AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

A Survey on Noncooperative Games and Distributed Nash Equilibrium Seeking over Multi-Agent Networks

Peng Yi1,2Jinlong Lei1,2( )Xiuxian Li1,2Shu Liang1,2Min Meng1,2Jie Chen1,2
Department of Control Science and Engineering, Tongji University, Shanghai 201804, China
Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai 201210, China
Show Author Information

Abstract

The work gives a review on the distributed Nash equilibrium seeking of noncooperative games in multi-agent networks, which emerges as one of the frontier research topics in the area of systems and control community. Firstly, we give the basic formulation and analysis of noncooperative games with continuous action spaces, and provide the motivation and basic setting for distributed Nash equilibrium seeking. Then we introduce both the gradient-based algorithms and best-response based algorithms for various type of games, including zero-sum games, aggregative games, potential games, monotone games, and multi-cluster games. In addition, we provide some applications of noncooperative games.

References

1

A. Nedić and J. Liu, Distributed optimization for control, Annu. Rev. Control Robot. Auton. Syst., vol. 1, pp. 77–103, 2018.

2

T. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, Y. Hong, H. Wang, Z. Lin, and K. H. Johansson, A survey of distributed optimization, Annu. Rev. Control, vol. 47, pp. 278–305, 2019.

3

G. Notarstefano, I. Notarnicola, and A. Camisa, Distributed optimization for smart cyber-physical networks, Found. Trends Syst. Control, vol. 7, no. 3, pp. 253–383, 2019.

4

R. Xin, S. Pu, A. Nedić, and U. A. Khan, A general framework for decentralized optimization with first-order methods, Proc. IEEE, vol. 108, no. 11, pp. 1869–1889, 2020.

5
B. Yang and M. Johansson, Distributed optimization and games: A tutorial overview, in Networked Control Systems, A. Bemporad, M. Heemels, and M. Johansson, eds. London, UK: Springer, 2010, pp. 109−148.
6

P. Yi and Y. G. Hong, Distributed cooperative optimization and its applications, (in Chinese), Sci. Sinica Math., vol. 46, no. 10, pp. 1547–1564, 2016.

7

Y. Chen, S. Mei, F. Zhou, S. H. Low, W. Wei, and F. Liu, An energy sharing game with generalized demand bidding: Model and properties, IEEE Trans. Smart Grid, vol. 11, no. 3, pp. 2055–2066, 2020.

8

W. Wei, L. Wu, J. Wang, and S. Mei, Network equilibrium of coupled transportation and power distribution systems, IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 6764–6779, 2018.

9
M. Wang, N. Mehr, A. Gaidon, and M. Schwager, Game-theoretic planning for risk-aware interactive agents, in Proc. 2020 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Las Vegas, NV, USA, 2020, pp. 6998−7005.
10

A. Zanardi, G. Zardini, S. Srinivasan, S. Bolognani, A. Censi, F. Dörfler, and E. Frazzoli, Posetal games: Efficiency. existence.and refinement of equilibria in games with prioritized metrics, IEEE Robot. Autom. Lett., vol. 7, no. 2, pp. 1292–1299, 2022.

11
F. Laine, D. Fridovich-Keil, C. Y. Chiu, and C. Tomlin, Multi-hypothesis interactions in game-theoretic motion planning, in Proc. 2021 IEEE Int. Conf. on Robotics and Automation, Xi'an, China, 2021, pp. 8016−8023.
12

M. H. Manshaei, Q. Zhu, T. Alpcan, T. Bacşar, and J. P. Hubaux, Game theory meets network security and privacy, ACM Comput. Surv., vol. 45, no. 3, p. 25, 2013.

13

Q. Zhu and T. Basar, Game-theoretic methods for robustness, security, and resilience of cyberphysical control systems: Games-in-games principle for optimal cross-layer resilient control systems, IEEE Control Syst., vol. 35, no. 1, pp. 46–65, 2015.

14
F. Farnia and A. Ozdaglar, Do GANs always have Nash equilibria? in Proc. 37th Int. Conf. on Machine Learning, 2020, pp. 3029−3039.
15

S. Nardi, F. Mazzitelli, and L. Pallottino, A game theoretic robotic team coordination protocol for intruder herding, IEEE Robot. Autom. Lett., vol. 3, no. 4, pp. 4124–4131, 2018.

16

D. Shishika, J. Paulos, and V. Kumar, Cooperative team strategies for multi-player perimeter-defense games, IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 2738–2745, 2020.

17
R. Vidal, S. Rashid, C. Sharp, O. Shakernia, J. Kim, and S. Sastry, Pursuit-evasion games with unmanned ground and aerial vehicles, in Proc. 2001 ICRA. IEEE Int. Conf. on Robotics and Automation, Seoul, Republic of Korea, 2001, pp. 2948−2955.
18
J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior. Princeton, NJ, USA: Princeton University Press, 1944.
19
T. Başar and G. J. Olsder, Dynamic Noncooperative Game Theory. Philadelphia, PA, USA: SIAM, 1999.
20

I. Menache and A. Ozdaglar, Network games: Theory, models, and dynamics, Synth. Lect. Commun. Networks, vol. 4, no. 1, pp. 1–159, 2011.

