PDF (1.7 MB)
Collect
Submit Manuscript
Show Outline
Figures (2)

Review | Open Access

Glycolysis and immunosenescence: key players in the pathogenesis of acute myeloid leukemia and their therapeutic potential

Tao Chang1,§Xu-An Chen1,§Chao Yao4,§Yuan Li1,§Le Li1Zhen-Yi Jin3()Jun Fan1,2()
Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou 510632, China
Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
Department of Pathology, School of Medicine, Jinan University, Guangzhou 510632, China
Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou 510632, China

§ These authors contributed equally to this work.

Show Author Information

Abstract

Acute myeloid leukemia (AML) is a hematopoietic progenitor cell-affected hematological malignancy, caused by the accumulation of genetic and epigenetic abnormalities leading to impaired cell differentiation, enhanced self-renewal capacity, and uncontrolled proliferation. Despite progress in understanding its biology and therapeutic strategies, the mortality rate remains high, with a five-year survival rate below 30%, and the clonal evolution of cells is complex, exhibiting genetic heterogeneity. Glycolysis plays a central role in the metabolic network of cancer cells. Cancer cells produce energy and substances through glycolysis, and their metabolic product, lactic acid, affects the tumor microenvironment (TME), leading to immune suppression, among other effects. Inhibition of glycolysis can enhance the sensitivity of AML to chemotherapeutic drugs. Aging is a risk factor for many diseases and leads to increased incidence and mortality rates of AML. Elderly patients exhibit greater heterogeneity. In AML, the dysfunction of T cells and NK cells is closely related to treatment responses. The process of T cell senescence is complex, involving various phenomena and mechanisms. Senescent T cells have weakened functions, affecting immune surveillance and TME, leading to reduced responses to chemotherapy. This review summarizes the significance of key glycolytic enzymes and aging in AML-related research.

References

[1]

Döhner, H., Weisdorf, D. J., Bloomfield, C. D. Acute myeloid leukemia. New England Journal of Medicine, 2015, 373(12): 1136–1152. https://doi.org/10.1056/NEJMra1406184

[2]

Siveen, K. S., Uddin, S., Mohammad, R. M. Targeting acute myeloid leukemia stem cell signaling by natural products. Molecular Cancer, 2017, 16(1): 13. https://doi.org/10.1186/s12943-016-0571-x

[3]
Newell, L. F., Cook, R. J. Advances in acute myeloid leukemia. Bmj, 2021 : n2026. https://doi.org/10.1136/bmj.n2026
[4]

Siegel, R. L., Miller, K. D., Wagle, N. S., Jemal, A. Cancer statistics, 2023. CA: A Cancer Journal for Clinicians, 2023, 73(1): 17–48. https://doi.org/10.3322/caac.21763

[5]

Short, N. J., Rytting, M. E., Cortes, J. E. Acute myeloid leukaemia. The Lancet, 2018, 392(10147): 593–606. https://doi.org/10.1016/S0140-6736(18)31041-9

[6]

Vander Heiden, M. G., Cantley, L. C., Thompson, C. B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science, 2009, 324(5930): 1029–1033. https://doi.org/10.1126/science.1160809

[7]
Zhang, Q. Q., Luo, Y. N., Qian, B. S., Cao, X. H., Xu, C. J., Guo, K., Wan, R. L., Jiang, Y. L., Wang, T. C., Mei, Z. Q. et al. A systematic pan-cancer analysis identifies LDHA as a novel predictor for immunological, prognostic, and immunotherapy resistance. Aging, 2024 , 16(9): 8000–8018. https://doi.org/10.18632/aging.205800
[8]

Han, X., Ren, C. N., Lu, C., Qiao, P. Y., Yang, T. T., Yu, Z. H. Deubiquitination of MYC by OTUB1 contributes to HK2 mediated glycolysis and breast tumorigenesis. Cell Death & Differentiation, 2022, 29(9): 1864–1873. https://doi.org/10.1038/s41418-022-00971-8

[9]

Angelin, A., Gil-de-Gómez, L., Dahiya, S., Jiao, J., Guo, L. L., Levine, M. H., Wang, Z. L., Quinn, W. J., Kopinski, P. K., Wang, L. Q. et al. Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metabolism, 2017, 25(6): 1282–1293.e7. https://doi.org/10.1016/j.cmet.2016.12.018

[10]

Fischer, K., Hoffmann, P., Voelkl, S., Meidenbauer, N., Ammer, J., Edinger, M., Gottfried, E., Schwarz, S., Rothe, G., Hoves, S. et al. Inhibitory effect of tumor cell–derived lactic acid on human T cells. Blood, 2007, 109(9): 3812–3819. https://doi.org/10.1182/blood-2006-07-035972

[11]

Song, K., Li, M., Xu, X. J., Xuan, L., Huang, G. N., Liu, Q. F. Resistance to chemotherapy is associated with altered glucose metabolism in acute myeloid leukemia. Oncology Letters, 2016, 12(1): 334–342. https://doi.org/10.3892/ol.2016.4600

