 991157. https://doi.org/10.3389/fnagi.2022.991157
Fielding, R. A., Reeves, A. R., Jasuja, R., Liu, C., Barrett, B. B., Lustgarten, M. S. Muscle strength is increased in mice that are colonized with microbiota from high-functioning older adults. Experimental Gerontology, 2019, 127: 110722. https://doi.org/10.1016/j.exger.2019.110722
Fluitman, K. S., Davids, M., Olofsson, L. E., Wijdeveld, M., Tremaroli, V., Keijser, B. J. F., Visser, M., Bäckhed, F., Nieuwdorp, M., IJzerman, R. G. Gut microbial characteristics in poor appetite and undernutrition: A cohort of older adults and microbiota transfer in germ-free mice. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13(4): 2188–2201. https://doi.org/10.1002/jcsm.13002
Savary-Auzeloux, I., Jarzaguet, M., Migné, C., Kemeny, J. L., Novais-Gameiro, L., de Azevedo, M., Mathé, V., Mariotti, F., Langella, P., Chatel, J. M. et al. Anti-inflammatory Streptococcus thermophilus CNRZ160 limits sarcopenia induced by low-grade inflammation in older adult rats. Frontiers in Nutrition, 2022, 9: 986542. https://doi.org/10.3389/fnut.2022.986542
Lei, M., Hua, L. M., Wang, D. W. The effect of probiotic treatment on elderly patients with distal radius fracture: A prospective double-blind, placebo-controlled randomised clinical trial. Beneficial Microbes, 2016, 7(5): 631–637. https://doi.org/10.3920/BM2016.0067
Kim, C. S., Cha, L. N., Sim, M., Jung, S., Chun, W. Y., Baik, H. W., Shin, D. M. Probiotic supplementation improves cognitive function and mood with changes in gut microbiota in community-dwelling older adults: A randomized, double-blind, placebo-controlled, multicenter trial. The Journals of Gerontology Series A, Biological Sciences and Medical Sciences, 2021, 76(1): 32–40. https://doi.org/10.1093/gerona/glaa090
Östlund-Lagerström, L., Kihlgren, A., Repsilber, D., Björkstén, B., Brummer, R. J., Schoultz, I. Probiotic administration among free-living older adults: A double blinded, randomized, placebo-controlled clinical trial. Nutrition Journal, 2016, 15(1): 80. https://doi.org/10.1186/s12937-016-0198-1
Tingö, L., Hutchinson, A. N., Bergh, C., Stiefvatter, L., Schweinlin, A., Jensen, M. G., Krüger, K., Bischoff, S. C., Brummer, R. J. Potential modulation of inflammation by probiotic and omega-3 supplementation in elderly with chronic low-grade inflammation-a randomized, placebo-controlled trial. Nutrients, 2022, 14(19): 3998. https://doi.org/10.3390/nu14193998
Cicero, A. F. G., Fogacci, F., Bove, M., Giovannini, M., Borghi, C. Impact of a short-term synbiotic supplementation on metabolic syndrome and systemic inflammation in elderly patients: A randomized placebo-controlled clinical trial. European Journal of Nutrition, 2021, 60(2): 655–663. https://doi.org/10.1007/s00394-020-02271-8
Neto, J. V., de Melo, C. M., Ribeiro, S. M. Effects of three-month intake of synbiotic on inflammation and body composition in the elderly: A pilot study. Nutrients, 2013, 5(4): 1276–1286. https://doi.org/10.3390/nu5041276
Rondanelli, M., Gasparri, C., Barrile, G. C., Battaglia, S., Cavioni, A., Giusti, R., Mansueto, F., Moroni, A., Nannipieri, F., Patelli, Z. et al. Effectiveness of a novel food composed of leucine, omega-3 fatty acids and probiotic Lactobacillus paracasei PS23 for the treatment of sarcopenia in elderly subjects: A 2-month randomized double-blind placebo-controlled trial. Nutrients, 2022, 14(21): 4566. https://doi.org/10.3390/nu14214566
Inoue, T., Kobayashi, Y., Mori, N., Sakagawa, M., Xiao, J. Z., Moritani, T., Sakane, N., Nagai, N. Effect of combined bifidobacteria supplementation and resistance training on cognitive function, body composition and bowel habits of healthy elderly subjects. Beneficial Microbes, 2018, 9(6): 843–853. https://doi.org/10.3920/BM2017.0193
Román, E., Nieto, J. C., Gely, C., Vidal, S., Pozuelo, M., Poca, M., Juárez, C., Guarner, C., Manichanh, C., Soriano, G. Effect of a multistrain probiotic on cognitive function and risk of falls in patients with cirrhosis: A randomized trial. Hepatology Communications, 2019, 3(5): 632–645. https://doi.org/10.1002/hep4.1325