21
L. Pavel, Game Theory for Control of Optical Networks. Boston, MA, USA: Springer, 2012.
22
S. W. Mei, F. Liu, and W. Wei, Foundations of Engineering Game Theory and its Applications in Power Systems, (in Chinese). Beijing, China: Science Press, 2016.
23

G. Chalkiadakis, E. Elkind, and M. Wooldridge, Computational aspects of cooperative game theory, Synth. Lect. Artif. Intell. Mach. Learn., vol. 5, no. 6, pp. 1–168, 2011.

24
R. Branzei, D. Dimitrov, and S. Tijs, Models in Cooperative Game Theory. 2nd ed. Berlin, Germany: Springer, 2008.
25

F. Fele, J. M. Maestre, and E. F. Camacho, Coalitional control: Cooperative game theory and control, IEEE Control Syst. Mag., vol. 37, no. 1, pp. 53–69, 2017.

26

A. Nedić and D. Bauso, Dynamic coalitional TU games: Distributed bargaining among players' neighbors, IEEE Trans. Autom. Control, vol. 58, no. 6, pp. 1363–1376, 2013.

27

I. Alvarez, V. Alexander, and S. Poznyak, Urban traffic control via Stackelber-Nash equilibria, IFAC Proc. Vol., vol. 42, no. 15, pp. 582–587, 2009.

28
U. O. Candogan, I. Menache, A. Ozdaglar, and P. A. Parrilo, Near-optimal power control in wireless networks: A potential game approach, in Proc. 2010 IEEE INFOCOM, San Diego, CA, USA, 2010, pp. 1−9.
29

N. B. Mandayam, S. B. Wicker, J. Walrand, T. Basar, J. W. Huang, and D. P. Palomar, Game theory in communication systems [guest editorial], IEEE J. Sel. Areas Commun., vol. 26, no. 7, pp. 1042–1046, 2008.

30

A. Attar, T. Basar, M. Debbah, H. V. Poor, and Q. Zhao, Guest editorial game theory in wireless communications, IEEE J. Sel. Areas Commun., vol. 30, no. 1, pp. 1–3, 2012.

31

H. Sandberg, S. Amin, and K. H. Johansson, Cyberphysical security in networked control systems: An introduction to the issue, IEEE Control Syst. Mag., vol. 35, no. 1, pp. 20–23, 2015.

32

J. F. Nash Jr, Equilibrium points in n-person games, Proc. Natl Acad. Sci. USA, vol. 36, no. 1, pp. 48–49, 1950.

33

F. Facchinei and C. Kanzow, Generalized Nash equilibrium problems, Ann. Oper. Res., vol. 175, no. 1, pp. 177–211, 2010.

34

Y. Nesterov, Stable traffic equilibria: Properties and applications, Optim. Eng., vol. 1, no. 1, pp. 29–50, 2000.

35

A. Kannan, U. V. Shanbhag, and H. M. Kim, Addressing supply-side risk in uncertain power markets: Stochastic Nash models, scalable algorithms and error analysis, Optim. Methods Software, vol. 28, no. 5, pp. 1095–1138, 2013.

36

J. S. Pang, G. Scutari, D. P. Palomar, and F. Facchinei, Design of cognitive radio systems under temperature-interference constraints: A variational inequality approach, IEEE Trans. Signal Process., vol. 58, no. 6, pp. 3251–3271, 2010.

37
T. Alpcan and T. Basar, A game-theoretic framework for congestion control in general topology networks, in Proc. 41st IEEE Conf. on Decision and Control, 2002, Las Vegas, NV, USA, 2002, pp. 1218−1224.
38
D. Fudenberg and D. K. Levine, The Theory of Learning in Games. Cambridge, MA, USA: MIT Press, 1998.
39
N. Nisan, M. Schapira, G. Valiant, and A. Zohar, Best response mechanisms, in Proc. Conf. on Innovations in Computer Science, Beijing, China, 2011, pp. 155−165.
40
D. P. Palomar and Y. C. Eldar, Convex Optimization in Signal Processing and Communications. Cambridge, UK: Cambridge University Press, 2010.
41
F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems. New York, NY, USA: Springer, 2003.
42

D. Monderer and L. S. Shapley, Fictitious play property for games with identical interests, J. Econ. Theory, vol. 68, no. 1, pp. 258–265, 1996.

43
J. Chen, H. Fang, and B. Xin, Cooperative Cluster Motion Control for Multi-Agent Systems, (in Chinese). Beijing, China: Science Press, 2017.
44
M. Zhu and S. Martínez, Distributed Optimization-Based Control of Multi-Agent Networks in Complex Environments. Cham, Switzerland: Springer, 2015.
45

Y. Lou, Y. Hong, L. Xie, G. Shi, and K. H. Johansson, Nash equilibrium computation in subnetwork zero-sum games with switching communications, IEEE Trans. Autom. Control, vol. 61, no. 10, pp. 2920–2935, 2016.

