Acute myeloid leukemia (AML) is a hematopoietic progenitor cell-affected hematological malignancy, caused by the accumulation of genetic and epigenetic abnormalities leading to impaired cell differentiation, enhanced self-renewal capacity, and uncontrolled proliferation. Despite progress in understanding its biology and therapeutic strategies, the mortality rate remains high, with a five-year survival rate below 30%, and the clonal evolution of cells is complex, exhibiting genetic heterogeneity. Glycolysis plays a central role in the metabolic network of cancer cells. Cancer cells produce energy and substances through glycolysis, and their metabolic product, lactic acid, affects the tumor microenvironment (TME), leading to immune suppression, among other effects. Inhibition of glycolysis can enhance the sensitivity of AML to chemotherapeutic drugs. Aging is a risk factor for many diseases and leads to increased incidence and mortality rates of AML. Elderly patients exhibit greater heterogeneity. In AML, the dysfunction of T cells and NK cells is closely related to treatment responses. The process of T cell senescence is complex, involving various phenomena and mechanisms. Senescent T cells have weakened functions, affecting immune surveillance and TME, leading to reduced responses to chemotherapy. This review summarizes the significance of key glycolytic enzymes and aging in AML-related research.
Döhner, H., Weisdorf, D. J., Bloomfield, C. D. Acute myeloid leukemia. New England Journal of Medicine, 2015, 373(12): 1136–1152. https://doi.org/10.1056/NEJMra1406184
Siveen, K. S., Uddin, S., Mohammad, R. M. Targeting acute myeloid leukemia stem cell signaling by natural products. Molecular Cancer, 2017, 16(1): 13. https://doi.org/10.1186/s12943-016-0571-x
Siegel, R. L., Miller, K. D., Wagle, N. S., Jemal, A. Cancer statistics, 2023. CA: A Cancer Journal for Clinicians, 2023, 73(1): 17–48. https://doi.org/10.3322/caac.21763
Short, N. J., Rytting, M. E., Cortes, J. E. Acute myeloid leukaemia. The Lancet, 2018, 392(10147): 593–606. https://doi.org/10.1016/S0140-6736(18)31041-9
Vander Heiden, M. G., Cantley, L. C., Thompson, C. B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science, 2009, 324(5930): 1029–1033. https://doi.org/10.1126/science.1160809
Han, X., Ren, C. N., Lu, C., Qiao, P. Y., Yang, T. T., Yu, Z. H. Deubiquitination of MYC by OTUB1 contributes to HK2 mediated glycolysis and breast tumorigenesis. Cell Death & Differentiation, 2022, 29(9): 1864–1873. https://doi.org/10.1038/s41418-022-00971-8
Angelin, A., Gil-de-Gómez, L., Dahiya, S., Jiao, J., Guo, L. L., Levine, M. H., Wang, Z. L., Quinn, W. J., Kopinski, P. K., Wang, L. Q. et al. Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metabolism, 2017, 25(6): 1282–1293.e7. https://doi.org/10.1016/j.cmet.2016.12.018
Fischer, K., Hoffmann, P., Voelkl, S., Meidenbauer, N., Ammer, J., Edinger, M., Gottfried, E., Schwarz, S., Rothe, G., Hoves, S. et al. Inhibitory effect of tumor cell–derived lactic acid on human T cells. Blood, 2007, 109(9): 3812–3819. https://doi.org/10.1182/blood-2006-07-035972
Song, K., Li, M., Xu, X. J., Xuan, L., Huang, G. N., Liu, Q. F. Resistance to chemotherapy is associated with altered glucose metabolism in acute myeloid leukemia. Oncology Letters, 2016, 12(1): 334–342. https://doi.org/10.3892/ol.2016.4600
