PDF (10.1 MB)
Collect
Submit Manuscript
Article | Open Access

Bibliometrics analysis of IL-27 as a unique cytokine (2002–2023) and impact on cancer progression

Nanxi Shi1,§Xue Xia2,§Yiming Chen2,§Yingying Ye3,§Xin Tang4()Zhenhua Li3,5()
The College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China
Faculty of Medical Science, Jinan University, Guangzhou 510632, China
Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou 510632, China
Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China
Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou 510632, China

§ These authors contributed equally to this work

Show Author Information

Abstract

As one of the diseases associated with aging, cancer has received much attention. Since its discovery, interleukin-27 (IL-27), a unique cytokine, has garnered increasing attention due to its immune-regulatory functions. Initially studied primarily for its role in immune responses, the involvement of IL-27 in cancer development and progression remains underexplored. This study investigates the evolving understanding of IL-27 and its connection to various cancers. Our findings reveal a growing body of research on IL-27’s role in cancer from 2002 to 2023, with a notable increase in focus on its immune-modulatory properties after 2007. We identified key research contributors and collaborations worldwide that have driven progress in this field. Notably, the shift in research emphasis from basic immune regulation to the tumor immune microenvironment has highlighted IL-27’s potential significance in cancer biology. Our analysis shows a strong correlation between IL-27 expression levels and the prognosis of several cancers, including lung and breast cancers, suggesting its pivotal role in modulating immune responses within the tumor microenvironment. Furthermore, IL-27 has emerged as a promising biomarker for cancer prognosis and a potential target for immunotherapy. These findings underscore IL-27’s critical involvement in cancer biology and position it as a key molecule in future therapeutic strategies.

References

[1]

Beizavi, Z., Zohouri, M., Asadipour, M., Ghaderi, A. IL-27, a pleiotropic cytokine for fine-tuning the immune response in cancer. International Reviews of Immunology, 2021, 40(5): 319–329. https://doi.org/10.1080/08830185.2020.1840565

[2]

Yoshida, H., Yoshiyuki, M. Regulation of immune responses by interleukin-27. Immunological Reviews, 2008, 226(1): 234–247. https://doi.org/10.1111/j.1600-065x.2008.00710.x

[3]

Caveney, N. A., Glassman, C. R., Jude, K. M., Tsutsumi, N., Garcia, K. C. Structure of the IL-27 quaternary receptor signaling complex. eLife, 2022, 11: 78463. https://doi.org/10.7554/elife.78463

[4]

Min, B., Kim, D., Feige, M. J. IL-30(IL-27A): A familiar stranger in immunity, inflammation, and cancer. Experimental & Molecular Medicine, 2021, 53(5): 823–834. https://doi.org/10.1038/s12276-021-00630-x

[5]

Shahi, A., Afzali, S., Salehi, S., Aslani, S., Mahmoudi, M., Jamshidi, A., Amirzargar, A. IL-27 and autoimmune rheumatologic diseases: The good, the bad, and the ugly. International Immunopharmacology, 2020, 84: 106538. https://doi.org/10.1016/j.intimp.2020.106538

[6]

Morita, Y., Masters, E. A., Schwarz, E. M., Muthukrishnan, G. Interleukin-27 and its diverse effects on bacterial infections. Frontiers in Immunology, 2021, 12: 678515. https://doi.org/10.3389/fimmu.2021.678515

[7]

Millier, M. J., Lazaro, K., Stamp, L. K., Hessian, P. A. The contribution from interleukin-27 towards rheumatoid inflammation: Insights from gene expression. Genes & Immunity, 2020, 21(4): 249–259. https://doi.org/10.1038/s41435-020-0102-z

[8]

DeLong, J. H., O’Hara Hall, A., Rausch, M., Moodley, D., Perry, J., Park, J., Phan, A. T., Beiting, D. P., Kedl, R. M., Hill, J. A. et al. IL-27 and TCR stimulation promote T cell expression of multiple inhibitory receptors. ImmunoHorizons, 2019, 3(1): 13–25. https://doi.org/10.4049/immunohorizons.1800083

[9]

Lee, B. C., Kang, K. S. Functional enhancement strategies for immunomodulation of mesenchymal stem cells and their therapeutic application. Stem Cell Research & Therapy, 2020, 11(1): 397. https://doi.org/10.1186/s13287-020-01920-3

[10]

Strzelec, M., Detka, J., Mieszczak, P., Sobocińska, M. K., Majka, M. Immunomodulation—a general review of the current state-of-the-art and new therapeutic strategies for targeting the immune system. Frontiers in Immunology, 2023, 14: 1127704. https://doi.org/10.3389/fimmu.2023.1127704