46

S. Grammatico, F. Parise, M. Colombino, and J. Lygeros, Decentralized convergence to Nash equilibria in constrained deterministic mean field control, IEEE Trans. Autom. Control, vol. 61, no. 11, pp. 3315–3329, 2016.

47

J. Koshal, A. Nedić, and U. V. Shanbhag, Distributed algorithms for aggregative games on graphs, Oper. Res., vol. 64, no. 3, pp. 680–704, 2016.

48

F. Salehisadaghiani and L. Pavel, Distributed Nash equilibrium seeking: A gossip-based algorithm, Automatica, vol. 72, pp. 209–216, 2016.

49

M. Ye and G. Hu, Game design and analysis for price-based demand response: An aggregate game approach, IEEE Trans. Cybern., vol. 47, no. 3, pp. 720–730, 2017.

50

M. Ye and G. Hu, Distributed Nash equilibrium seeking by a consensus based approach, IEEE Trans. Autom. Control, vol. 62, no. 9, pp. 4811–4818, 2017.

51

S. Liang, P. Yi, and Y. Hong, Distributed Nash equilibrium seeking for aggregative games with coupled constraints, Automatica, vol. 85, pp. 179–185, 2017.

52

P. Yi and L. Pavel, Distributed generalized Nash equilibria computation of monotone games via double-layer preconditioned proximal-point algorithms, IEEE Trans. Control Network Syst., vol. 6, no. 1, pp. 299–311, 2019.

53

K. Lu, G. Jing, and L. Wang, Distributed algorithms for searching generalized Nash equilibrium of noncooperative games, IEEE Trans. Cybern., vol. 49, no. 6, pp. 2362–2371, 2019.

54

J. Lei and U. V. Shanbhag, Distributed variable sample-size gradient-response and best-response schemes for stochastic Nash equilibrium problems, SIAM J. Optim., vol. 32, no. 2, pp. 573–603, 2022.

55

W. Liu, W. Gu, J. Wang, W. Yu, and X. Xi, Game theoretic non-cooperative distributed coordination control for multi-microgrids, IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 6986–6997, 2018.

56

T. Tatarenko, W. Shi, and A. Nedić, Geometric convergence of gradient play algorithms for distributed Nash equilibrium seeking, IEEE Trans. Autom. Control, vol. 66, no. 11, pp. 5342–5353, 2021.

57

D. Paccagnan, B. Gentile, F. Parise, M. Kamgarpour, and J. Lygeros, Nash and wardrop equilibria in aggregative games with coupling constraints, IEEE Trans. Autom. Control, vol. 64, no. 4, pp. 1373–1388, 2019.

58

P. Yi and L. Pavel, An operator splitting approach for distributed generalized Nash equilibria computation, Automatica, vol. 102, pp. 111–121, 2019.

59
Z. Li and Z. Ding, Distributed Nash equilibrium searching via fixed-time consensus-based algorithms, in Proc. 2019 American Control Conf., Philadelphia, PA, USA, 2019, pp. 2765−2770.
60

F. Salehisadaghiani, W. Shi, and L. Pavel, Distributed Nash equilibrium seeking under partial-decision information via the alternating direction method of multipliers, Automatica, vol. 103, pp. 27–35, 2019.

61

C. X. Shi and G. H. Yang, Distributed Nash equilibrium computation in aggregative games: An event-triggered algorithm, Inf. Sci., vol. 489, pp. 289–302, 2019.

62

Z. Deng and S. Liang, Distributed algorithms for aggregative games of multiple heterogeneous Euler-Lagrange systems, Automatica, vol. 99, pp. 246–252, 2019.

63
D. Fudenberg and J. Tirole, Game Theory. Cambridge, MA, USA: MIT Press, 1991, pp. 80.
64
W. Y. Zhang, Game Theory and Information Economics, (in Chinese). Shanghai, China: Shanghai People's Publishing House, 2004.
65

T. Basar, Control and game-theoretic tools for communication networks, Appl. Comput. Math., vol. 6, no. 2, pp. 104–125, 2007.

66

H. Yin, U. V. Shanbhag, and P. G. Mehta, Nash equilibrium problems with scaled congestion costs and shared constraints, IEEE Trans. Autom. Control, vol. 56, no. 7, pp. 1702–1708, 2011.

67

D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran, and T. Graepel, et al., A general reinforcement learning algorithm that masters chess, shogi, and go through self-play, Science, vol. 362, no. 6419, pp. 1140–1144, 2018.

68

N. Brown and T. Sandholm, Superhuman AI for multiplayer poker, Science, vol. 365, no. 6456, pp. 885–890, 2019.

69
M. Kearns, M. L. Littman, and S. Singh, Graphical models for game theory. arXiv preprint arXiv: 1301.2281, 2013.
70

A. Fischer, M. Herrich, and K. Schönefeld, Generalized Nash equilibrium problems-recent advances and challenges, Pesq. Oper., vol. 34, no. 3, pp. 521–558, 2014.

71
F. Parise, S. Grammatico, B. Gentile, and J. Lygeros, Network aggregative games and distributed mean field control via consensus theory, arXiv preprint arXiv: 1506.07719, 2015.
72

B. Swenson, R. Murray, and S. Kar, On best-response dynamics in potential games, SIAM J. Control Optim., vol. 56, no. 4, pp. 2734–2767, 2018.