Han, H. J., Choi, K., Suh, H. S. Impact of aging on acute myeloid leukemia epidemiology and survival outcomes: A real-world, population-based longitudinal cohort study. PLoS One, 2024, 19(5): e0300637. https://doi.org/10.1371/journal.pone.0300637
Appelbaum, F. R., Gundacker, H., Head, D. R., Slovak, M. L., Willman, C. L., Godwin, J. E., Anderson, J. E., Petersdorf, S. H. Age and acute myeloid leukemia. Blood, 2006, 107(9): 3481–3485. https://doi.org/10.1182/blood-2005-09-3724
Koppenol, W. H., Bounds, P. L., Dang, C. V. Otto Warburg’s contributions to current concepts of cancer metabolism. Nature Reviews Cancer, 2011, 11(5): 325–337. https://doi.org/10.1038/nrc3038
Paul, S., Ghosh, S., Kumar, S. Tumor glycolysis, an essential sweet tooth of tumor cells. Seminars in Cancer Biology, 2022, 86: 1216–1230. https://doi.org/10.1016/j.semcancer.2022.09.007
Mesbahi, Y., Trahair, T. N., Lock, R. B., Connerty, P. Exploring the metabolic landscape of AML: From haematopoietic stem cells to myeloblasts and leukaemic stem cells. Frontiers in Oncology, 2022, 12: 807266. https://doi.org/10.3389/fonc.2022.807266
Gregory, M. A., D’Alessandro, A., Alvarez-Calderon, F., Kim, J., Nemkov, T., Adane, B., Rozhok, A. I., Kumar, A., Kumar, V., Pollyea, D. A. et al. ATM/G6PD-driven redox metabolism promotes FLT3 inhibitor resistance in acute myeloid leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(43): E6669–E6678. https://doi.org/10.1073/pnas.1603876113
Chen, L., Zhao, H. M., Wang, C., Hu, N. TUG1 knockdown enhances adriamycin cytotoxicity by inhibiting glycolysis in adriamycin-resistant acute myeloid leukemia HL60/ADR cells. RSC Advances, 2019, 9(19): 10897–10904. https://doi.org/10.1039/c9ra00306a
Yu, Y. X., Jiang, Y. L., Glandorff, C., Sun, M. Y. Exploring the mystery of tumor metabolism: Warburg effect and mitochondrial metabolism fighting side by side. Cellular Signalling, 2024, 120: 111239. https://doi.org/10.1016/j.cellsig.2024.111239
Lis, P., Dyląg, M., Niedźwiecka, K., Ko, Y., Pedersen, P., Goffeau, A., Ułaszewski, S. The HK2 dependent “Warburg effect” and mitochondrial oxidative phosphorylation in cancer: Targets for effective therapy with 3-bromopyruvate. Molecules, 2016, 21(12): 1730. https://doi.org/10.3390/molecules21121730
Irwin, D. M., Tan, H. R. Molecular evolution of the vertebrate hexokinase gene family: Identification of a conserved fifth vertebrate hexokinase gene. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2008, 3(1): 96–107. https://doi.org/10.1016/j.cbd.2007.11.002
Purich, D. L., Fromm, H. J., Rudolph, F. B. The hexokinases: Kinetic, physical, and regulatory properties. Advances in Enzymology and Related Areas of Molecular Biology, 1973, 39: 249–326. https://doi.org/10.1002/9780470122846.ch4
Liu, B. R., Lu, Y., Taledaohan, A., Qiao, S., Li, Q. Y., Wang, Y. J. The promoting role of HK II in tumor development and the research progress of its inhibitors. Molecules, 2023, 29(1): 75. https://doi.org/10.3390/molecules29010075
Krasnov, G. S., Dmitriev, A. A., Lakunina, V. A., Kirpiy, A. A., Kudryavtseva, A. V. Targeting VDAC-bound hexokinase II: A promising approach for concomitant anti-cancer therapy. Expert Opinion on Therapeutic Targets, 2013, 17(10): 1221–1233. https://doi.org/10.1517/14728222.2013.833607