[11]

Petroni, G., Formenti, S. C., Chen-Kiang, S., Galluzzi, L. Immunomodulation by anticancer cell cycle inhibitors. Nature Reviews Immunology, 2020, 20(11): 669–679. https://doi.org/10.1038/s41577-020-0300-y

[12]

Dong, Q. Z., Nelson, P. J., Zhao, Y. Editorial: Cancer cell metabolism and immunomodulation in the context of tumor metastasis. Frontiers in Oncology, 2022, 11: 803213. https://doi.org/10.3389/fonc.2021.803213

[13]

Shi, H. L., Wei, J. B., He, C. Where, when, and how: Context-dependent functions of RNA methylation writers, readers, and erasers. Molecular Cell, 2019, 74(4): 640–650. https://doi.org/10.1016/j.molcel.2019.04.025

[14]

Xu, Z. C., Lee, D. S., Chandran, S., Le, V. T., Bump, R., Yasis, J., Dallarda, S., Marcotte, S., Clock, B., Haghani, N. et al. Structural variants drive context-dependent oncogene activation in cancer. Nature, 2022, 612(7940): 564–572. https://doi.org/10.1038/s41586-022-05504-4

[15]

Eguchi, Y., Bilolikar, G., Geiler-Samerotte, K. Why and how to study genetic changes with context-dependent effects. Current Opinion in Genetics & Development, 2019, 58: 95–102. https://doi.org/10.1016/j.gde.2019.08.003

[16]

Wang, Q., Li, D., Cao, G., Shi, Q., Zhu, J., Zhang, M., Cheng, H., Wen, Q., Xu, H., Zhu, L., et al. IL-27 signalling promotes adipocyte thermogenesis and energy expenditure. Nature, 2021, 600(7888): 314–318. https://doi.org/10.1038/s41586-021-04127-5

[17]

Mao, J. J., Pillai, G. G., Andrade, C. J., Ligibel, J. A., Basu, P., Cohen, L., Khan, I. A., Mustian, K. M., Puthiyedath, R., Dhiman, K. S. et al. Integrative oncology: Addressing the global challenges of cancer prevention and treatment. CA: A Cancer Journal for Clinicians, 2022, 72(2): 144–164. https://doi.org/10.3322/caac.21706

[18]
Chen, Y., Zhao, J. Y., Shan, X., Han, X. L., Tian, S. G., Chen, F. Y., Su, X. T., Sun, Y. S., Huang, L. Y., Han, L. et al. A point-prevalence survey of healthcare-associated infection in fifty-two Chinese hospitals. Journal of Hospital Infection, 2017 , 95(1): 105–111. https://doi.org/10.1016/j.jhin.2016.08.010
[19]

Wang, Y., Wang, M., Wu, H. X., Xu, R. H. Advancing to the era of cancer immunotherapy. Cancer Communications, 2021, 41(9): 803–829. https://doi.org/10.1002/cac2.12178

[20]

Mardis, E. R. The emergence of cancer genomics in diagnosis and precision medicine. Nature Cancer, 2021, 2(12): 1263–1264. https://doi.org/10.1038/s43018-021-00305-6

[21]

Carcioppolo, N., Yang, F., Yang, Q. H. Reducing, maintaining, or escalating uncertainty? the development and validation of four uncertainty preference scales related to cancer information seeking and avoidance. Journal of Health Communication, 2016, 21(9): 979–988. https://doi.org/10.1080/10810730.2016.1184357

[22]

Bulaklak, K., Gersbach, C. A. The once and future gene therapy. Nature Communications, 2020, 11: 5820. https://doi.org/10.1038/s41467-020-19505-2

[23]

Eckerling, A., Ricon-Becker, I., Sorski, L., Sandbank, E., Ben-Eliyahu, S. Stress and cancer: Mechanisms, significance and future directions. Nature Reviews Cancer, 2021, 21(12): 767–785. https://doi.org/10.1038/s41568-021-00395-5

[24]

Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., Lim, W. M. How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 2021, 133: 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070

[25]

Ninkov, A., Frank, J. R., Maggio, L. A. Bibliometrics: Methods for studying academic publishing. Perspectives on Medical Education, 2021, 11(3): 173–176. https://doi.org/10.1007/s40037-021-00695-4

[26]