[12]

Han, H. J., Choi, K., Suh, H. S. Impact of aging on acute myeloid leukemia epidemiology and survival outcomes: A real-world, population-based longitudinal cohort study. PLoS One, 2024, 19(5): e0300637. https://doi.org/10.1371/journal.pone.0300637

[13]

Appelbaum, F. R., Gundacker, H., Head, D. R., Slovak, M. L., Willman, C. L., Godwin, J. E., Anderson, J. E., Petersdorf, S. H. Age and acute myeloid leukemia. Blood, 2006, 107(9): 3481–3485. https://doi.org/10.1182/blood-2005-09-3724

[14]

Koppenol, W. H., Bounds, P. L., Dang, C. V. Otto Warburg’s contributions to current concepts of cancer metabolism. Nature Reviews Cancer, 2011, 11(5): 325–337. https://doi.org/10.1038/nrc3038

[15]
Ganapathy-Kanniappan, S. Linking tumor glycolysis and immune evasion in cancer: Emerging concepts and therapeutic opportunities. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 2017 , 1868(1): 212–220. https://doi.org/10.1016/j.bbcan.2017.04.002
[16]

Paul, S., Ghosh, S., Kumar, S. Tumor glycolysis, an essential sweet tooth of tumor cells. Seminars in Cancer Biology, 2022, 86: 1216–1230. https://doi.org/10.1016/j.semcancer.2022.09.007

[17]

Mesbahi, Y., Trahair, T. N., Lock, R. B., Connerty, P. Exploring the metabolic landscape of AML: From haematopoietic stem cells to myeloblasts and leukaemic stem cells. Frontiers in Oncology, 2022, 12: 807266. https://doi.org/10.3389/fonc.2022.807266

[18]

Gregory, M. A., D’Alessandro, A., Alvarez-Calderon, F., Kim, J., Nemkov, T., Adane, B., Rozhok, A. I., Kumar, A., Kumar, V., Pollyea, D. A. et al. ATM/G6PD-driven redox metabolism promotes FLT3 inhibitor resistance in acute myeloid leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(43): E6669–E6678. https://doi.org/10.1073/pnas.1603876113

[19]

Chen, L., Zhao, H. M., Wang, C., Hu, N. TUG1 knockdown enhances adriamycin cytotoxicity by inhibiting glycolysis in adriamycin-resistant acute myeloid leukemia HL60/ADR cells. RSC Advances, 2019, 9(19): 10897–10904. https://doi.org/10.1039/c9ra00306a

[20]

Yu, Y. X., Jiang, Y. L., Glandorff, C., Sun, M. Y. Exploring the mystery of tumor metabolism: Warburg effect and mitochondrial metabolism fighting side by side. Cellular Signalling, 2024, 120: 111239. https://doi.org/10.1016/j.cellsig.2024.111239

[21]

Lis, P., Dyląg, M., Niedźwiecka, K., Ko, Y., Pedersen, P., Goffeau, A., Ułaszewski, S. The HK2 dependent “Warburg effect” and mitochondrial oxidative phosphorylation in cancer: Targets for effective therapy with 3-bromopyruvate. Molecules, 2016, 21(12): 1730. https://doi.org/10.3390/molecules21121730

[22]

Irwin, D. M., Tan, H. R. Molecular evolution of the vertebrate hexokinase gene family: Identification of a conserved fifth vertebrate hexokinase gene. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2008, 3(1): 96–107. https://doi.org/10.1016/j.cbd.2007.11.002

[23]
Wilson, J. E. Isozymes of mammalian hexokinase: Structure, subcellular localization and metabolic function. The Journal of Experimental Biology, 2003 , 206(pt 12): 2049–2057. https://doi.org/10.1242/jeb.00241
[24]

Purich, D. L., Fromm, H. J., Rudolph, F. B. The hexokinases: Kinetic, physical, and regulatory properties. Advances in Enzymology and Related Areas of Molecular Biology, 1973, 39: 249–326. https://doi.org/10.1002/9780470122846.ch4

[25]

Liu, B. R., Lu, Y., Taledaohan, A., Qiao, S., Li, Q. Y., Wang, Y. J. The promoting role of HK II in tumor development and the research progress of its inhibitors. Molecules, 2023, 29(1): 75. https://doi.org/10.3390/molecules29010075

[26]

Krasnov, G. S., Dmitriev, A. A., Lakunina, V. A., Kirpiy, A. A., Kudryavtseva, A. V. Targeting VDAC-bound hexokinase II: A promising approach for concomitant anti-cancer therapy. Expert Opinion on Therapeutic Targets, 2013, 17(10): 1221–1233. https://doi.org/10.1517/14728222.2013.833607

[27]