Mathupala, S. P., Rempel, A., Pedersen, P. L. Glucose catabolism in cancer cells: identification and characterization of a marked activation response of the type II hexokinase gene to hypoxic conditions. Journal of Biological Chemistry, 2001, 276(46): 43407–43412. https://doi.org/10.1074/jbc.M108181200
Thomas, G. E., Egan, G., García-Prat, L., Botham, A., Voisin, V., Patel, P. S., Hoff, F. W., Chin, J., Nachmias, B., Kaufmann, K. B. et al. The metabolic enzyme hexokinase 2 localizes to the nucleus in AML and normal haematopoietic stem and progenitor cells to maintain stemness. Nature Cell Biology, 2022, 24(6): 872–884. https://doi.org/10.1038/s41556-022-00925-9
Seiler, K., Humbert, M., Minder, P., Mashimo, I., Schläfli, A. M., Krauer, D., Federzoni, E. A., Vu, B., Moresco, J. J., Yates, J. R. et al. Hexokinase 3 enhances myeloid cell survival via non-glycolytic functions. Cell Death & Disease, 2022, 13(5): 448. https://doi.org/10.1038/s41419-022-04891-w
Kim, N. H., Cha, Y. H., Lee, J., Lee, S. H., Yang, J. H., Yun, J. S., Cho, E. S., Zhang, X. L., Nam, M., Kim, N. et al. Snail reprograms glucose metabolism by repressing phosphofructokinase PFKP allowing cancer cell survival under metabolic stress. Nature Communications, 2017, 8: 14374. https://doi.org/10.1038/ncomms14374
Wong, N., De Melo, J., Tang, D. M. PKM2, a central point of regulation in cancer metabolism. International Journal of Cell Biology, 2013, 2013: 242513. https://doi.org/10.1155/2013/242513
Huang, Y. X., Chen, L. M., Xie, J. Y., Han, H., Zhu, B. F., Wang, L. J., Wang, W. J. High expression of PKM2 was associated with the poor prognosis of acute leukemia. Cancer Management and Research, 2021, 13: 7851–7858. https://doi.org/10.2147/cmar.s331076
Wu, H. J., Zhao, H. M., Chen, L. Deoxyshikonin inhibits viability and glycolysis by suppressing the Akt/mTOR pathway in acute myeloid leukemia cells. Frontiers in Oncology, 2020, 10: 1253. https://doi.org/10.3389/fonc.2020.01253
Wang, L., Yang, L. Y., Yang, Z. L., Tang, Y. T., Tao, Y., Zhan, Q., Lei, L., Jing, Y. P., Jiang, X. K., Jin, H. J. et al. Glycolytic enzyme PKM2 mediates autophagic activation to promote cell survival in NPM1-mutated leukemia. International Journal of Biological Sciences, 2019, 15(4): 882–894. https://doi.org/10.7150/ijbs.30290
Zahra, K., Dey, T., Ashish, Mishra, S. P., Pandey, U. Pyruvate kinase M2 and cancer: The role of PKM2 in promoting tumorigenesis. Frontiers in Oncology, 2020, 10: 159. https://doi.org/10.3389/fonc.2020.00159
Xia, L., Jiang, Y., Zhang, X. H., Wang, X. R., Wei, R., Qin, K., Lu, Y. SUMOylation disassembles the tetrameric pyruvate kinase M2 to block myeloid differentiation of leukemia cells. Cell Death & Disease, 2021, 12: 101. https://doi.org/10.1038/s41419-021-03400-9
Lei, H., Yang, L., Wang, Y. Y., Zou, Z. H., Liu, M., Xu, H. Z., Wu, Y. L. JOSD2 regulates PKM2 nuclear translocation and reduces acute myeloid leukemia progression. Experimental Hematology & Oncology, 2022, 11(1): 42. https://doi.org/10.1186/s40164-022-00295-w
Kim, S., Koh, J., Song, S. G., Yim, J., Kim, M., Keam, B., Kim, Y. T., Kim, J., Chung, D. H., Jeon, Y. K. High tumor hexokinase-2 expression promotes a pro-tumorigenic immune microenvironment by modulating CD8+/regulatory T-cell infiltration. BMC Cancer, 2022, 22(1): 1120. https://doi.org/10.1186/s12885-022-10239-6