73
F. Facchinei and J. S. Pang, Nash equilibria: The variational approach, in Convex Optimization in Signal Processing and Communications, D. Palomar, and Y. Eldar, eds. Cambridge, UK: Cambridge University Press, 2009, pp. 443−493.
74

G. Scutari, D. P. Palomar, F. Facchinei, and J. S. Pang, Convex optimization, game theory, and variational inequality theory, IEEE Signal Process. Mag., vol. 27, no. 3, pp. 35–49, 2010.

75

F. Facchinei, A. Fischer, and V. Piccialli, On generalized Nash games and variational inequalities, Oper. Res. Lett., vol. 35, no. 2, pp. 159–164, 2007.

76

A. Dreves, F. Facchinei, C. Kanzow, and S. Sagratella, On the solution of the KKT conditions of generalized Nash equilibrium problems, SIAM J. Optim., vol. 21, no. 3, pp. 1082–1108, 2011.

77

J. S. Pang and M. Fukushima, Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games, Comput, Comput. Manage. Sci., vol. 2, no. 1, pp. 21–56, 2005.

78

F. Parise and A. Ozdaglar, A variational inequality framework for network games: Existence, uniqueness, convergence and sensitivity analysis, Games Econ. Behav., vol. 114, pp. 47–82, 2019.

79

G. Gürkan and J. S. Pang, Approximations of Nash equilibria, Math. Program, vol. 223, no. 1−2, pp. 117–253, 2009.

80

S. Li and T. Başar, Distributed algorithms for the computation of noncooperative equilibria, Automatica, vol. 23, no. 4, pp. 523–533, 1987.

81

M. Zhu and E. Frazzoli, Distributed robust adaptive equilibrium computation for generalized convex games, Automatica, vol. 63, pp. 82–91, 2016.

82

G. Belgioioso and S. Grammatico, Semi-decentralized Nash equilibrium seeking in aggregative games with separable coupling constraints and non-differentiable cost functions, IEEE Control Syst. Lett., vol. 1, no. 2, pp. 400–405, 2017.

83
G. W. Brown, Activity analysis of production and allocation, in Iterative Solutions of Games by Fictitious Play, T. C. Koopmans, Ed. New York, NY, USA: Wiley, 1951, pp. 374−376.
84

F. Facchinei, V. Piccialli, and M. Sciandrone, Decomposition algorithms for generalized potential games, Comput. Optim. Appl., vol. 50, no. 2, pp. 237–262, 2011.

85
J. von Neumann, Zur theorie der Gesellschaftsspiele, (in German), Math. Ann., vol. 100, no. 1, pp. 295−320, 1928.
86

B. Gharesifard and J. Cortés, Distributed convergence to Nash equilibria in two-network zero-sum games, Automatica, vol. 49, no. 6, pp. 1683–1692, 2013.

87
Y. Xiao, X. Hou, and J. Hu, Distributed solutions of convex-concave games on networks, in Proc. 2019 American Control Conf., Philadelphia, PA, USA, 2019, pp. 1189−1194.
88
S. Huang, J. Lei, Y. Hong, U. V. Shanbhag, and J. Chen, No-regret distributed learning in subnetwork zero-sum games, arXiv preprint arXiv: 2108.02144, 2021.
89

J. Hofbauer and S. Sorin, Best response dynamics for continuous zero-sum games, Discrete Contin. Dyn. Syst. Ser. B, vol. 6, no. 1, pp. 215–224, 2006.

90
R. Selten and C. C. Berg, Experimentelle oligopolspielserien mit kontinuierlichem zeitablauf, in Beiträge zur experimentellen Wirtschaftsforschung, H. Sauermann, ed. Tübingen, Germany: J. C. B. Mohr, 1970, pp. 162−221.
91

J. Ghaderi and R. Srikant, Opinion dynamics in social networks with stubborn agents: Equilibrium and convergence rate, Automatica, vol. 50, no. 12, pp. 3209–3215, 2014.

92

M. Y. Huang, P. E. Caines, and R. P. Malhamé, Large-population cost-coupled LQG problems with nonuniform agents: Individual-mass behavior and decentralized ε-Nash equilibria, IEEE Trans. Autom. Control, vol. 52, no. 9, pp. 1560–1571, 2007.

93
P. E. Caines, Mean field games, in Encyclopedia of Systems and Control, J. Baillieul and T. Samad, eds. London, UK: Springer, 2019, pp. 706−712.
94
J. Lei and U. V. Shanbhag, Linearly convergent variable sample-size schemes for stochastic Nash games: Best-response schemes and distributed gradient-response schemes, in Proc. 2018 IEEE Conf. on Decision and Control, Miami, FL, USA, 2018, pp. 3547−3552.
95