Mathupala, S. P., Rempel, A., Pedersen, P. L. Glucose catabolism in cancer cells: identification and characterization of a marked activation response of the type II hexokinase gene to hypoxic conditions. Journal of Biological Chemistry, 2001, 276(46): 43407–43412. https://doi.org/10.1074/jbc.M108181200

[28]
Xu, S. L., Herschman, H. R. A tumor agnostic therapeutic strategy for hexokinase 1–null/hexokinase 2–positive cancers. Cancer Research, 2019 , 79(23): 5907–5914. https://doi.org/10.1158/0008-5472.can-19-1789
[29]

Thomas, G. E., Egan, G., García-Prat, L., Botham, A., Voisin, V., Patel, P. S., Hoff, F. W., Chin, J., Nachmias, B., Kaufmann, K. B. et al. The metabolic enzyme hexokinase 2 localizes to the nucleus in AML and normal haematopoietic stem and progenitor cells to maintain stemness. Nature Cell Biology, 2022, 24(6): 872–884. https://doi.org/10.1038/s41556-022-00925-9

[30]

Seiler, K., Humbert, M., Minder, P., Mashimo, I., Schläfli, A. M., Krauer, D., Federzoni, E. A., Vu, B., Moresco, J. J., Yates, J. R. et al. Hexokinase 3 enhances myeloid cell survival via non-glycolytic functions. Cell Death & Disease, 2022, 13(5): 448. https://doi.org/10.1038/s41419-022-04891-w

[31]

Kim, N. H., Cha, Y. H., Lee, J., Lee, S. H., Yang, J. H., Yun, J. S., Cho, E. S., Zhang, X. L., Nam, M., Kim, N. et al. Snail reprograms glucose metabolism by repressing phosphofructokinase PFKP allowing cancer cell survival under metabolic stress. Nature Communications, 2017, 8: 14374. https://doi.org/10.1038/ncomms14374

[32]
Luo, X. D., Zheng, D. T., Zheng, R. H., Wang, C. Y., Xu, L. H., Tan, H. The platelet isoform of phosphofructokinase in acute myeloid leukemia: Clinical relevance and prognostic implication. Blood, 2018 , 132(Supplement 1): 5251. https://doi.org/10.1182/blood-2018-99-113786
[33]
Qing, Y., Dong, L., Gao, L., Li, C. Y., Li, Y. C., Han, L., Prince, E., Tan, B., Deng, X. L., Wetzel, C. et al. R-2-hydroxyglutarate attenuates aerobic glycolysis in leukemia by targeting the FTO/m6A/PFKP/LDHB axis. Molecular Cell, 2021 , 81(5): 922–939.e9. https://doi.org/10.1016/j.molcel.2020.12.026
[34]

Wong, N., De Melo, J., Tang, D. M. PKM2, a central point of regulation in cancer metabolism. International Journal of Cell Biology, 2013, 2013: 242513. https://doi.org/10.1155/2013/242513

[35]

Huang, Y. X., Chen, L. M., Xie, J. Y., Han, H., Zhu, B. F., Wang, L. J., Wang, W. J. High expression of PKM2 was associated with the poor prognosis of acute leukemia. Cancer Management and Research, 2021, 13: 7851–7858. https://doi.org/10.2147/cmar.s331076

[36]

Wu, H. J., Zhao, H. M., Chen, L. Deoxyshikonin inhibits viability and glycolysis by suppressing the Akt/mTOR pathway in acute myeloid leukemia cells. Frontiers in Oncology, 2020, 10: 1253. https://doi.org/10.3389/fonc.2020.01253

[37]

Wang, L., Yang, L. Y., Yang, Z. L., Tang, Y. T., Tao, Y., Zhan, Q., Lei, L., Jing, Y. P., Jiang, X. K., Jin, H. J. et al. Glycolytic enzyme PKM2 mediates autophagic activation to promote cell survival in NPM1-mutated leukemia. International Journal of Biological Sciences, 2019, 15(4): 882–894. https://doi.org/10.7150/ijbs.30290

[38]

Zahra, K., Dey, T., Ashish, Mishra, S. P., Pandey, U. Pyruvate kinase M2 and cancer: The role of PKM2 in promoting tumorigenesis. Frontiers in Oncology, 2020, 10: 159. https://doi.org/10.3389/fonc.2020.00159

[39]

Xia, L., Jiang, Y., Zhang, X. H., Wang, X. R., Wei, R., Qin, K., Lu, Y. SUMOylation disassembles the tetrameric pyruvate kinase M2 to block myeloid differentiation of leukemia cells. Cell Death & Disease, 2021, 12: 101. https://doi.org/10.1038/s41419-021-03400-9

[40]

Lei, H., Yang, L., Wang, Y. Y., Zou, Z. H., Liu, M., Xu, H. Z., Wu, Y. L. JOSD2 regulates PKM2 nuclear translocation and reduces acute myeloid leukemia progression. Experimental Hematology & Oncology, 2022, 11(1): 42. https://doi.org/10.1186/s40164-022-00295-w