Nistor-Cseppento, C. D., Moga, T. D., Bungau, A. F., Tit, D. M., Negrut, N., Pasca, B., Bochis, C. F., Ghitea, T. C., Jurcau, A., Purza, A. L. et al. The contribution of diet therapy and probiotics in the treatment of sarcopenia induced by prolonged immobilization caused by the COVID-19 pandemic. Nutrients, 2022, 14(21): 4701. https://doi.org/10.3390/nu14214701
Makino, S., Ikegami, S., Kume, A., Horiuchi, H., Sasaki, H., Orii, N. Reducing the risk of infection in the elderly by dietary intake of yoghurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. British Journal of Nutrition, 2010, 104(7): 998–1006. https://doi.org/10.1017/S000711451000173X
Maldonado-Gómez, M., Martínez, I., Bottacini, F., O’Callaghan, A., Ventura, M., Van Sinderen, D., Hillmann, B., Vangay, P., Knights, D., Hutkins, R. et al. Stable engraftment of bifidobacterium longum AH1206 in the human gut depends on individualized features of the resident microbiome. Cell Host & Microbe, 2016, 20(4): 515–526. https://doi.org/10.1016/j.chom.2016.09.001
Kristensen, N. B., Bryrup, T., Allin, K. H., Nielsen, T., Hansen, T. H., Pedersen, O. Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: A systematic review of randomized controlled trials. Genome Med, 2016, 8(1): 52. https://doi.org/10.1186/s13073-016-0300-5
McFarland, L. V. Use of probiotics to correct dysbiosis of normal microbiota following disease or disruptive events: A systematic review. BMJ Open, 2014, 4(8): e005047. https://doi.org/10.1136/bmjopen-2014-005047
Wu, G. D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y. Y., Keilbaugh, S. A., Bewtra, M., Knights, D., Walters, W. A., Knight, R. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science, 2011, 334(6052): 105–108. https://doi.org/10.1126/science.1208344
Singh, R. K., Chang, H. W., Yan, D., Lee, K. M., Ucmak, D., Wong, K., Abrouk, M., Farahnik, B., Nakamura, M., Zhu, T. H. et al. Influence of diet on the gut microbiome and implications for human health. Journal of Translational Medicine, 2017, 15(1): 73. https://doi.org/10.1186/s12967-017-1175-y
Baky, M. H., Salah, M., Ezzelarab, N., Shao, P., Elshahed, M. S., Farag, M. A. Insoluble dietary fibers: Structure, metabolism, interactions with human microbiome, and role in gut homeostasis. Critical Reviews in Food Science and Nutrition, 2024, 64(7): 1954–1968. https://doi.org/10.1080/10408398.2022.2119931
Cruz-Jentoft, A. J., Bahat, G., Bauer, J., Boirie, Y., Bruyère, O., Cederholm, T., Cooper, C., Landi, F., Rolland, Y., Sayer, A. A. et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age and Ageing, 2019, 48(4): 601. https://doi.org/10.1093/ageing/afz046
Dent, E., Morley, J. E., Cruz-Jentoft, A. J., Woodhouse, L., Rodríguez-Mañas, L., Fried, L. P., Woo, J., Aprahamian, I., Sanford, A., Lundy, J. et al. Physical frailty: ICFSR international clinical practice guidelines for identification and management. The Journal of Nutrition, Health & Aging, 2019, 23(9): 771–787. https://doi.org/10.1007/s12603-019-1273-z
Dent, E., Lien, C., Lim, W. S., Wong, W. C., Wong, C. H., Ng, T. P., Woo, J., Dong, B., de la Vega, S., Hua Poi, P. J. et al. The asia-pacific clinical practice guidelines for the management of frailty. JAMDA, 2017, 18(7): 564–575. https://doi.org/10.1016/j.jamda.2017.04.018
Donovan, S. M. Introduction to the special focus issue on the impact of diet on gut microbiota composition and function and future opportunities for nutritional modulation of the gut microbiome to improve human health. Gut Microbes, 2017, 8(2): 75–81. https://doi.org/10.1080/19490976.2017.1299309
Ticinesi, A., Lauretani, F., Tana, C., Nouvenne, A., Ridolo, E., Meschi, T. Exercise and immune system as modulators of intestinal microbiome: Implications for the gut-muscle axis hypothesis. Exercise Immunology Review, 2019, 25: 84–95.