Lin, J. C., Fang, W. S., Xiang, Z., Wang, Q. Q., Cheng, H. P., Chen, S. M., Fang, J., Liu, J., Wang, Q., Lu, Z. M. et al. Glycolytic enzyme HK2 promotes PD-L1 expression and breast cancer cell immune evasion. Frontiers in Immunology, 2023, 14: 1189953. https://doi.org/10.3389/fimmu.2023.1189953
Wang, X., Liang, C., Yao, X., Yang, R. H., Zhang, Z. S., Liu, F. Y., Li, W. Q., Pei, S. H., Ma, J., Xie, S. Q. et al. PKM2-induced the phosphorylation of histone H3 contributes to EGF-mediated PD-L1 transcription in HCC. Frontiers in Pharmacology, 2020, 11: 577108. https://doi.org/10.3389/fphar.2020.577108
Yin, L., Shi, J. Y., Zhang, J. F., Lin, X. Y., Jiang, W. H., Zhu, Y. C., Song, Y., Lu, Y. L., Ma, Y. X. PKM2 is a potential prognostic biomarker and related to immune infiltration in lung cancer. Scientific Reports, 2023, 13: 22243. https://doi.org/10.1038/s41598-023-49558-4
Damasceno, L. E. A., Prado, D. S., Veras, F. P., Fonseca, M. M., Toller-Kawahisa, J. E., Rosa, M. H., Públio, G. A., Martins, T. V., Ramalho, F. S., Waisman, A. et al. PKM2 promotes Th17 cell differentiation and autoimmune inflammation by fine-tuning STAT3 activation. Journal of Experimental Medicine, 2020, 217(10): e20190613. https://doi.org/10.1084/jem.20190613
Angiari, S., Runtsch, M. C., Sutton, C. E., Palsson-McDermott, E. M., Kelly, B., Rana, N., Kane, H., Papadopoulou, G., Pearce, E. L., Mills, K. H. G. et al. Pharmacological activation of pyruvate kinase M2 inhibits CD4+ T cell pathogenicity and suppresses autoimmunity. Cell Metabolism, 2020, 31(2): 391–405.e8. https://doi.org/10.1016/j.cmet.2019.10.015
Chen, M. X., Liu, H., Li, Z., Ming, A. L., Chen, H. L. Mechanism of PKM2 affecting cancer immunity and metabolism in Tumor Microenvironment. Journal of Cancer, 2021, 12(12): 3566–3574. https://doi.org/10.7150/jca.54430
Palsson-McDermott, E. M., Dyck, L., Zasłona, Z., Menon, D., McGettrick, A. F., Mills, K. H. G., O’Neill, L. A. Pyruvate kinase M2 is required for the expression of the immune checkpoint PD-L1 in immune cells and tumors. Frontiers in Immunology, 2017, 8: 1300. https://doi.org/10.3389/fimmu.2017.01300
Kim, S., Jang, J. Y., Koh, J., Kwon, D., Kim, Y. A., Paeng, J. C., Ock, C. Y., Keam, B., Kim, M., Kim, T. M. et al. Programmed cell death ligand-1-mediated enhancement of hexokinase 2 expression is inversely related to T-cell effector gene expression in non-small-cell lung cancer. Journal of Experimental & Clinical Cancer Research, 2019, 38(1): 462. https://doi.org/10.1186/s13046-019-1407-5
Zhang, D., Tang, Z. Y., Huang, H., Zhou, G. L., Cui, C., Weng, Y. J., Liu, W. C., Kim, S., Lee, S., Perez-Neut, M. et al. Metabolic regulation of gene expression by histone lactylation. Nature, 2019, 574(7779): 575–580. https://doi.org/10.1038/s41586-019-1678-1
Monteith, A. J., Ramsey, H. E., Silver, A. J., Brown, D., Greenwood, D., Smith, B. N., Wise, A. D., Liu, J., Olmstead, S. D., Watke, J., et al. Lactate utilization enables metabolic escape to confer resistance to BET inhibition in acute myeloid leukemia. Cancer Research, 2024, 84(7): 1101–1114. https://doi.org/10.1158/0008-5472.CAN-23-0291