R. Zhu, J. Zhang, K. You, and T. Basar, Asynchronous networked aggregative games, Automatica, vol. 136, p. 110054, 2022.

96
S. Huang, J. Lei, and Y. Hong, A linearly convergent distributed Nash equilibrium seeking algorithm for aggregative games, IEEE Trans. Autom. Control, doi: 10.1109/TAC.2022.3154356.
97
J. Lei, P. Yi, and L. Li, Distributed no-regret learning for stochastic aggregative games over networks, in Proc. 2021 40th Chinese Control Conf., Shanghai, China, 2021, pp. 7512−7519.
98
J. Lei, U. V. Shanbhag, and J. Chen, Distributed computation of Nash equilibria for monotone aggregative games via iterative regularization, in Proc. 2020 59th IEEE Conf. on Decision and Control, Jeju, Korea, 2020, pp. 2285−2290.
99

M. Ye, G. Hu, L. Xie, and S. Xu, Differentially private distributed Nash equilibrium seeking for aggregative games, IEEE Trans. Autom. Control, vol. 67, no. 5, pp. 2451–2458, 2022.

100
D. Paccagnan, M. Kamgarpour, and J. Lygeros, On aggregative and mean field games with applications to electricity markets, in Proc. 2016 European Control Conf., Aalborg, Denmark, 2016, pp. 196−201.
101

H. Kebriaei, S. J. Sadati-Savadkoohi, M. Shokri, and S. Grammatico, Multipopulation aggregative games: Equilibrium seeking via mean-field control and consensus, IEEE Trans. Autom. Control, vol. 66, no. 12, pp. 6011–6016, 2021.

102

Z. Deng and X. Nian, Distributed generalized Nash equilibrium seeking algorithm design for aggregative games over weight-balanced digraphs, IEEE Trans. Neural Networks Learn. Syst., vol. 30, no. 3, pp. 695–706, 2019.

103

Y. Zhang, S. Liang, X. Wang, and H. Ji, Distributed Nash equilibrium seeking for aggregative games with nonlinear dynamics under external disturbances, IEEE Trans. Cybern., vol. 50, no. 12, pp. 4876–4885, 2020.

104

D. Monderer and L. S. Shapley, Potential games, Games Econ. Behav., vol. 14, no. 1, pp. 124–143, 1996.

105

O. Candogan, A. Ozdaglar, and P. A. Parrilo, Near-potential games: Geometry and dynamics, ACM Trans. Econ. Comput., vol. 1, no. 2, p. 11, 2013.

106

N. Li and J. R. Marden, Designing games for distributed optimization, IEEE J. Sel. Top. Signal Process., vol. 7, no. 2, pp. 230–242, 2013.

107

F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, Rate control for communication networks: Shadow prices, proportional fairness and stability, J. Oper. Res. Soc., vol. 49, no. 3, pp. 237–252, 1998.

108

Y. Yang, F. Rubio, G. Scutari, and D. P. Palomar, Multi-portfolio optimization: A potential game approach, IEEE Trans. Signal Process., vol. 61, no. 22, pp. 5590–5602, 2013.

109

P. Yi, Y. Zhang, and Y. Hong, Potential game design for a class of distributed optimisation problems, J. Control Decis., vol. 1, no. 2, pp. 166–179, 2014.

110

J. Lei and U. V. Shanbhag, Asynchronous schemes for stochastic and misspecified potential games and nonconvex optimization, Oper. Res., vol. 68, no. 6, pp. 1742–1766, 2020.

111
X. Wang, N. Xiao, T. Wongpiromsarn, L. Xie, E. Frazzoli, and D. Rus, Distributed consensus in noncooperative congestion games: An application to road pricing, in Proc. 2013 10th IEEE Int. Conf. on Control and Automation, Hangzhou, China, 2013, pp. 1668−1673.
112

M. Ye and G. Hu, Solving potential games with dynamical constraint, IEEE Trans. Cybern., vol. 46, no. 5, pp. 1156–1164, 2016.

113

J. Zhang, W. Liang, B. Yang, H. Shi, K. Wang, and Q. Wang, A potential game approach for decentralized resource coordination in coexisting IWNs, IEEE Trans. Cognit. Commun. Netw., vol. 8, no. 2, pp. 1118–1130, 2022.

114

A. Kannan and U. V. Shanbhag, Distributed computation of equilibria in monotone Nash games via iterative regularization techniques, SIAM J. Optim., vol. 22, no. 4, pp. 1177–1205, 2012.

115
L. M. Briceno-Arias and P. L. Combettes, Monotone operator methods for Nash equilibria in non-potential games, in Computational and Analytical Mathematics, D. H. Bailey, H. H. Bauschke, P. Borwein, F. Garvan, M. Théra, J. D. Vanderwerff, H. Wolkowicz, Eds. New York, NY, USA: Springer, 2013, pp. 143−159.
116

G. Scutari, F. Facchinei, J. S. Pang, and D. P. Palomar, Real and complex monotone communication games, IEEE Trans. Inf. Theory, vol. 60, no. 7, pp. 4197–4231, 2014.

117

J. Koshal, A. Nedic, and U. V. Shanbhag, Regularized iterative stochastic approximation methods for stochastic variational inequality problems, IEEE Trans. Autom. Control, vol. 58, no. 3, pp. 594–609, 2013.