[41]

Kim, S., Koh, J., Song, S. G., Yim, J., Kim, M., Keam, B., Kim, Y. T., Kim, J., Chung, D. H., Jeon, Y. K. High tumor hexokinase-2 expression promotes a pro-tumorigenic immune microenvironment by modulating CD8+/regulatory T-cell infiltration. BMC Cancer, 2022, 22(1): 1120. https://doi.org/10.1186/s12885-022-10239-6

[42]

Lin, J. C., Fang, W. S., Xiang, Z., Wang, Q. Q., Cheng, H. P., Chen, S. M., Fang, J., Liu, J., Wang, Q., Lu, Z. M. et al. Glycolytic enzyme HK2 promotes PD-L1 expression and breast cancer cell immune evasion. Frontiers in Immunology, 2023, 14: 1189953. https://doi.org/10.3389/fimmu.2023.1189953

[43]

Wang, X., Liang, C., Yao, X., Yang, R. H., Zhang, Z. S., Liu, F. Y., Li, W. Q., Pei, S. H., Ma, J., Xie, S. Q. et al. PKM2-induced the phosphorylation of histone H3 contributes to EGF-mediated PD-L1 transcription in HCC. Frontiers in Pharmacology, 2020, 11: 577108. https://doi.org/10.3389/fphar.2020.577108

[44]

Yin, L., Shi, J. Y., Zhang, J. F., Lin, X. Y., Jiang, W. H., Zhu, Y. C., Song, Y., Lu, Y. L., Ma, Y. X. PKM2 is a potential prognostic biomarker and related to immune infiltration in lung cancer. Scientific Reports, 2023, 13: 22243. https://doi.org/10.1038/s41598-023-49558-4

[45]

Damasceno, L. E. A., Prado, D. S., Veras, F. P., Fonseca, M. M., Toller-Kawahisa, J. E., Rosa, M. H., Públio, G. A., Martins, T. V., Ramalho, F. S., Waisman, A. et al. PKM2 promotes Th17 cell differentiation and autoimmune inflammation by fine-tuning STAT3 activation. Journal of Experimental Medicine, 2020, 217(10): e20190613. https://doi.org/10.1084/jem.20190613

[46]

Angiari, S., Runtsch, M. C., Sutton, C. E., Palsson-McDermott, E. M., Kelly, B., Rana, N., Kane, H., Papadopoulou, G., Pearce, E. L., Mills, K. H. G. et al. Pharmacological activation of pyruvate kinase M2 inhibits CD4+ T cell pathogenicity and suppresses autoimmunity. Cell Metabolism, 2020, 31(2): 391–405.e8. https://doi.org/10.1016/j.cmet.2019.10.015

[47]

Chen, M. X., Liu, H., Li, Z., Ming, A. L., Chen, H. L. Mechanism of PKM2 affecting cancer immunity and metabolism in Tumor Microenvironment. Journal of Cancer, 2021, 12(12): 3566–3574. https://doi.org/10.7150/jca.54430

[48]

Palsson-McDermott, E. M., Dyck, L., Zasłona, Z., Menon, D., McGettrick, A. F., Mills, K. H. G., O’Neill, L. A. Pyruvate kinase M2 is required for the expression of the immune checkpoint PD-L1 in immune cells and tumors. Frontiers in Immunology, 2017, 8: 1300. https://doi.org/10.3389/fimmu.2017.01300

[49]

Kim, S., Jang, J. Y., Koh, J., Kwon, D., Kim, Y. A., Paeng, J. C., Ock, C. Y., Keam, B., Kim, M., Kim, T. M. et al. Programmed cell death ligand-1-mediated enhancement of hexokinase 2 expression is inversely related to T-cell effector gene expression in non-small-cell lung cancer. Journal of Experimental & Clinical Cancer Research, 2019, 38(1): 462. https://doi.org/10.1186/s13046-019-1407-5

[50]

Zhang, D., Tang, Z. Y., Huang, H., Zhou, G. L., Cui, C., Weng, Y. J., Liu, W. C., Kim, S., Lee, S., Perez-Neut, M. et al. Metabolic regulation of gene expression by histone lactylation. Nature, 2019, 574(7779): 575–580. https://doi.org/10.1038/s41586-019-1678-1

[51]

Monteith, A. J., Ramsey, H. E., Silver, A. J., Brown, D., Greenwood, D., Smith, B. N., Wise, A. D., Liu, J., Olmstead, S. D., Watke, J., et al. Lactate utilization enables metabolic escape to confer resistance to BET inhibition in acute myeloid leukemia. Cancer Research, 2024, 84(7): 1101–1114. https://doi.org/10.1158/0008-5472.CAN-23-0291

[52]