El Mohadab, M., Bouikhalene, B., Safi, S. Bibliometric method for mapping the state of the art of scientific production in Covid-19. Chaos, Solitons & Fractals, 2020, 139: 110052. https://doi.org/10.1016/j.chaos.2020.110052

[27]

Lu, C. C., Bing, Z. T., Bi, Z. J., Liu, M., Lu, T. T., Xun, Y. Q., Wei, Z. P., Yang, K. H. Top-100 most cited publications concerning network pharmacology: A bibliometric analysis. Evidence-Based Complementary and Alternative Medicine, 2019, 2019: 1704816. https://doi.org/10.1155/2019/1704816

[28]

Friedman, A., Liao, K. L. The role of the cytokines IL-27 and IL-35 in cancer. Mathematical Biosciences and Engineering, 2015, 12(6): 1203–1217. https://doi.org/10.3934/mbe.2015.12.1203

[29]

Cui, X. F., Jiao, C. H., Wang, D., Ye, Z. P., Ma, J. J., Tang, N. N., Zhang, H. J. Elevated levels of IL-27 are associated with disease activity in patients with Crohn’s disease. Mediators of Inflammation, 2021, 2021: 5527627. https://doi.org/10.1155/2021/5527627

[30]

Sato, Y., Hara, H., Okuno, T., Ozaki, N., Suzuki, S., Yokomizo, T., Kaisho, T., Yoshida, H. IL-27 affects helper T cell responses via regulation of PGE2 production by macrophages. Biochemical and Biophysical Research Communications, 2014, 451(2): 215–221. https://doi.org/10.1016/j.bbrc.2014.07.096

[31]

Rückerl, D., Heßmann, M., Yoshimoto, T., Ehlers, S., Hölscher, C. Alternatively activated macrophages express the IL-27 receptor alpha chain WSX-1. Immunobiology, 2006, 211(6-8): 427–436. https://doi.org/10.1016/j.imbio.2006.05.008

[32]

Li, Z. H., Yang, Q. L., Tang, X., Chen, Y. M., Wang, S. S., Qi, X. J., Zhang, Y. W., Liu, Z. H., Luo, J., Liu, H. et al. Single-cell RNA-seq and chromatin accessibility profiling decipher the heterogeneity of mouse γδ T cells. Science Bulletin, 2022, 67(4): 408–426. https://doi.org/10.1016/j.scib.2021.11.013

[33]

Zwirner, N. W., Domaica, C. I. Cytokine regulation of natural killer cell effector functions. BioFactors, 2010, 36(4): 274–288. https://doi.org/10.1002/biof.107

[34]

Habanjar, O., Bingula, R., Decombat, C., Diab-Assaf, M., Caldefie-Chezet, F., Delort, L. Crosstalk of inflammatory cytokines within the breast tumor microenvironment. International Journal of Molecular Sciences, 2023, 24(4): 4002. https://doi.org/10.3390/ijms24044002

[35]

Liao, K. L., Wang, J. Y., Li, Z. M., Li, Y. Q., Cheng, Y. Q., He, Y. C., Wan, H. P., Wang, X. Z. Transcriptomic analysis identifies a pan-cancer association of IL27 expression with cancer prognosis and immune microenvironment. Genes & Diseases, 2022, 10(2): 393–395. https://doi.org/10.1016/j.gendis.2022.08.016

[36]

Arruda, H., Silva, E. R., Lessa, M., Proença, D., Bartholo, R. VOSviewer and bibliometrix. Journal of the Medical Library Association, 2022, 110(3): 392–395. https://doi.org/10.5195/jmla.2022.1434

[37]
Li, Y., Wang, Z. P. Mapping the literature on academic publishing: A bibliometric analysis on WOS. Sage Open, 2023 , 13(1): 215824402311585. https://doi.org/10.1177/21582440231158562
[38]

Li, T. W., Fu, J. X., Zeng, Z. X., Cohen, D., Li, J., Chen, Q. M., Li, B., Liu, X. S. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Research, 2020, 48(W1): W509–W514. https://doi.org/10.1093/nar/gkaa407

[39]

Lánczky, A., Győrffy, B. Web-based survival analysis tool tailored for medical research (KMplot): Development and implementation. Journal of Medical Internet Research, 2021, 23(7): e27633. https://doi.org/10.2196/27633

Aging Research
Article number: 9340033
Cite this article:
Shi N, Xia X, Chen Y, et al. Bibliometrics analysis of IL-27 as a unique cytokine (2002–2023) and impact on cancer progression. Aging Research, 2024, 2(4): 9340033. https://doi.org/10.26599/AGR.2024.9340033
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return