5
B. Yang and M. Johansson, Distributed optimization and games: A tutorial overview, in Networked Control Systems, A. Bemporad, M. Heemels, and M. Johansson, eds. London, UK: Springer, 2010, pp. 109−148.
9
M. Wang, N. Mehr, A. Gaidon, and M. Schwager, Game-theoretic planning for risk-aware interactive agents, in Proc. 2020 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Las Vegas, NV, USA, 2020, pp. 6998−7005.
11
F. Laine, D. Fridovich-Keil, C. Y. Chiu, and C. Tomlin, Multi-hypothesis interactions in game-theoretic motion planning, in Proc. 2021 IEEE Int. Conf. on Robotics and Automation, Xi'an, China, 2021, pp. 8016−8023.
14
F. Farnia and A. Ozdaglar, Do GANs always have Nash equilibria? in Proc. 37th Int. Conf. on Machine Learning, 2020, pp. 3029−3039.
17
R. Vidal, S. Rashid, C. Sharp, O. Shakernia, J. Kim, and S. Sastry, Pursuit-evasion games with unmanned ground and aerial vehicles, in Proc. 2001 ICRA. IEEE Int. Conf. on Robotics and Automation, Seoul, Republic of Korea, 2001, pp. 2948−2955.
18
J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior. Princeton, NJ, USA: Princeton University Press, 1944.
19
T. Başar and G. J. Olsder, Dynamic Noncooperative Game Theory. Philadelphia, PA, USA: SIAM, 1999.
21
L. Pavel, Game Theory for Control of Optical Networks. Boston, MA, USA: Springer, 2012.
22
S. W. Mei, F. Liu, and W. Wei, Foundations of Engineering Game Theory and its Applications in Power Systems, (in Chinese). Beijing, China: Science Press, 2016.
24
R. Branzei, D. Dimitrov, and S. Tijs, Models in Cooperative Game Theory. 2nd ed. Berlin, Germany: Springer, 2008.
28
U. O. Candogan, I. Menache, A. Ozdaglar, and P. A. Parrilo, Near-optimal power control in wireless networks: A potential game approach, in Proc. 2010 IEEE INFOCOM, San Diego, CA, USA, 2010, pp. 1−9.
37
T. Alpcan and T. Basar, A game-theoretic framework for congestion control in general topology networks, in Proc. 41st IEEE Conf. on Decision and Control, 2002, Las Vegas, NV, USA, 2002, pp. 1218−1224.
38
D. Fudenberg and D. K. Levine, The Theory of Learning in Games. Cambridge, MA, USA: MIT Press, 1998.
39
N. Nisan, M. Schapira, G. Valiant, and A. Zohar, Best response mechanisms, in Proc. Conf. on Innovations in Computer Science, Beijing, China, 2011, pp. 155−165.
40
D. P. Palomar and Y. C. Eldar, Convex Optimization in Signal Processing and Communications. Cambridge, UK: Cambridge University Press, 2010.
41
F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems. New York, NY, USA: Springer, 2003.
43
J. Chen, H. Fang, and B. Xin, Cooperative Cluster Motion Control for Multi-Agent Systems, (in Chinese). Beijing, China: Science Press, 2017.
44
M. Zhu and S. Martínez, Distributed Optimization-Based Control of Multi-Agent Networks in Complex Environments. Cham, Switzerland: Springer, 2015.
59
Z. Li and Z. Ding, Distributed Nash equilibrium searching via fixed-time consensus-based algorithms, in Proc. 2019 American Control Conf., Philadelphia, PA, USA, 2019, pp. 2765−2770.
63
D. Fudenberg and J. Tirole, Game Theory. Cambridge, MA, USA: MIT Press, 1991, pp. 80.
64
W. Y. Zhang, Game Theory and Information Economics, (in Chinese). Shanghai, China: Shanghai People's Publishing House, 2004.
69
M. Kearns, M. L. Littman, and S. Singh, Graphical models for game theory. arXiv preprint arXiv: 1301.2281, 2013.
71
F. Parise, S. Grammatico, B. Gentile, and J. Lygeros, Network aggregative games and distributed mean field control via consensus theory, arXiv preprint arXiv: 1506.07719, 2015.
73
F. Facchinei and J. S. Pang, Nash equilibria: The variational approach, in Convex Optimization in Signal Processing and Communications, D. Palomar, and Y. Eldar, eds. Cambridge, UK: Cambridge University Press, 2009, pp. 443−493.
83
G. W. Brown, Activity analysis of production and allocation, in Iterative Solutions of Games by Fictitious Play, T. C. Koopmans, Ed. New York, NY, USA: Wiley, 1951, pp. 374−376.