Timmerman, H. M., Koning, C. J., Mulder, L., Rombouts, F. M., Beynen, A. C. Monostrain, multistrain and multispecies probiotics—a comparison of functionality and efficacy. International Journal of Food Microbiology, 2004, 96(3): 219–233. https://doi.org/10.1016/j.ijfoodmicro.2004.05.012
Krumbeck, J. A., Rasmussen, H. E., Hutkins, R. W., Clarke, J., Shawron, K., Keshavarzian, A., Walter, J. Probiotic Bifidobacterium strains and galactooligosaccharides improve intestinal barrier function in obese adults but show no synergism when used together as synbiotics. Microbiome, 2018, 6(1): 121. https://doi.org/10.1186/s40168-018-0494-4
Chen, L. H., Chang, S. S., Chang, H. Y., Wu, C. H., Pan, C. H., Chang, C. C., Chan, C. H., Huang, H. Y. Probiotic supplementation attenuates age-related sarcopenia via the gut–muscle axis in SAMP8 mice. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13(1): 515–531. https://doi.org/10.1002/jcsm.12849
Zmora, N., Zilberman-Schapira, G., Suez, J., Mor, U., Dori-Bachash, M., Bashiardes, S., Kotler, E., Zur, M., Regev-Lehavi, D., Brik, R. B. Z. et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell, 2018, 174(6): 1388–1405.e21. https://doi.org/10.1016/j.cell.2018.08.041
Savary-Auzeloux, I., Jarzaguet, M., David, J., De Azevedo, M., Chatel, J. M., Dardevet, D. Streptococcus thermophilus CNRZ160 preserves muscle anabolism in old rats by targeting anti–inflammatory mechanisms at the gut level: A probable gut-muscle cross talk. Clinical Nutrition ESPEN, 2020, 40: 417. https://doi.org/10.1016/j.clnesp.2020.09.045
Hou, Q., Huang, J., Zhao, L., Pan, X., Liao, C., Jiang, Q., Lei, J., Guo, F., Cui, J., Guo, Y. et al. Dietary genistein increases microbiota-derived short chain fatty acid levels, modulates homeostasis of the aging gut, and extends healthspan and lifespan. Pharmacological Research, 2023, 188: 106676. https://doi.org/10.1016/j.phrs.2023.106676
Bu, Y., Liu, Y., Zhang, T., Liu, Y., Zhang, Z., Yi, H. Bacteriocin-producing Lactiplantibacillus plantarum YRL45 enhances intestinal immunity and regulates gut microbiota in mice. Nutrients, 2023, 15(15): 3437. https://doi.org/10.3390/nu15153437
Hor, Y. Y., Ooi, C. H., Lew, L. C., Jaafar, M. H., Lau, A. S. Y., Lee, B. K., Azlan, A., Choi, S. B., Azzam, G., Liong, M. T. The molecular mechanisms of probiotic strains in improving ageing bone and muscle of d-galactose-induced ageing rats. Journal of Applied Microbiology, 2021, 130(4): 1307–1322. https://doi.org/10.1111/jam.14776
Chen, Q., Liu, C., Zhang, Y., Wang, S., Li, F. Effect of Lactobacillus plantarum KSFY01 on the exercise capacity of D-galactose-induced oxidative stress-aged mice. Frontiers in Microbiology, 2022, 13: 1030833. https://doi.org/10.3389/fmicb.2022.1030833
Ostan, R., Béné, M. C., Spazzafumo, L., Pinto, A., Donini, L. M., Pryen, F., Charrouf, Z., Valentini, L., Lochs, H., Bourdel-Marchasson, I. et al. Impact of diet and nutraceutical supplementation on inflammation in elderly people. Results from the RISTOMED study, an open-label randomized control trial. Clinical Nutrition, 2016, 35(4): 812–818. https://doi.org/10.1016/j.clnu.2015.06.010