Zhang, Y. N., Huang, Y. T., Hong, Y., Lin, Z. J., Zha, J., Zhu, Y. W., Li, Z. F., Wang, C. Y., Fang, Z. H., Zhou, Z. W. et al. Lactate acid promotes PD-1+ Tregs accumulation in the bone marrow with high tumor burden of Acute myeloid leukemia. International Immunopharmacology, 2024, 130: 111765. https://doi.org/10.1016/j.intimp.2024.111765
Huang, Z. W., Zhang, X. N., Zhang, L., Liu, L. L., Zhang, J. W., Sun, Y. X., Xu, J. Q., Liu, Q., Long, Z. J. STAT5 promotes PD-L1 expression by facilitating histone lactylation to drive immunosuppression in acute myeloid leukemia. Signal Transduction and Targeted Therapy, 2023, 8: 391. https://doi.org/10.1038/s41392-023-01605-2
Bullinger, L., Döhner, K., Bair, E., Fröhling, S., Schlenk, R. F., Tibshirani, R., Döhner, H., Pollack, J. R. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. New England Journal of Medicine, 2004, 350(16): 1605–1616. https://doi.org/10.1056/nejmoa031046
Alshamleh, I., Kurrle, N., Makowka, P., Bhayadia, R., Kumar, R., Süsser, S., Seibert, M., Ludig, D., Wolf, S., Koschade, S. E. et al. PDP1 is a key metabolic gatekeeper and modulator of drug resistance in FLT3-ITD-positive acute myeloid leukemia. Leukemia, 2023, 37(12): 2367–2382. https://doi.org/10.1038/s41375-023-02041-5
Falini, B., Martelli, M. P., Bolli, N., Sportoletti, P., Liso, A., Tiacci, E., Haferlach, T. Acute myeloid leukemia with mutated nucleophosmin (NPM1): Is it a distinct entity. Blood, 2011, 117(4): 1109–1120. https://doi.org/10.1182/blood-2010-08-299990
Georgi, J. A., Stasik, S., Kramer, M., Meggendorfer, M., Röllig, C., Haferlach, T., Valk, P., Linch, D., Herold, T., Duployez, N. et al. Prognostic impact of CEBPA mutational subgroups in adult AML. Leukemia, 2024, 38(2): 281–290. https://doi.org/10.1038/s41375-024-02140-x
Qian, X., Li, X. J., Cai, Q. S., Zhang, C. B., Yu, Q. J., Jiang, Y. H., Lee, J. H., Hawke, D., Wang, Y. G., Xia, Y. et al. Phosphoglycerate kinase 1 phosphorylates Beclin1 to induce autophagy. Molecular Cell, 2017, 65(5): 917–931.e6. https://doi.org/10.1016/j.molcel.2017.01.027
Wang, Y. H., Israelsen, W. J., Lee, D. J., Yu, V. W. C., Jeanson, N. T., Clish, C. B., Cantley, L. C., Vander Heiden, M. G., Scadden, D. T. Cell-state-specific metabolic dependency in hematopoiesis and leukemogenesis. Cell, 2014, 158(6): 1309–1323. https://doi.org/10.1016/j.cell.2014.07.048
Ju, H. Q., Zhan, G., Huang, A., Sun, Y., Wen, S., Yang, J., Lu, W. H., Xu, R. H., Li, J., Li, Y. et al. ITD mutation in FLT3 tyrosine kinase promotes Warburg effect and renders therapeutic sensitivity to glycolytic inhibition. Leukemia, 2017, 31(10): 2143–2150. https://doi.org/10.1038/leu.2017.45
Mittelbrunn, M., Kroemer, G. Hallmarks of T cell aging. Nature Immunology, 2021, 22(6): 687–698. https://doi.org/10.1038/s41590-021-00927-z
Salumets, A., Tserel, L., Rumm, A. P., Türk, L., Kingo, K., Saks, K., Oras, A., Uibo, R., Tamm, R., Peterson, H. et al. Epigenetic quantification of immunosenescent CD8+ TEMRA cells in human blood. Aging Cell, 2022, 21(5): e13607. https://doi.org/10.1111/acel.13607
Zhao, Y. J., Shao, Q. X., Peng, G. Y. Exhaustion and senescence: Two crucial dysfunctional states of T cells in the tumor microenvironment. Cellular & Molecular Immunology, 2020, 17(1): 27–35. https://doi.org/10.1038/s41423-019-0344-8