118

F. Yousefian, A. Nedić, and U. V. Shanbhag, Self-tuned stochastic approximation schemes for non-Lipschitzian stochastic multi-user optimization and Nash games, IEEE Trans. Autom. Control, vol. 61, no. 7, pp. 1753–1766, 2016.

119
J. R. Marden, Learning in Large-Scale Games and Cooperative Control. Los Angeles: University of California, 2007.
120
W. Shi and L. Pavel, LANA: An ADMM-like Nash equilibrium seeking algorithm in decentralized environment, in Proc. 2017 American Control Conf., Seattle, WA, USA, 2017, pp. 285−290.
121
J. Zhou, Y. Lv, and M. Ye, Appointed-time distributed Nash equilibrium seeking for networked games, in Proc. 2021 60th IEEE Conf. on Decision and Control, Austin, TX, USA, 2021, pp. 203−208.
122
X. Fang, G. Wen, J. Zhou, and W. Zheng, Distributed adaptive Nash equilibrium seeking over multi-agent networks with communication uncertainties, in Proc. 2021 60th IEEE Conf. on Decision and Control, Austin, TX, USA, 2021, pp. 3387−3392.
123
D. Gadjov and L. Pavel, Distributed Nash equilibrium seeking resilient to adversaries, in Proc. 2021 60th IEEE Conf. on Decision and Control, Austin, TX, USA, 2021, pp. 191−196.
124
G. Shao, R. Wang, M. Ye, and X. F. Wang, Distributed Nash equilibrium seeking under input dead-zone, IEEE Trans. Autom. Control, doi: 10.1109/TAC.2021.3133182.
125

J. Lei, U. V. Shanbhag, J. S. Pang, and S. Sen, On synchronous, asynchronous, and randomized best-response schemes for stochastic Nash games, Math. Oper. Res., vol. 45, no. 1, pp. 157–190, 2019.

126

D. Gadjov and L. Pavel, A passivity-based approach to Nash equilibrium seeking over networks, IEEE Trans. Autom. Control, vol. 64, no. 3, pp. 1077–1092, 2019.

127
A. R. Romano and L. Pavel, Dynamic gradient play for NE seeking with disturbance rejection, in Proc. 2018 IEEE Conf. on Decision and Control, Miami, FL, USA, 2018, pp. 346−351.
128

S. Huang and P. Yi, Distributed best response dynamics for Nash equilibrium seeking in potential games, Control Theory Technol., vol. 18, no. 3, pp. 324–332, 2020.

129
S. Liang, P. Yi, Y. Hong, and K. Peng, Distributed Nash equilibrium seeking for aggregative games via a small-gain approach, arXiv preprint arXiv: 1911.06458, 2019.
130

Y. Zhu, W. Yu, G. Wen, and G. Chen, Distributed Nash equilibrium seeking in an aggregative game on a directed graph, IEEE Trans. Autom. Control, vol. 66, no. 6, pp. 2746–2753, 2021.

131

M. Ye, L. Yin, G. Wen, and Y. Zheng, On distributed Nash equilibrium computation: Hybrid games and a novel consensus-tracking perspective, IEEE Trans. Cybern., vol. 51, no. 10, pp. 5021–5031, 2021.

132
Z. Deng, Distributed algorithm design for aggregative games of Euler-Lagrange systems and its application to smart grids, IEEE Trans. Cybern., doi: 10.1109/TCYB.2021.3049462.
133
Y. Tang and P. Yi, Nash equilibrium seeking for high-order multi-agent systems with unknown dynamics, arXiv preprint arXiv: 2101.02883, 2021.
134
M. Ye, J. Yin, and L. Yin, Distributed Nash equilibrium seeking for games in second-order systems without velocity measurement, IEEE Trans. Autom. Control, doi: 10.1109/TAC.2021.3131553.
135
B. Gao and L. Pavel, Second-order mirror descent: Exact convergence beyond strictly stable equilibria in concave games, in Proc. 2021 60th IEEE Conf. on Decision and Control, Austin, TX, USA, 2021, pp. 948−953.
136
M. Zhu and E. Frazzoli, On distributed equilibrium seeking for generalized convex games, in Proc. 2012 IEEE 51st IEEE Conf. on Decision and Control, Maui, HI, USA, 2012, pp. 4858−4863.
137

P. Yi and L. Pavel, Asynchronous distributed algorithms for seeking generalized Nash equilibria under full and partial-decision information, IEEE Trans. Cybern., vol. 50, no. 6, pp. 2514–2526, 2020.

138
C. Cenedese, G. Belgioioso, S. Grammatico, and M. Cao, An asynchronous, forward-backward, distributed generalized Nash equilibrium seeking algorithm, in Proc. 2019 18th European Control Conf., Naples, Italy, 2019, pp. 3508−3513.
139
L. Pavel, A doubly-augmented operator splitting approach for distributed GNE seeking over networks, in Proc.2018 IEEE Conf. on Decision and Control, Miami, FL, USA, 2018, pp. 3529−3534.
140

M. Bianchi, G. Belgioioso, and S. Grammatico, Fast generalized Nash equilibrium seeking under partial-decision information, Automatica, vol. 136, p. 110080, 2022.

