[1]
S. Shi, L. Jiang, J. Deng, Z. Wang, C. Guo, J. Shi, X. Wang, and H. Li, PV-RCNN++: Point-voxel feature set abstraction with local vector representation for 3D object detection, arXiv preprint arXiv: 2102.00463, 2021.
[2]
R. Q. Charles, H. Su, M. Kaichun, and L. J. Guibas, PointNet: Deep learning on point sets for 3D classification and segmentation, in Proc. 2017 IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017, pp. 77–85.
[3]
A. Geiger, P. Lenz, and R. Urtasun, Are we ready for autonomous driving? The KITTI vision benchmark suite, in Proc. 2012 IEEE Conf. Computer Vision and Pattern Recognition, Providence, RI, USA, 2012, pp. 335–336.
[4]
M. Liang, B. Yang, Y. Chen, R. Hu, and R. Urtasun, Multi-task multi-sensor fusion for 3D object detection, in Proc. 2019 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019, pp. 7337–7345.
[5]
J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. L. Waslander, Joint 3D proposal generation and object detection from view aggregation, in Proc. 2018 IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), Madrid, Spain, 2018, pp. 1–8.
[6]
X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, Multi-view 3D object detection network for autonomous driving, in Proc. 2017 IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017, pp. 6526–6534.
[7]
P. Li, X. Chen, and S. Shen, Stereo R-CNN based 3D object detection for autonomous driving, in Proc. 2019 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019, pp. 7636–7644.
[8]
Y. Zhou and O. Tuzel, VoxelNet: End-to-end learning for point cloud based 3D object detection, in Proc. 2018 IEEE/CVF Conf. Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 4490–4499.
[9]
D. Maturana and S. Scherer, VoxNet: A 3D convolutional neural network for real-time object recognition, in Proc. 2015 IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Hamburg, Germany, 2015, pp. 922–928.
[11]
Y. Chen, S. Liu, X. Shen, and J. Jia, Fast point R-CNN, in Proc. 2019 IEEE/CVF Int. Conf. Computer Vision (ICCV), Seoul, Republic of Korea, 2019, pp. 9774–9783.
[12]
S. Shi, X. Wang, and H. Li, PointRCNN: 3D object proposal generation and detection from point cloud, in Proc. 2019 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019, pp. 770–779.
[13]
W. Zheng, W. Tang, L. Jiang, and C. W. Fu, SE-SSD: Self-ensembling single-stage object detector from point cloud, in Proc. 2021 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021, pp. 14489–14498.
[14]
C. R. Qi, Y. Li, H. Su, and L. J. Guibas, PointNet++: Deep hierarchical feature learning on point sets in a metric space, in Proc. 31st Int. Conference on Neural Information Processing Systems, Long Beach, CA, USA, 2017, pp. 5105–5114.
[16]
C. R. Qi, O. Litany, K. He, and L. Guibas, Deep Hough voting for 3D object detection in point clouds, in Proc. 2019 IEEE/CVF Int. Conf. Computer Vision (ICCV), Seoul, Republic of Korea, 2019, pp. 9276–9285.
[17]
A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom, PointPillars: Fast encoders for object detection from point clouds, in Proc. 2019 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019, pp. 12689–12697.
[18]
M. Simon, S. Milz, K. Amende, and H. M. Gross, Complex-YOLO: Real-time 3D object detection on point clouds, arXiv preprint arXiv: 1803.06199v2, 2018.
[19]
Z. Yang, Y. Sun, S. Liu, and J. Jia, 3DSSD: Point-based 3d single stage object detector, in Proc. 2020 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2020, pp. 11037–11045.
[20]
A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, MobileNets: Efficient convolutional neural networks for mobile vision applications, arXiv preprint arXiv: 1704.04861, 2017.
[21]
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You only look once: Unified, real-time object detection, in Proc. 2016 IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 779–788.
[22]
J. Redmon and A. Farhadi. YOLO9000: Better, faster, stronger, in Proc. 2017 IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017, pp. 6517–6525.