Gayoso, I., Sanchez-Correa, B., Campos, C., Alonso, C., Pera, A., Casado, J. G., Morgado, S., Tarazona, R., Solana, R. Immunosenescence of human natural killer cells. Journal of Innate Immunity, 2011, 3(4): 337–343. https://doi.org/10.1159/000328005
Bulati, M., Caruso, C., Colonna-Romano, G. From lymphopoiesis to plasma cells differentiation, the age-related modifications of B cell compartment are influenced by “inflamm-ageing”. Ageing Research Reviews, 2017, 36: 125–136. https://doi.org/10.1016/j.arr.2017.04.001
Liu, X., Mo, W., Ye, J., Li, L. Y., Zhang, Y. P., Hsueh, E. C., Hoft, D. F., Peng, G. Y. Regulatory T cells trigger effector T cell DNA damage and senescence caused by metabolic competition. Nature Communications, 2018, 9: 249. https://doi.org/10.1038/s41467-017-02689-5
Xu, S. J., Chen, J. H., Chang, S., Li, H. L. The role of miRNAs in T helper cell development, activation, fate decisions and tumor immunity. Frontiers in Immunology, 2024, 14: 1320305. https://doi.org/10.3389/fimmu.2023.1320305
Hui, K. Y., Dong, C. H., Hu, C. X., Li, J. W., Yan, D. Y., Jiang, X. D. VEGFR affects miR-3200-3p-mediated regulatory T cell senescence in tumour-derived exosomes in non-small cell lung cancer. Functional & Integrative Genomics, 2024, 24(2): 31. https://doi.org/10.1007/s10142-024-01305-2
Xiao, C. C., Calado, D. P., Galler, G., Thai, T. H., Patterson, H. C., Wang, J., Rajewsky, N., Bender, T. P., Rajewsky, K. MiR-150 controls B cell differentiation by targeting the transcription factor c-myb. Cell, 2016, 165(4): 1027. https://doi.org/10.1016/j.cell.2016.04.056
Stubbins, R. J., Francis, A., Kuchenbauer, F., Sanford, D. Management of acute myeloid leukemia: A review for general practitioners in oncology. Current Oncology, 2022, 29(9): 6245–6259. https://doi.org/10.3390/curroncol29090491
Childs, B. G., Durik, M., Baker, D. J., van Deursen, J. M. Cellular senescence in aging and age-related disease: From mechanisms to therapy. Nature Medicine, 2015, 21(12): 1424–1435. https://doi.org/10.1038/nm.4000
Ray, D., Yung, R. Immune senescence, epigenetics and autoimmunity. Clinical Immunology, 2018, 196: 59–63. https://doi.org/10.1016/j.clim.2018.04.002
Jaiswal, S., Fontanillas, P., Flannick, J., Manning, A., Grauman, P. V., Mar, B. G., Coleman, L., Mermel, C. H., Burtt, N., Chavez, A., et al. Age-related clonal hematopoiesis associated with adverse outcomes. New England Journal of Medicine, 2014, 371(26): 2488–2498. https://doi.org/10.1056/NEJMoa1408617
Ye, L., Tian, C., Li, Y., Pan, H., Hu, J. X., Shu, L. P., Pan, X. H. Hematopoietic aging: Cellular, molecular, and related mechanisms. Chinese Medical Journal, 2023, 137(11): 1303–1312. https://doi.org/10.1097/cm9.0000000000002871
Ruiz-Aparicio, P. F., Vernot, J. P. Bone marrow aging and the leukaemia-induced senescence of mesenchymal stem/stromal cells: Exploring similarities. Journal of Personalized Medicine, 2022, 12(5): 716. https://doi.org/10.3390/jpm12050716
Rozhok, A. I., Salstrom, J. L., DeGregori, J. Stochastic modeling indicates that aging and somatic evolution in the hematopoietic system are driven by non-cell-autonomous processes. Aging, 2014, 6(12): 1033–1048. https://doi.org/10.18632/aging.100707
Crippa, S., Bernardo, M. E. Mesenchymal stromal cells: Role in the BM niche and in the support of hematopoietic stem cell transplantation. HemaSphere, 2018, 2(6): e151. https://doi.org/10.1097/hs9.0000000000000151