Zhang, Y. N., Huang, Y. T., Hong, Y., Lin, Z. J., Zha, J., Zhu, Y. W., Li, Z. F., Wang, C. Y., Fang, Z. H., Zhou, Z. W. et al. Lactate acid promotes PD-1+ Tregs accumulation in the bone marrow with high tumor burden of Acute myeloid leukemia. International Immunopharmacology, 2024, 130: 111765. https://doi.org/10.1016/j.intimp.2024.111765

[53]
Chen, Y., Feng, Z. X., Kuang, X. Y., Zhao, P., Chen, B. Q., Fang, Q., Cheng, W. W., Wang, J. S. Increased lactate in AML blasts upregulates TOX expression, leading to exhaustion of CD8+ cytolytic T cells. American Journal of Cancer Research, 2021 , 11(11): 5726–5742.
[54]

Huang, Z. W., Zhang, X. N., Zhang, L., Liu, L. L., Zhang, J. W., Sun, Y. X., Xu, J. Q., Liu, Q., Long, Z. J. STAT5 promotes PD-L1 expression by facilitating histone lactylation to drive immunosuppression in acute myeloid leukemia. Signal Transduction and Targeted Therapy, 2023, 8: 391. https://doi.org/10.1038/s41392-023-01605-2

[55]
De Kouchkovsky, I., Abdul-Hay, M. ‘Acute myeloid leukemia: A comprehensive review and 2016 update’. Blood Cancer Journal, 2016 , 6(7): e441. https://doi.org/10.1038/bcj.2016.50
[56]

Bullinger, L., Döhner, K., Bair, E., Fröhling, S., Schlenk, R. F., Tibshirani, R., Döhner, H., Pollack, J. R. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. New England Journal of Medicine, 2004, 350(16): 1605–1616. https://doi.org/10.1056/nejmoa031046

[57]

Alshamleh, I., Kurrle, N., Makowka, P., Bhayadia, R., Kumar, R., Süsser, S., Seibert, M., Ludig, D., Wolf, S., Koschade, S. E. et al. PDP1 is a key metabolic gatekeeper and modulator of drug resistance in FLT3-ITD-positive acute myeloid leukemia. Leukemia, 2023, 37(12): 2367–2382. https://doi.org/10.1038/s41375-023-02041-5

[58]

Falini, B., Martelli, M. P., Bolli, N., Sportoletti, P., Liso, A., Tiacci, E., Haferlach, T. Acute myeloid leukemia with mutated nucleophosmin (NPM1): Is it a distinct entity. Blood, 2011, 117(4): 1109–1120. https://doi.org/10.1182/blood-2010-08-299990

[59]

Georgi, J. A., Stasik, S., Kramer, M., Meggendorfer, M., Röllig, C., Haferlach, T., Valk, P., Linch, D., Herold, T., Duployez, N. et al. Prognostic impact of CEBPA mutational subgroups in adult AML. Leukemia, 2024, 38(2): 281–290. https://doi.org/10.1038/s41375-024-02140-x

[60]

Qian, X., Li, X. J., Cai, Q. S., Zhang, C. B., Yu, Q. J., Jiang, Y. H., Lee, J. H., Hawke, D., Wang, Y. G., Xia, Y. et al. Phosphoglycerate kinase 1 phosphorylates Beclin1 to induce autophagy. Molecular Cell, 2017, 65(5): 917–931.e6. https://doi.org/10.1016/j.molcel.2017.01.027

[61]

Wang, Y. H., Israelsen, W. J., Lee, D. J., Yu, V. W. C., Jeanson, N. T., Clish, C. B., Cantley, L. C., Vander Heiden, M. G., Scadden, D. T. Cell-state-specific metabolic dependency in hematopoiesis and leukemogenesis. Cell, 2014, 158(6): 1309–1323. https://doi.org/10.1016/j.cell.2014.07.048

[62]

Ju, H. Q., Zhan, G., Huang, A., Sun, Y., Wen, S., Yang, J., Lu, W. H., Xu, R. H., Li, J., Li, Y. et al. ITD mutation in FLT3 tyrosine kinase promotes Warburg effect and renders therapeutic sensitivity to glycolytic inhibition. Leukemia, 2017, 31(10): 2143–2150. https://doi.org/10.1038/leu.2017.45

[63]
Kurd, N. S., Robey, E. T-cell selection in the thymus: A spatial and temporal perspective. Immunological Reviews, 2016, 271(1): 114–126. https://doi.org/10.1111/imr.12398 https://doi.org/10.1111/imr.12398
[64]

Mittelbrunn, M., Kroemer, G. Hallmarks of T cell aging. Nature Immunology, 2021, 22(6): 687–698. https://doi.org/10.1038/s41590-021-00927-z

[65]

Salumets, A., Tserel, L., Rumm, A. P., Türk, L., Kingo, K., Saks, K., Oras, A., Uibo, R., Tamm, R., Peterson, H. et al. Epigenetic quantification of immunosenescent CD8+ TEMRA cells in human blood. Aging Cell, 2022, 21(5): e13607. https://doi.org/10.1111/acel.13607

[66]

