As one of the diseases associated with aging, cancer has received much attention. Since its discovery, interleukin-27 (IL-27), a unique cytokine, has garnered increasing attention due to its immune-regulatory functions. Initially studied primarily for its role in immune responses, the involvement of IL-27 in cancer development and progression remains underexplored. This study investigates the evolving understanding of IL-27 and its connection to various cancers. Our findings reveal a growing body of research on IL-27’s role in cancer from 2002 to 2023, with a notable increase in focus on its immune-modulatory properties after 2007. We identified key research contributors and collaborations worldwide that have driven progress in this field. Notably, the shift in research emphasis from basic immune regulation to the tumor immune microenvironment has highlighted IL-27’s potential significance in cancer biology. Our analysis shows a strong correlation between IL-27 expression levels and the prognosis of several cancers, including lung and breast cancers, suggesting its pivotal role in modulating immune responses within the tumor microenvironment. Furthermore, IL-27 has emerged as a promising biomarker for cancer prognosis and a potential target for immunotherapy. These findings underscore IL-27’s critical involvement in cancer biology and position it as a key molecule in future therapeutic strategies.
Beizavi, Z., Zohouri, M., Asadipour, M., Ghaderi, A. IL-27, a pleiotropic cytokine for fine-tuning the immune response in cancer. International Reviews of Immunology, 2021, 40(5): 319–329. https://doi.org/10.1080/08830185.2020.1840565
Yoshida, H., Yoshiyuki, M. Regulation of immune responses by interleukin-27. Immunological Reviews, 2008, 226(1): 234–247. https://doi.org/10.1111/j.1600-065x.2008.00710.x
Caveney, N. A., Glassman, C. R., Jude, K. M., Tsutsumi, N., Garcia, K. C. Structure of the IL-27 quaternary receptor signaling complex. eLife, 2022, 11: 78463. https://doi.org/10.7554/elife.78463
Min, B., Kim, D., Feige, M. J. IL-30(IL-27A): A familiar stranger in immunity, inflammation, and cancer. Experimental & Molecular Medicine, 2021, 53(5): 823–834. https://doi.org/10.1038/s12276-021-00630-x
Shahi, A., Afzali, S., Salehi, S., Aslani, S., Mahmoudi, M., Jamshidi, A., Amirzargar, A. IL-27 and autoimmune rheumatologic diseases: The good, the bad, and the ugly. International Immunopharmacology, 2020, 84: 106538. https://doi.org/10.1016/j.intimp.2020.106538
Morita, Y., Masters, E. A., Schwarz, E. M., Muthukrishnan, G. Interleukin-27 and its diverse effects on bacterial infections. Frontiers in Immunology, 2021, 12: 678515. https://doi.org/10.3389/fimmu.2021.678515
Millier, M. J., Lazaro, K., Stamp, L. K., Hessian, P. A. The contribution from interleukin-27 towards rheumatoid inflammation: Insights from gene expression. Genes & Immunity, 2020, 21(4): 249–259. https://doi.org/10.1038/s41435-020-0102-z
DeLong, J. H., O’Hara Hall, A., Rausch, M., Moodley, D., Perry, J., Park, J., Phan, A. T., Beiting, D. P., Kedl, R. M., Hill, J. A. et al. IL-27 and TCR stimulation promote T cell expression of multiple inhibitory receptors. ImmunoHorizons, 2019, 3(1): 13–25. https://doi.org/10.4049/immunohorizons.1800083