Su, Y. C., Li, S. C., Wu, Y. C., Wang, L. M., Clifford Chao, K. S., Liao, H. F. Resveratrol downregulates interleukin-6-stimulated sonic hedgehog signaling in human acute myeloid leukemia. Evidence-Based Complementary and Alternative Medicine, 2013, 2013: 547430. https://doi.org/10.1155/2013/547430
Plakhova, N., Panagopoulos, V., Vandyke, K., Zannettino, A. C. W., Mrozik, K. M. Mesenchymal stromal cell senescence in haematological malignancies. Cancer and Metastasis Reviews, 2023, 42(1): 277–296. https://doi.org/10.1007/s10555-022-10069-9
Li, M. F., Zhang, D. H., Wang, L. S., Yue, C. F., Pang, L. J., Guo, Y. M., Yang, Z. G. Construction and validation of a SASP-related prognostic signature in patients with acute myeloid leukaemia. Journal of Cellular and Molecular Medicine, 2024, 28(16): e70017. https://doi.org/10.1111/jcmm.70017
Liu, X., Hoft, D. F., Peng, G. Y. Senescent T cells within suppressive tumor microenvironments: Emerging target for tumor immunotherapy. Journal of Clinical Investigation, 2020, 130(3): 1073–1083. https://doi.org/10.1172/jci133679
Ruhland, M. K., Loza, A. J., Capietto, A. H., Luo, X. M., Knolhoff, B. L., Flanagan, K. C., Belt, B. A., Alspach, E., Leahy, K., Luo, J. Q. et al. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nature Communications, 2016, 7: 11762. https://doi.org/10.1038/ncomms11762
Mao, Y., Xu, J. W., Xu, X. J., Qiu, J. Y., Hu, Z. Y., Jiang, F., Zhou, G. P. Comprehensive analysis for cellular senescence-related immunogenic characteristics and immunotherapy prediction of acute myeloid leukemia. Frontiers in Pharmacology, 2022, 13: 987398. https://doi.org/10.3389/fphar.2022.987398
Roninson, I. Tumor cell senescence in cancer treatment. Cancer Research, 2003, 63(11): 2705–2715.
Yousefzadeh, M. J., Flores, R. R., Zhu, Y., Schmiechen, Z. C., Brooks, R. W., Trussoni, C. E., Cui, Y. X., Angelini, L., Lee, K. A., McGowan, S. J. et al. An aged immune system drives senescence and ageing of solid organs. Nature, 2021, 594(7861): 100–105. https://doi.org/10.1038/s41586-021-03547-7
Sun, H. Q., Kang, X., Chen, X. C., Cai, L. L., Li, Y. R., Yu, J. H., Wu, C., Deng, X. L. Immunosenescence evaluation of peripheral blood lymphocyte subsets in 957 healthy adults from 20 to 95 years old. Experimental Gerontology, 2022, 157: 111615. https://doi.org/10.1016/j.exger.2021.111615
Tang, L., Wu, J. H., Li, C. G., Jiang, H. W., Xu, M., Du, M. Y., Yin, Z. N., Mei, H., Hu, Y. Characterization of immune dysfunction and identification of prognostic immune-related risk factors in acute myeloid leukemia. Clinical Cancer Research, 2020, 26(7): 1763–1772. https://doi.org/10.1158/1078-0432.CCR-19-3003
Rutella, S., Vadakekolathu, J., Mazziotta, F., Reeder, S., Yau, T. O., Mukhopadhyay, R., Dickins, B., Altmann, H., Kramer, M., Knaus, H. A. et al. Immune dysfunction signatures predict outcomes and define checkpoint blockade–unresponsive microenvironments in acute myeloid leukemia. Journal of Clinical Investigation, 2022, 132(21): e159579. https://doi.org/10.1172/jci159579
Marín, I., Boix, O., García-Garijo, A., Sirois, I., Caballé, A., Zarzuela, E., Ruano, I., Attolini, C. S. O., Prats, N., López-Domínguez, J. et al. Cellular senescence is immunogenic and promotes antitumor immunity. Cancer Discovery, 2023, 13(2): 410–431. https://doi.org/10.1158/2159-8290.CD-22-0523