141
W. Xu, S. Yang, S. Grammatico, and W. He, An event-triggered distributed generalized Nash equilibrium seeking algorithm, in Proc. 2021 60th IEEE Conf. on Decision and Control, Austin, TX, USA, 2021, pp. 4301−4306.
142

B. Franci and S. Grammatico, Stochastic generalized Nash equilibrium seeking under partial-decision information, Automatica, vol. 137, p. 110101, 2022.

143
S. Zou and J. Lygeros, Semi-decentralized zeroth-order algorithms for stochastic generalized Nash equilibrium seeking, IEEE Trans. Autom. Control, doi: 10.1109/TAC.2022.3151225.
144
G. Belgioioso and S. Grammatico, Semi-decentralized generalized Nash equilibrium seeking in monotone aggregative games, IEEE Trans. Autom. Control, doi: 10.1109/TAC.2021.3135360.
145
F. Fabiani, M. A. Tajeddini, H. Kebriaei, and S. Grammatico, Local stackelberg equilibrium seeking in generalized aggregative games, IEEE Trans. Autom. Control, doi: 10.1109/TAC.2021.3077874.
146

D. Gadjov and L. Pavel, Single-timescale distributed GNE seeking for aggregative games over networks via forward-backward operator splitting, IEEE Trans. Autom. Control, vol. 66, no. 7, pp. 3259–3266, 2021.

147

M. Bianchi and S. Grammatico, Continuous-time fully distributed generalized Nash equilibrium seeking for multi-integrator agents, Automatica, vol. 129, p. 109660, 2021.

148

Y. Zhu, W. Yu, W. Ren, G. Wen, and J. Gu, Generalized Nash equilibrium seeking via continuous-time coordination dynamics over digraphs, IEEE Trans. Control Netw. Syst., vol. 8, no. 2, pp. 1023–1033, 2021.

149

Y. Zou, B. Huang, Z. Meng, and W. Ren, Continuous-time distributed Nash equilibrium seeking algorithms for non-cooperative constrained games, Automatica, vol. 127, p. 109535, 2021.

150

G. Chen, Y. Ming, Y. Hong, and P. Yi, Distributed algorithm for ε-generalized Nash equilibria with uncertain coupled constraints, Automatica, vol. 123, p. 109313, 2021.

151

Z. Deng, Distributed Nash equilibrium seeking for aggregative games with second-order nonlinear players, Automatica, vol. 135, p. 109980, 2022.

152

S. Krilašević and S. Grammatico, Learning generalized Nash equilibria in multi-agent dynamical systems via extremum seeking control, Automatica, vol. 133, p. 109846, 2021.

153

X. Xu and Q. Zhao, Distributed no-regret learning in multiagent systems: Challenges and recent developments, IEEE Signal Process. Mag., vol. 37, no. 3, pp. 84–91, 2020.

154
M. Zinkevich, Online convex programming and generalized infinitesimal gradient ascent, in Proc. 20th Int. Conf. on Machine Learning, Washington, DC, USA, 2003, pp. 928−935.
155
E. Hazan, A. Agarwal, and S. Kale, Logarithmic regret algorithms for online convex optimization, Mach. Learn., vol. 69, nos. 2&3, pp. 169−192, 2007.
156
P. L. Bartlett, E. Hazan, and A. Rakhlin, Adaptive online gradient descent, in Proc. 20th Int. Conf. on Neural Information Processing Systems, Vancouver, Canada, 2007, pp. 65−72.
157
S. Shalev-Shwartz and Y. Singer, Convex repeated games and fenchel duality, in Proc. 19th Int. Conf. on Neural Information Processing Systems, Vancouver, Canada, 2006, pp. 1265−1272.
158
Z. Zhou, P. Mertikopoulos, A. L. Moustakas, N. Bambos, and P. Glynn, Mirror descent learning in continuous games, in Proc. 2017 IEEE 56th Annu. Conf. on Decision and Control, Melbourne, Australia, 2017, pp. 5776−5783.
159
G. J. Gordon, A. Greenwald, and C. Marks, No-regret learning in convex games, in Proc. 25th Int. Conf. on Machine Learning, Helsinki, Finland, 2008, pp. 360−367.
160
M. Bravo, D. Leslie, and P. Mertikopoulos, Bandit learning in concave N-person games, in Proc. 32nd Int. Conf. on Neural Information Processing Systems, Montréal, Canada, 2018, pp. 5666−5676.
161
A. Héliou, P. Mertikopoulos, and Z. Zhou, Gradient-free online learning in continuous games with delayed rewards, in Proc. 37th Int. Conf. on Machine Learning, 2020, pp. 4172−4181.
162
J. Cohen, A. Héliou, and P. Mertikopoulos, Learning with bandit feedback in potential games, in Proc. 31st Int. Conf. on Neural Information Processing Systems, Long Beach, CA, USA, 2017, pp. 6372−6381.
163
Y. Shi and B. Zhang, No-regret learning in cournot games, arXiv preprint arXiv: 1906.06612, 2019.
164
I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, Generative adversarial nets, in Proc. 27th Int. Conf. on Neural Information Processing Systems, Montreal, Canada, 2014, pp. 2672−2680.
165
C. Daskalakis, A. Deckelbaum, and A. Kim, Near-optimal no-regret algorithms for zero-sum games, in Proc. 22nd Annu. ACM-SIAM Symp. on Discrete Algorithms, San Francisco, CA, USA, 2011, pp. 235−254.
166
E. A. Kangarshahi, Y. P. Hsieh, M. F. Sahin, and V. Cevher, Let's be honest: An optimal no-regret framework for zero-sum games, in Proc. 35th Int. Conf. on Machine Learning, Stockholm, Sweden, 2018, pp. 2493−2501.
167
C. Daskalakis and I. Panageas, Last-iterate convergence: Zero-sum games and constrained min-max optimization, in Proc. 10th Innovations in Theoretical Computer Science Conf., Dagstuhl, Germany, 2018, pp. 27.
168