85
J. von Neumann, Zur theorie der Gesellschaftsspiele, (in German), Math. Ann., vol. 100, no. 1, pp. 295−320, 1928.
87
Y. Xiao, X. Hou, and J. Hu, Distributed solutions of convex-concave games on networks, in Proc. 2019 American Control Conf., Philadelphia, PA, USA, 2019, pp. 1189−1194.
88
S. Huang, J. Lei, Y. Hong, U. V. Shanbhag, and J. Chen, No-regret distributed learning in subnetwork zero-sum games, arXiv preprint arXiv: 2108.02144, 2021.
90
R. Selten and C. C. Berg, Experimentelle oligopolspielserien mit kontinuierlichem zeitablauf, in Beiträge zur experimentellen Wirtschaftsforschung, H. Sauermann, ed. Tübingen, Germany: J. C. B. Mohr, 1970, pp. 162−221.
93
P. E. Caines, Mean field games, in Encyclopedia of Systems and Control, J. Baillieul and T. Samad, eds. London, UK: Springer, 2019, pp. 706−712.
94
J. Lei and U. V. Shanbhag, Linearly convergent variable sample-size schemes for stochastic Nash games: Best-response schemes and distributed gradient-response schemes, in Proc. 2018 IEEE Conf. on Decision and Control, Miami, FL, USA, 2018, pp. 3547−3552.
97
J. Lei, P. Yi, and L. Li, Distributed no-regret learning for stochastic aggregative games over networks, in Proc. 2021 40th Chinese Control Conf., Shanghai, China, 2021, pp. 7512−7519.
98
J. Lei, U. V. Shanbhag, and J. Chen, Distributed computation of Nash equilibria for monotone aggregative games via iterative regularization, in Proc. 2020 59th IEEE Conf. on Decision and Control, Jeju, Korea, 2020, pp. 2285−2290.
100
D. Paccagnan, M. Kamgarpour, and J. Lygeros, On aggregative and mean field games with applications to electricity markets, in Proc. 2016 European Control Conf., Aalborg, Denmark, 2016, pp. 196−201.
111
X. Wang, N. Xiao, T. Wongpiromsarn, L. Xie, E. Frazzoli, and D. Rus, Distributed consensus in noncooperative congestion games: An application to road pricing, in Proc. 2013 10th IEEE Int. Conf. on Control and Automation, Hangzhou, China, 2013, pp. 1668−1673.
115
L. M. Briceno-Arias and P. L. Combettes, Monotone operator methods for Nash equilibria in non-potential games, in Computational and Analytical Mathematics, D. H. Bailey, H. H. Bauschke, P. Borwein, F. Garvan, M. Théra, J. D. Vanderwerff, H. Wolkowicz, Eds. New York, NY, USA: Springer, 2013, pp. 143−159.
119
J. R. Marden, Learning in Large-Scale Games and Cooperative Control. Los Angeles: University of California, 2007.
120
W. Shi and L. Pavel, LANA: An ADMM-like Nash equilibrium seeking algorithm in decentralized environment, in Proc. 2017 American Control Conf., Seattle, WA, USA, 2017, pp. 285−290.
121
J. Zhou, Y. Lv, and M. Ye, Appointed-time distributed Nash equilibrium seeking for networked games, in Proc. 2021 60th IEEE Conf. on Decision and Control, Austin, TX, USA, 2021, pp. 203−208.
122
X. Fang, G. Wen, J. Zhou, and W. Zheng, Distributed adaptive Nash equilibrium seeking over multi-agent networks with communication uncertainties, in Proc. 2021 60th IEEE Conf. on Decision and Control, Austin, TX, USA, 2021, pp. 3387−3392.
123
D. Gadjov and L. Pavel, Distributed Nash equilibrium seeking resilient to adversaries, in Proc. 2021 60th IEEE Conf. on Decision and Control, Austin, TX, USA, 2021, pp. 191−196.
127
A. R. Romano and L. Pavel, Dynamic gradient play for NE seeking with disturbance rejection, in Proc. 2018 IEEE Conf. on Decision and Control, Miami, FL, USA, 2018, pp. 346−351.
129
S. Liang, P. Yi, Y. Hong, and K. Peng, Distributed Nash equilibrium seeking for aggregative games via a small-gain approach, arXiv preprint arXiv: 1911.06458, 2019.
133
Y. Tang and P. Yi, Nash equilibrium seeking for high-order multi-agent systems with unknown dynamics, arXiv preprint arXiv: 2101.02883, 2021.
135
B. Gao and L. Pavel, Second-order mirror descent: Exact convergence beyond strictly stable equilibria in concave games, in Proc. 2021 60th IEEE Conf. on Decision and Control, Austin, TX, USA, 2021, pp. 948−953.