MacFarlane, S., Cleary, S., Bahrami, B., Reynolds, N., MacFarlane, G. T. Synbiotic consumption changes the metabolism and composition of the gut microbiota in older people and modifies inflammatory processes: A randomised, double-blind, placebo-controlled crossover study. Alimentary Pharmacology & Therapeutics, 2013, 38(7): 804–816. https://doi.org/10.1111/apt.12453
Baek, J. S., Shin, Y. J., Ma, X., Park, H. S., Hwang, Y. H., Kim, D. H. Bifidobacterium bifidum and Lactobacillus paracasei alleviate sarcopenia and cognitive impairment in aged mice by regulating gut microbiota-mediated AKT, NF-κB, and FOXO3a signaling pathways. Immunity & Ageing, 2023, 20(1): 56. https://doi.org/10.1186/s12979-023-00381-5
Hong, J., Jia, Y. M., Pan, S. F., Jia, L. F., Li, H. F., Han, Z. Q., Cai, D. M., Zhao, R. Q. Butyrate alleviates high fat diet-induced obesity through activation of adiponectin-mediated pathway and stimulation of mitochondrial function in the skeletal muscle of mice. Oncotarget, 2016, 7(35): 56071–56082. https://doi.org/10.18632/oncotarget.11267
Granic, A., Suetterlin, K., Shavlakadze, T., Grounds, M. D., Sayer, A. A. Hallmarks of ageing in human skeletal muscle and implications for understanding the pathophysiology of sarcopenia in women and men. Clinical Science, 2023, 137(22): 1721–1751. https://doi.org/10.1042/CS20230319
Liu, C. R., Cheung, W. H., Li, J., Chow, S. K. H., Yu, J., Wong, S. H., Ip, M., Sung, J. J. Y., Wong, R. M. Y. Understanding the gut microbiota and sarcopenia: A systematic review. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12(6): 1393–1407. https://doi.org/10.1002/jcsm.12784
Fritz, P., Fritz, R., Bóday, P., Bóday Á, Bató, E., Kesserű, P., Oláh, C. Gut microbiome composition: Link between sports performance and protein absorption. Journal of International Society of Sports Nutrition, 2024, 21(1): 2297992. https://doi.org/10.1080/15502783.2023.2297992
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E. et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 2021, 372: n71. https://doi.org/10.1136/bmj.n71
Sterne, J. A. C., Savović, J., Page, M. J., Elbers, R. G., Blencowe, N. S., Boutron, I., Cates, C. J., Cheng, H. Y., Corbett, M. S., Eldridge, S. M. et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ, 2019, 366: l4898. https://doi.org/10.1136/bmj.l4898
Wan, X., Wang, W., Liu, J., Tong, T. Estimating the sample mean and standard deviation from the sample size, Median, range and/or interquartile range. BMC Medical Research Methodology, 2014, 14: 135. https://doi.org/10.1186/1471-2288-14-135
Luo, D., Wan, X., Liu, J., Tong, T. Optimally estimating the sample mean from the sample size, Median, mid-range, and/or mid-quartile range. Stat Methods Med Res, 2018, 27(6): 1785–1805. https://doi.org/10.1177/0962280216669183
Shi, J. D., Luo, D. H., Weng, H., Zeng, X. T., Lin, L., Chu, H. T., Tong, T. J. Optimally estimating the sample standard deviation from the five-number summary. Research Synthesis Methods, 2020, 11(5): 641–654. https://doi.org/10.1002/jrsm.1429