Lee, B. C., Kang, K. S. Functional enhancement strategies for immunomodulation of mesenchymal stem cells and their therapeutic application. Stem Cell Research & Therapy, 2020, 11(1): 397. https://doi.org/10.1186/s13287-020-01920-3
Strzelec, M., Detka, J., Mieszczak, P., Sobocińska, M. K., Majka, M. Immunomodulation—a general review of the current state-of-the-art and new therapeutic strategies for targeting the immune system. Frontiers in Immunology, 2023, 14: 1127704. https://doi.org/10.3389/fimmu.2023.1127704
Petroni, G., Formenti, S. C., Chen-Kiang, S., Galluzzi, L. Immunomodulation by anticancer cell cycle inhibitors. Nature Reviews Immunology, 2020, 20(11): 669–679. https://doi.org/10.1038/s41577-020-0300-y
Dong, Q. Z., Nelson, P. J., Zhao, Y. Editorial: Cancer cell metabolism and immunomodulation in the context of tumor metastasis. Frontiers in Oncology, 2022, 11: 803213. https://doi.org/10.3389/fonc.2021.803213
Shi, H. L., Wei, J. B., He, C. Where, when, and how: Context-dependent functions of RNA methylation writers, readers, and erasers. Molecular Cell, 2019, 74(4): 640–650. https://doi.org/10.1016/j.molcel.2019.04.025
Xu, Z. C., Lee, D. S., Chandran, S., Le, V. T., Bump, R., Yasis, J., Dallarda, S., Marcotte, S., Clock, B., Haghani, N. et al. Structural variants drive context-dependent oncogene activation in cancer. Nature, 2022, 612(7940): 564–572. https://doi.org/10.1038/s41586-022-05504-4
Eguchi, Y., Bilolikar, G., Geiler-Samerotte, K. Why and how to study genetic changes with context-dependent effects. Current Opinion in Genetics & Development, 2019, 58: 95–102. https://doi.org/10.1016/j.gde.2019.08.003
Wang, Q., Li, D., Cao, G., Shi, Q., Zhu, J., Zhang, M., Cheng, H., Wen, Q., Xu, H., Zhu, L., et al. IL-27 signalling promotes adipocyte thermogenesis and energy expenditure. Nature, 2021, 600(7888): 314–318. https://doi.org/10.1038/s41586-021-04127-5
Mao, J. J., Pillai, G. G., Andrade, C. J., Ligibel, J. A., Basu, P., Cohen, L., Khan, I. A., Mustian, K. M., Puthiyedath, R., Dhiman, K. S. et al. Integrative oncology: Addressing the global challenges of cancer prevention and treatment. CA: A Cancer Journal for Clinicians, 2022, 72(2): 144–164. https://doi.org/10.3322/caac.21706
Wang, Y., Wang, M., Wu, H. X., Xu, R. H. Advancing to the era of cancer immunotherapy. Cancer Communications, 2021, 41(9): 803–829. https://doi.org/10.1002/cac2.12178
Mardis, E. R. The emergence of cancer genomics in diagnosis and precision medicine. Nature Cancer, 2021, 2(12): 1263–1264. https://doi.org/10.1038/s43018-021-00305-6
Carcioppolo, N., Yang, F., Yang, Q. H. Reducing, maintaining, or escalating uncertainty? the development and validation of four uncertainty preference scales related to cancer information seeking and avoidance. Journal of Health Communication, 2016, 21(9): 979–988. https://doi.org/10.1080/10810730.2016.1184357
Bulaklak, K., Gersbach, C. A. The once and future gene therapy. Nature Communications, 2020, 11: 5820. https://doi.org/10.1038/s41467-020-19505-2
Eckerling, A., Ricon-Becker, I., Sorski, L., Sandbank, E., Ben-Eliyahu, S. Stress and cancer: Mechanisms, significance and future directions. Nature Reviews Cancer, 2021, 21(12): 767–785. https://doi.org/10.1038/s41568-021-00395-5
Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., Lim, W. M. How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 2021, 133: 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070