M. Ye, G. Hu, and F. L. Lewis, Nash equilibrium seeking for N-coalition noncooperative games, Automatica, vol. 95, pp. 266–272, 2018.

169

X. Zeng, J. Chen, S. Liang, and Y. Hong, Generalized Nash equilibrium seeking strategy for distributed nonsmooth multi-cluster game, Automatica, vol. 103, pp. 20–26, 2019.

170

M. Ye, G. Hu, F. L. Lewis, and L. Xie, A unified strategy for solution seeking in graphical N-coalition noncooperative games, IEEE Trans. Autom. Control, vol. 64, no. 11, pp. 4645–4652, 2019.

171
C. Sun and G. Hu, Distributed generalized Nash equilibrium seeking of N-coalition games with full and distributive constraints, arXiv preprint arXiv: 2109.12515, 2021.
172

Y. Pang and G. Hu, Nash equilibrium seeking in N-coalition games via a gradient-free method, Automatica, vol. 136, p. 110013, 2022.

173
M. Meng and X. Li, On the linear convergence of distributed Nash equilibrium seeking for multi-cluster games under partial-decision information, arXiv preprint arXiv: 2005.06923, 2020.
174

N. S. Kukushkin, Best response dynamics in finite games with additive aggregation, Games EcoBehav., vol. 48, no. 1, pp. 94–110, 2004.

175

B. Swenson, S. Kar, and J. Xavier, Empirical centroid fictitious play: An approach for distributed learning in multi-agent games, IEEE Trans. Signal Process., vol. 63, no. 15, pp. 3888–3901, 2015.

176

B. Swenson, C. Eksin, S. Kar, and A. Ribeiro, Distributed inertial best-response dynamics, IEEE Trans. Autom. Control, vol. 63, no. 12, pp. 4294–4300, 2018.

177

B. Wang, Y. Wu, and K. J. R. Liu, Game theory for cognitive radio networks: An overview, Comput. Netw., vol. 54, no. 14, pp. 2537–2561, 2010.

178

L. Duan, J. Huang, and B. Shou, Investment and pricing with spectrum uncertainty: A cognitive operator's perspective, IEEE Trans. Mobile Comput., vol. 10, no. 11, pp. 1590–1604, 2011.

179

X. Liu, R. Zhu, B. Jalaian, and Y. Sun, Dynamic spectrum access algorithm based on game theory in cognitive radio networks, Mobile Netw. Appl., vol. 20, no. 6, pp. 817–827, 2015.

180

X. Cao, Y. Chen, and K. J. R. Liu, Cognitive radio networks with heterogeneous users: How to procure and price the spectrum? IEEE Trans. Wireless Commun., vol. 14, no. 3, pp. 1676–1688, 2015.

181

G. S. Kasbekar and S. Sarkar, Spectrum white space trade in cognitive radio networks, IEEE Trans. Autom. Control, vol. 61, no. 3, pp. 585–600, 2016.

182

W. Tushar, T. K. Saha, C. Yuen, D. Smith, and H. V. Poor, Peer-to-peer trading in electricity networks: An overview, IEEE Trans. Smart Grid, vol. 11, no. 4, pp. 3185–3200, 2020.

183

Y. Chen, C. Zhao, S. H. Low, and S. Mei, Approaching prosumer social optimum via energy sharing with proof of convergence, IEEE Trans. Smart Grid, vol. 12, no. 3, pp. 2484–2495, 2021.

184

Z. Wang, F. Liu, Z. Ma, Y. Chen, M. Jia, W. Wei, and Q. Wu, Distributed generalized Nash equilibrium seeking for energy sharing games in prosumers, IEEE Trans. Power Syst., vol. 36, no. 5, pp. 3973–3986, 2021.

CAAI Artificial Intelligence Research
Pages 8-27
Cite this article:
Yi P, Lei J, Li X, et al. A Survey on Noncooperative Games and Distributed Nash Equilibrium Seeking over Multi-Agent Networks. CAAI Artificial Intelligence Research, 2022, 1(1): 8-27. https://doi.org/10.26599/AIR.2022.9150002

4083

Views

916

Downloads

4

Crossref

Altmetrics

Received: 27 November 2021
Revised: 03 March 2022
Accepted: 17 June 2022
Published: 28 August 2022
© The author(s) 2022

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return