Zhao, Y. J., Shao, Q. X., Peng, G. Y. Exhaustion and senescence: Two crucial dysfunctional states of T cells in the tumor microenvironment. Cellular & Molecular Immunology, 2020, 17(1): 27–35. https://doi.org/10.1038/s41423-019-0344-8

[67]

Gayoso, I., Sanchez-Correa, B., Campos, C., Alonso, C., Pera, A., Casado, J. G., Morgado, S., Tarazona, R., Solana, R. Immunosenescence of human natural killer cells. Journal of Innate Immunity, 2011, 3(4): 337–343. https://doi.org/10.1159/000328005

[68]

Bulati, M., Caruso, C., Colonna-Romano, G. From lymphopoiesis to plasma cells differentiation, the age-related modifications of B cell compartment are influenced by “inflamm-ageing”. Ageing Research Reviews, 2017, 36: 125–136. https://doi.org/10.1016/j.arr.2017.04.001

[69]
Desdín-Micó, G., Soto-Heredero, G., Aranda, J. F., Oller, J., Carrasco, E., Gabandé-Rodríguez, E., Blanco, E. M., Alfranca, A., Cussó, L., Desco, M. et al. T cells with dysfunctional mitochondria induce multimorbidity and premature senescence. Science, 2020 , 368(6497): 1371–1376. https://doi.org/10.1126/science.aax0860
[70]

Liu, X., Mo, W., Ye, J., Li, L. Y., Zhang, Y. P., Hsueh, E. C., Hoft, D. F., Peng, G. Y. Regulatory T cells trigger effector T cell DNA damage and senescence caused by metabolic competition. Nature Communications, 2018, 9: 249. https://doi.org/10.1038/s41467-017-02689-5

[71]

Xu, S. J., Chen, J. H., Chang, S., Li, H. L. The role of miRNAs in T helper cell development, activation, fate decisions and tumor immunity. Frontiers in Immunology, 2024, 14: 1320305. https://doi.org/10.3389/fimmu.2023.1320305

[72]

Hui, K. Y., Dong, C. H., Hu, C. X., Li, J. W., Yan, D. Y., Jiang, X. D. VEGFR affects miR-3200-3p-mediated regulatory T cell senescence in tumour-derived exosomes in non-small cell lung cancer. Functional & Integrative Genomics, 2024, 24(2): 31. https://doi.org/10.1007/s10142-024-01305-2

[73]

Xiao, C. C., Calado, D. P., Galler, G., Thai, T. H., Patterson, H. C., Wang, J., Rajewsky, N., Bender, T. P., Rajewsky, K. MiR-150 controls B cell differentiation by targeting the transcription factor c-myb. Cell, 2016, 165(4): 1027. https://doi.org/10.1016/j.cell.2016.04.056

[74]

Stubbins, R. J., Francis, A., Kuchenbauer, F., Sanford, D. Management of acute myeloid leukemia: A review for general practitioners in oncology. Current Oncology, 2022, 29(9): 6245–6259. https://doi.org/10.3390/curroncol29090491

[75]

Childs, B. G., Durik, M., Baker, D. J., van Deursen, J. M. Cellular senescence in aging and age-related disease: From mechanisms to therapy. Nature Medicine, 2015, 21(12): 1424–1435. https://doi.org/10.1038/nm.4000

[76]

Ray, D., Yung, R. Immune senescence, epigenetics and autoimmunity. Clinical Immunology, 2018, 196: 59–63. https://doi.org/10.1016/j.clim.2018.04.002

[77]

Jaiswal, S., Fontanillas, P., Flannick, J., Manning, A., Grauman, P. V., Mar, B. G., Coleman, L., Mermel, C. H., Burtt, N., Chavez, A., et al. Age-related clonal hematopoiesis associated with adverse outcomes. New England Journal of Medicine, 2014, 371(26): 2488–2498. https://doi.org/10.1056/NEJMoa1408617

[78]

Ye, L., Tian, C., Li, Y., Pan, H., Hu, J. X., Shu, L. P., Pan, X. H. Hematopoietic aging: Cellular, molecular, and related mechanisms. Chinese Medical Journal, 2023, 137(11): 1303–1312. https://doi.org/10.1097/cm9.0000000000002871

[79]

Ruiz-Aparicio, P. F., Vernot, J. P. Bone marrow aging and the leukaemia-induced senescence of mesenchymal stem/stromal cells: Exploring similarities. Journal of Personalized Medicine, 2022, 12(5): 716. https://doi.org/10.3390/jpm12050716

[80]

Rozhok, A. I., Salstrom, J. L., DeGregori, J. Stochastic modeling indicates that aging and somatic evolution in the hematopoietic system are driven by non-cell-autonomous processes. Aging, 2014, 6(12): 1033–1048. https://doi.org/10.18632/aging.100707

[81]