136
M. Zhu and E. Frazzoli, On distributed equilibrium seeking for generalized convex games, in Proc. 2012 IEEE 51st IEEE Conf. on Decision and Control, Maui, HI, USA, 2012, pp. 4858−4863.
138
C. Cenedese, G. Belgioioso, S. Grammatico, and M. Cao, An asynchronous, forward-backward, distributed generalized Nash equilibrium seeking algorithm, in Proc. 2019 18th European Control Conf., Naples, Italy, 2019, pp. 3508−3513.
139
L. Pavel, A doubly-augmented operator splitting approach for distributed GNE seeking over networks, in Proc.2018 IEEE Conf. on Decision and Control, Miami, FL, USA, 2018, pp. 3529−3534.
141
W. Xu, S. Yang, S. Grammatico, and W. He, An event-triggered distributed generalized Nash equilibrium seeking algorithm, in Proc. 2021 60th IEEE Conf. on Decision and Control, Austin, TX, USA, 2021, pp. 4301−4306.
154
M. Zinkevich, Online convex programming and generalized infinitesimal gradient ascent, in Proc. 20th Int. Conf. on Machine Learning, Washington, DC, USA, 2003, pp. 928−935.
155
E. Hazan, A. Agarwal, and S. Kale, Logarithmic regret algorithms for online convex optimization, Mach. Learn., vol. 69, nos. 2&3, pp. 169−192, 2007.
156
P. L. Bartlett, E. Hazan, and A. Rakhlin, Adaptive online gradient descent, in Proc. 20th Int. Conf. on Neural Information Processing Systems, Vancouver, Canada, 2007, pp. 65−72.
157
S. Shalev-Shwartz and Y. Singer, Convex repeated games and fenchel duality, in Proc. 19th Int. Conf. on Neural Information Processing Systems, Vancouver, Canada, 2006, pp. 1265−1272.
158
Z. Zhou, P. Mertikopoulos, A. L. Moustakas, N. Bambos, and P. Glynn, Mirror descent learning in continuous games, in Proc. 2017 IEEE 56th Annu. Conf. on Decision and Control, Melbourne, Australia, 2017, pp. 5776−5783.
159
G. J. Gordon, A. Greenwald, and C. Marks, No-regret learning in convex games, in Proc. 25th Int. Conf. on Machine Learning, Helsinki, Finland, 2008, pp. 360−367.
160
M. Bravo, D. Leslie, and P. Mertikopoulos, Bandit learning in concave N-person games, in Proc. 32nd Int. Conf. on Neural Information Processing Systems, Montréal, Canada, 2018, pp. 5666−5676.
161
A. Héliou, P. Mertikopoulos, and Z. Zhou, Gradient-free online learning in continuous games with delayed rewards, in Proc. 37th Int. Conf. on Machine Learning, 2020, pp. 4172−4181.
162
J. Cohen, A. Héliou, and P. Mertikopoulos, Learning with bandit feedback in potential games, in Proc. 31st Int. Conf. on Neural Information Processing Systems, Long Beach, CA, USA, 2017, pp. 6372−6381.
163
Y. Shi and B. Zhang, No-regret learning in cournot games, arXiv preprint arXiv: 1906.06612, 2019.
164
I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, Generative adversarial nets, in Proc. 27th Int. Conf. on Neural Information Processing Systems, Montreal, Canada, 2014, pp. 2672−2680.
165
C. Daskalakis, A. Deckelbaum, and A. Kim, Near-optimal no-regret algorithms for zero-sum games, in Proc. 22nd Annu. ACM-SIAM Symp. on Discrete Algorithms, San Francisco, CA, USA, 2011, pp. 235−254.
166
E. A. Kangarshahi, Y. P. Hsieh, M. F. Sahin, and V. Cevher, Let's be honest: An optimal no-regret framework for zero-sum games, in Proc. 35th Int. Conf. on Machine Learning, Stockholm, Sweden, 2018, pp. 2493−2501.
167
C. Daskalakis and I. Panageas, Last-iterate convergence: Zero-sum games and constrained min-max optimization, in Proc. 10th Innovations in Theoretical Computer Science Conf., Dagstuhl, Germany, 2018, pp. 27.
171
C. Sun and G. Hu, Distributed generalized Nash equilibrium seeking of N-coalition games with full and distributive constraints, arXiv preprint arXiv: 2109.12515, 2021.
173
M. Meng and X. Li, On the linear convergence of distributed Nash equilibrium seeking for multi-cluster games under partial-decision information, arXiv preprint arXiv: 2005.06923, 2020.