Abdul-Aziz, A. M., Sun, Y., Hellmich, C., Marlein, C. R., Mistry, J., Forde, E., Piddock, R. E., Shafat, M. S., Morfakis, A., Mehta, T. et al. Acute myeloid leukemia induces protumoral p16INK4a-driven senescence in the bone marrow microenvironment. Blood, 2019, 133(5): 446–456. https://doi.org/10.1182/blood-2018-04-845420
Tang, Y. L., Zhang, C. G., Liu, H., Zhou, Y., Wang, Y. P., Li, Y., Han, Y. J., Wang, C. L. Ginsenoside Rg1 inhibits cell proliferation and induces markers of cell senescence in CD34+CD38–leukemia stem cells derived from KG1α acute myeloid leukemia cells by activating the sirtuin 1 (SIRT1)/tuberous sclerosis complex 2 (TSC2) signaling pathway. Medical Science Monitor, 2020, 26: e918207. https://doi.org/10.12659/msm.918207
Zavorka Thomas, M. E., Lu, X., Talebi, Z., Jeon, J. Y., Buelow, D. R., Gibson, A. A., et al. Gilteritinib inhibits glutamine uptake and utilization in FLT3-ITD-positive AML. Molecular Cancer Therapeutics, 2021, 20(11): 2207–2217. https://doi.org/10.1158/1535-7163.MCT-21-0071
Jia, Y. N., Han, L. N., Ramage, C. L., Wang, Z., Weng, C. C., Yang, L., Colla, S., Ma, H., Zhang, W. G., Andreeff, M. et al. Co-targeting BCL-XL and BCL-2 by PROTAC 753B eliminates leukemia cells and enhances efficacy of chemotherapy by targeting senescent cells. Haematologica, 2023, 108(10): 2626–2638. https://doi.org/10.3324/haematol.2022.281915
Miller, D., Kerkhofs, K., Abbas-Aghababazadeh, F., Madahar, S. S., Minden, M. D., Hébert, J., Haibe-Kains, B., Bayfield, M. A., Benchimol, S. Heterogeneity in leukemia cells that escape drug-induced senescence-like state. Cell Death & Disease, 2023, 14(8): 503. https://doi.org/10.1038/s41419-023-06015-4
Gu, R. X., Cao, J. J., Wei, S. N., Gong, X. Y., Wang, Y., Mi, Y. C., Zhang, J. P., Qiu, S. W., Rao, Q., Wang, M. et al. Evaluation of pretreatment telomere length as a prognostic marker in intermediate-risk acute myeloid leukemia. International Journal of Laboratory Hematology, 2021, 43(6): 1510–1515. https://doi.org/10.1111/ijlh.13665
Ke, P., Zhu, Q., Xu, T., Yang, X. F., Wang, Y., Qiu, H. Y., Wu, D. P., Bao, X. B., Chen, S. N. Identification and validation of a 7-genes prognostic signature for adult acute myeloid leukemia base on aging-related genes. Aging, 2023, 15(12): 5826–5853. https://doi.org/10.18632/aging.204843
Thomas, D., Majeti, R. Biology and relevance of human acute myeloid leukemia stem cells. Blood, 2017, 129(12): 1577–1585. https://doi.org/10.1182/blood-2016-10-696054
Antar, A., Kharfan-Dabaja, M. A., Mahfouz, R., Bazarbachi, A. Sorafenib maintenance appears safe and improves clinical outcomes in FLT3-ITD acute myeloid leukemia after allogeneic hematopoietic cell transplantation. Clinical Lymphoma Myeloma and Leukemia, 2015, 15(5): 298–302. https://doi.org/10.1016/j.clml.2014.12.005
Larrue, C., Saland, E., Vergez, F., Serhan, N., Delabesse, E., Mansat-De Mas, V., Hospital, M. A., Tamburini, J., Manenti, S., Sarry, J. E. et al. Antileukemic activity of 2-deoxy-d-glucose through inhibition of N-linked glycosylation in acute myeloid leukemia with FLT3-ITD or c-KIT mutations. Molecular Cancer Therapeutics, 2015, 14(10): 2364–2373. https://doi.org/10.1158/1535-7163.mct-15-0163