Ninkov, A., Frank, J. R., Maggio, L. A. Bibliometrics: Methods for studying academic publishing. Perspectives on Medical Education, 2021, 11(3): 173–176. https://doi.org/10.1007/s40037-021-00695-4
El Mohadab, M., Bouikhalene, B., Safi, S. Bibliometric method for mapping the state of the art of scientific production in Covid-19. Chaos, Solitons & Fractals, 2020, 139: 110052. https://doi.org/10.1016/j.chaos.2020.110052
Lu, C. C., Bing, Z. T., Bi, Z. J., Liu, M., Lu, T. T., Xun, Y. Q., Wei, Z. P., Yang, K. H. Top-100 most cited publications concerning network pharmacology: A bibliometric analysis. Evidence-Based Complementary and Alternative Medicine, 2019, 2019: 1704816. https://doi.org/10.1155/2019/1704816
Friedman, A., Liao, K. L. The role of the cytokines IL-27 and IL-35 in cancer. Mathematical Biosciences and Engineering, 2015, 12(6): 1203–1217. https://doi.org/10.3934/mbe.2015.12.1203
Cui, X. F., Jiao, C. H., Wang, D., Ye, Z. P., Ma, J. J., Tang, N. N., Zhang, H. J. Elevated levels of IL-27 are associated with disease activity in patients with Crohn’s disease. Mediators of Inflammation, 2021, 2021: 5527627. https://doi.org/10.1155/2021/5527627
Sato, Y., Hara, H., Okuno, T., Ozaki, N., Suzuki, S., Yokomizo, T., Kaisho, T., Yoshida, H. IL-27 affects helper T cell responses via regulation of PGE2 production by macrophages. Biochemical and Biophysical Research Communications, 2014, 451(2): 215–221. https://doi.org/10.1016/j.bbrc.2014.07.096
Rückerl, D., Heßmann, M., Yoshimoto, T., Ehlers, S., Hölscher, C. Alternatively activated macrophages express the IL-27 receptor alpha chain WSX-1. Immunobiology, 2006, 211(6-8): 427–436. https://doi.org/10.1016/j.imbio.2006.05.008
Li, Z. H., Yang, Q. L., Tang, X., Chen, Y. M., Wang, S. S., Qi, X. J., Zhang, Y. W., Liu, Z. H., Luo, J., Liu, H. et al. Single-cell RNA-seq and chromatin accessibility profiling decipher the heterogeneity of mouse γδ T cells. Science Bulletin, 2022, 67(4): 408–426. https://doi.org/10.1016/j.scib.2021.11.013
Zwirner, N. W., Domaica, C. I. Cytokine regulation of natural killer cell effector functions. BioFactors, 2010, 36(4): 274–288. https://doi.org/10.1002/biof.107
Habanjar, O., Bingula, R., Decombat, C., Diab-Assaf, M., Caldefie-Chezet, F., Delort, L. Crosstalk of inflammatory cytokines within the breast tumor microenvironment. International Journal of Molecular Sciences, 2023, 24(4): 4002. https://doi.org/10.3390/ijms24044002
Liao, K. L., Wang, J. Y., Li, Z. M., Li, Y. Q., Cheng, Y. Q., He, Y. C., Wan, H. P., Wang, X. Z. Transcriptomic analysis identifies a pan-cancer association of IL27 expression with cancer prognosis and immune microenvironment. Genes & Diseases, 2022, 10(2): 393–395. https://doi.org/10.1016/j.gendis.2022.08.016
Arruda, H., Silva, E. R., Lessa, M., Proença, D., Bartholo, R. VOSviewer and bibliometrix. Journal of the Medical Library Association, 2022, 110(3): 392–395. https://doi.org/10.5195/jmla.2022.1434
Li, T. W., Fu, J. X., Zeng, Z. X., Cohen, D., Li, J., Chen, Q. M., Li, B., Liu, X. S. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Research, 2020, 48(W1): W509–W514. https://doi.org/10.1093/nar/gkaa407
Lánczky, A., Győrffy, B. Web-based survival analysis tool tailored for medical research (KMplot): Development and implementation. Journal of Medical Internet Research, 2021, 23(7): e27633. https://doi.org/10.2196/27633