Crippa, S., Bernardo, M. E. Mesenchymal stromal cells: Role in the BM niche and in the support of hematopoietic stem cell transplantation. HemaSphere, 2018, 2(6): e151. https://doi.org/10.1097/hs9.0000000000000151

[82]
Boada, M., Echarte, L., Guillermo, C., Diaz, L., Touriño, C., Grille, S. 5-Azacytidine restores interleukin 6-increased production in mesenchymal stromal cells from myelodysplastic patients. Hematology, Transfusion and Cell Therapy, 2021 , 43(1): 35–42. https://doi.org/10.1016/j.htct.2019.12.002
[83]

Su, Y. C., Li, S. C., Wu, Y. C., Wang, L. M., Clifford Chao, K. S., Liao, H. F. Resveratrol downregulates interleukin-6-stimulated sonic hedgehog signaling in human acute myeloid leukemia. Evidence-Based Complementary and Alternative Medicine, 2013, 2013: 547430. https://doi.org/10.1155/2013/547430

[84]

Plakhova, N., Panagopoulos, V., Vandyke, K., Zannettino, A. C. W., Mrozik, K. M. Mesenchymal stromal cell senescence in haematological malignancies. Cancer and Metastasis Reviews, 2023, 42(1): 277–296. https://doi.org/10.1007/s10555-022-10069-9

[85]

Li, M. F., Zhang, D. H., Wang, L. S., Yue, C. F., Pang, L. J., Guo, Y. M., Yang, Z. G. Construction and validation of a SASP-related prognostic signature in patients with acute myeloid leukaemia. Journal of Cellular and Molecular Medicine, 2024, 28(16): e70017. https://doi.org/10.1111/jcmm.70017

[86]

Liu, X., Hoft, D. F., Peng, G. Y. Senescent T cells within suppressive tumor microenvironments: Emerging target for tumor immunotherapy. Journal of Clinical Investigation, 2020, 130(3): 1073–1083. https://doi.org/10.1172/jci133679

[87]

Ruhland, M. K., Loza, A. J., Capietto, A. H., Luo, X. M., Knolhoff, B. L., Flanagan, K. C., Belt, B. A., Alspach, E., Leahy, K., Luo, J. Q. et al. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nature Communications, 2016, 7: 11762. https://doi.org/10.1038/ncomms11762

[88]

Mao, Y., Xu, J. W., Xu, X. J., Qiu, J. Y., Hu, Z. Y., Jiang, F., Zhou, G. P. Comprehensive analysis for cellular senescence-related immunogenic characteristics and immunotherapy prediction of acute myeloid leukemia. Frontiers in Pharmacology, 2022, 13: 987398. https://doi.org/10.3389/fphar.2022.987398

[89]

Roninson, I. Tumor cell senescence in cancer treatment. Cancer Research, 2003, 63(11): 2705–2715.

[90]

Yousefzadeh, M. J., Flores, R. R., Zhu, Y., Schmiechen, Z. C., Brooks, R. W., Trussoni, C. E., Cui, Y. X., Angelini, L., Lee, K. A., McGowan, S. J. et al. An aged immune system drives senescence and ageing of solid organs. Nature, 2021, 594(7861): 100–105. https://doi.org/10.1038/s41586-021-03547-7

[91]

Sun, H. Q., Kang, X., Chen, X. C., Cai, L. L., Li, Y. R., Yu, J. H., Wu, C., Deng, X. L. Immunosenescence evaluation of peripheral blood lymphocyte subsets in 957 healthy adults from 20 to 95 years old. Experimental Gerontology, 2022, 157: 111615. https://doi.org/10.1016/j.exger.2021.111615

[92]

Tang, L., Wu, J. H., Li, C. G., Jiang, H. W., Xu, M., Du, M. Y., Yin, Z. N., Mei, H., Hu, Y. Characterization of immune dysfunction and identification of prognostic immune-related risk factors in acute myeloid leukemia. Clinical Cancer Research, 2020, 26(7): 1763–1772. https://doi.org/10.1158/1078-0432.CCR-19-3003

[93]

Rutella, S., Vadakekolathu, J., Mazziotta, F., Reeder, S., Yau, T. O., Mukhopadhyay, R., Dickins, B., Altmann, H., Kramer, M., Knaus, H. A. et al. Immune dysfunction signatures predict outcomes and define checkpoint blockade–unresponsive microenvironments in acute myeloid leukemia. Journal of Clinical Investigation, 2022, 132(21): e159579. https://doi.org/10.1172/jci159579

[94]

Marín, I., Boix, O., García-Garijo, A., Sirois, I., Caballé, A., Zarzuela, E., Ruano, I., Attolini, C. S. O., Prats, N., López-Domínguez, J. et al. Cellular senescence is immunogenic and promotes antitumor immunity. Cancer Discovery, 2023, 13(2): 410–431. https://doi.org/10.1158/2159-8290.CD-22-0523

[95]

Abdul-Aziz, A. M., Sun, Y., Hellmich, C., Marlein, C. R., Mistry, J., Forde, E., Piddock, R. E., Shafat, M. S., Morfakis, A., Mehta, T. et al. Acute myeloid leukemia induces protumoral p16INK4a-driven senescence in the bone marrow microenvironment. Blood, 2019, 133(5): 446–456. https://doi.org/10.1182/blood-2018-04-845420

[96]

Tang, Y. L., Zhang, C. G., Liu, H., Zhou, Y., Wang, Y. P., Li, Y., Han, Y. J., Wang, C. L. Ginsenoside Rg1 inhibits cell proliferation and induces markers of cell senescence in CD34+CD38–leukemia stem cells derived from KG1α acute myeloid leukemia cells by activating the sirtuin 1 (SIRT1)/tuberous sclerosis complex 2 (TSC2) signaling pathway. Medical Science Monitor, 2020, 26: e918207. https://doi.org/10.12659/msm.918207

[97]

Zavorka Thomas, M. E., Lu, X., Talebi, Z., Jeon, J. Y., Buelow, D. R., Gibson, A. A., et al. Gilteritinib inhibits glutamine uptake and utilization in FLT3-ITD-positive AML. Molecular Cancer Therapeutics, 2021, 20(11): 2207–2217. https://doi.org/10.1158/1535-7163.MCT-21-0071

[98]

Jia, Y. N., Han, L. N., Ramage, C. L., Wang, Z., Weng, C. C., Yang, L., Colla, S., Ma, H., Zhang, W. G., Andreeff, M. et al. Co-targeting BCL-XL and BCL-2 by PROTAC 753B eliminates leukemia cells and enhances efficacy of chemotherapy by targeting senescent cells. Haematologica, 2023, 108(10): 2626–2638. https://doi.org/10.3324/haematol.2022.281915

[99]

Miller, D., Kerkhofs, K., Abbas-Aghababazadeh, F., Madahar, S. S., Minden, M. D., Hébert, J., Haibe-Kains, B., Bayfield, M. A., Benchimol, S. Heterogeneity in leukemia cells that escape drug-induced senescence-like state. Cell Death & Disease, 2023, 14(8): 503. https://doi.org/10.1038/s41419-023-06015-4

[100]

Gu, R. X., Cao, J. J., Wei, S. N., Gong, X. Y., Wang, Y., Mi, Y. C., Zhang, J. P., Qiu, S. W., Rao, Q., Wang, M. et al. Evaluation of pretreatment telomere length as a prognostic marker in intermediate-risk acute myeloid leukemia. International Journal of Laboratory Hematology, 2021, 43(6): 1510–1515. https://doi.org/10.1111/ijlh.13665

[101]

Ke, P., Zhu, Q., Xu, T., Yang, X. F., Wang, Y., Qiu, H. Y., Wu, D. P., Bao, X. B., Chen, S. N. Identification and validation of a 7-genes prognostic signature for adult acute myeloid leukemia base on aging-related genes. Aging, 2023, 15(12): 5826–5853. https://doi.org/10.18632/aging.204843

[102]

Thomas, D., Majeti, R. Biology and relevance of human acute myeloid leukemia stem cells. Blood, 2017, 129(12): 1577–1585. https://doi.org/10.1182/blood-2016-10-696054

[103]
Chen, W. L., Wang, J. H., Zhao, A. H., Xu, X., Wang, Y. H., Chen, T. L., Li, J. M., Mi, J. Q., Zhu, Y. M., Liu, Y. F. et al. A distinct glucose metabolism signature of acute myeloid leukemia with prognostic value. Blood, 2014 , 124(10): 1645–1654. https://doi.org/10.1182/blood-2014-02-554204
[104]

Antar, A., Kharfan-Dabaja, M. A., Mahfouz, R., Bazarbachi, A. Sorafenib maintenance appears safe and improves clinical outcomes in FLT3-ITD acute myeloid leukemia after allogeneic hematopoietic cell transplantation. Clinical Lymphoma Myeloma and Leukemia, 2015, 15(5): 298–302. https://doi.org/10.1016/j.clml.2014.12.005

[105]

Larrue, C., Saland, E., Vergez, F., Serhan, N., Delabesse, E., Mansat-De Mas, V., Hospital, M. A., Tamburini, J., Manenti, S., Sarry, J. E. et al. Antileukemic activity of 2-deoxy-d-glucose through inhibition of N-linked glycosylation in acute myeloid leukemia with FLT3-ITD or c-KIT mutations. Molecular Cancer Therapeutics, 2015, 14(10): 2364–2373. https://doi.org/10.1158/1535-7163.mct-15-0163

Aging Research
Article number: 9340034
Cite this article:
Chang T, Chen X-A, Yao C, et al. Glycolysis and immunosenescence: key players in the pathogenesis of acute myeloid leukemia and their therapeutic potential. Aging Research, 2024, 2(4): 9340034. https://doi.org/10.26599/AGR.2024.9340034
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return