AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

Variational Quantum Monte Carlo Solution of the Many-Electron Schrödinger Equation Based on Deep Neural Networks

Huiping Su1Hongbo Gao1,2,3( )Xinmiao Wang1Xi He1Da Shen1
Department of Automation, School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China
Institute of Advanced Technology, University of Science and Technology of China, Hefei 230088, China
School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
Show Author Information

Abstract

The solution of Schrödinger equation generates the quantisation properties of the system, which can completely describe the quantum behaviour of microscopic particles in a physical system. However, solving the Schrödinger equation is a non-deterministic polynomial time (NP)-hard problem. Numerical methods for solving the Schrödinger equation require careful selection of basis configurations, and the complete basis set has high accuracy but its complexity increases exponentially in the number of particles. Therefore, it is crucial to find an effective numerical method. To solve this problem, this paper present a deep learning architecture, VMCNet, using the powerful computational efficiency of neural networks to improve the speed of numerical computation. Moreover, this paper proposes a suitable wavefunction ansatz, witch determines the accuracy of neural networks, that achieves more accurate energy solutions of the many-electron Schrödinger equation compared to the conventional single-determinant variational molecular Monte Carlo. We introduce non-local and local blocks to represent quantum mechanical interactions, which contain more physical information about the particle system. The experimental results show that VMCNet can cover more than 93% of the correlation energy of the main group elements (Be–Ne) for the monoatomic system and more than 90% of the correlation energy for the diatomic system.

References

[1]

R. A. Friesner, Ab initio quantum chemistry: Methodology and applications, Proc. Natl. Acad. Sci. U. S. A., vol. 102, no. 19, pp. 6648–6653, 2005.

[2]

R. J. Bartlett and M. Musiał, Coupled-cluster theory in quantum chemistry, Rev. Mod. Phys., vol. 79, no. 1, pp. 291–352, 2007.

[3]

K. T. Schütt, M. Gastegger, A. Tkatchenko, K. R. Müller, and R. J. Maurer, Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions, Nat. Commun., vol. 10, no. 1, p. 5024, 2019.

[4]

W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, Quantum Monte Carlo simulations of solids, Rev. Mod. Phys., vol. 73, no. 1, pp. 33–83, 2001.

[5]

B. M. Austin, D. Y. Zubarev, and W. A. Lester Jr, Quantum Monte Carlo and related approaches, Chem. Rev., vol. 112, no. 1, pp. 263–288, 2012.

[6]

P. López Ríos, A. Ma, N. D. Drummond, M. D. Towler, and R. J. Needs, Inhomogeneous backflow transformations in quantum Monte Carlo calculations, Phys. Rev. E Stat. Nonlin. Soft Matter Phys., vol. 74, no. 6 Pt 2, p. 066701, 2006.

[7]

D. Luo and B. K. Clark, Backflow transformations via neural networks for quantum many-body wave functions, Phys. Rev. Lett., vol. 122, no. 22, p. 226401, 2019.

[8]

J. Hermann, Z. Schätzle, and F. Noé, Deep-neural-network solution of the electronic Schrödinger equation, Nat. Chem., vol. 12, no. 10, pp. 891–897, 2020.

[9]

D. Pfau, J. S. Spencer, A. G. D. G. Matthews, and W. M. C. Foulkes, Ab initio solution of the many-electron Schrödinger equation with deep neural networks, Phys. Rev. Research, vol. 2, no. 3, p. 033429, 2020.

[10]

L. Otis and E. Neuscamman, Optimization stability in excited-state-specific variational Monte Carlo, J. Chem. Theory Comput., vol. 19, no. 3, pp. 767–782, 2023.

[11]
C. Roth, A. Szabó, and A. MacDonald, High accuracy variational Monte Carlo for frustrated magnets with deep neural networks, arXiv preprint arXiv: 2211.07749, 2022.
[12]

J. Behler and M. Parrinello, Generalized neural-network representation of high-dimensional potential-energy surfaces, Phys. Rev. Lett., vol. 98, no. 14, p. 146401, 2007.

[13]

M. Rupp, A. Tkatchenko, K. R. Müller, and O. A. von Lilienfeld, Fast and accurate modeling of molecular atomization energies with machine learning, Phys. Rev. Lett., vol. 108, no. 5, p. 058301, 2012.

[14]

S. Chmiela, A. Tkatchenko, H. E. Sauceda, I. Poltavsky, K. T. Schütt, and K. R. Müller, Machine learning of accurate energy-conserving molecular force fields, Sci. Adv., vol. 3, no. 5, p. e1603015, 2017.

[15]

M. Welborn, L. Cheng, and T. F. Miller Ⅲ, Transferability in machine learning for electronic structure via the molecular orbital basis, J. Chem. Theory Comput., vol. 14, no. 9, pp. 4772–4779, 2018.

[16]

F. A. Faber, A. S. Christensen, B. Huang, and O. A. von Lilienfeld, Alchemical and structural distribution based representation for universal quantum machine learning, J. Chem. Phys., vol. 148, no. 24, p. 241717, 2018.

[17]

O. T. Unke and M. Meuwly, PhysNet: A neural network for predicting energies, forces, dipole moments, and partial charges, J. Chem. Theory Comput., vol. 15, no. 6, pp. 3678–3693, 2019.

[18]

M. Reh and M. Gärttner, Variational Monte Carlo approach to partial differential equations with neural networks, Mach. Learn.: Sci. Technol., vol. 3, no. 4, p. 04LT02, 2022.

[19]

A. Grisafi, A. Fabrizio, B. Meyer, D. M. Wilkins, C. Corminboeuf, and M. Ceriotti, Transferable machine-learning model of the electron density, ACS Cent. Sci., vol. 5, no. 1, pp. 57–64, 2019.

[20]

L. Li, S. Hoyer, R. Pederson, R. Sun, E. D. Cubuk, P. Riley, and K. Burke, Kohn-sham equations as regularizer: Building prior knowledge into machine-learned physics, Phys. Rev. Lett., vol. 126, no. 3, p. 036401, 2021.

[21]

R. Nagai, R. Akashi, and O. Sugino, Completing density functional theory by machine learning hidden messages from molecules, NPJ Comput. Mater., vol. 6, no. 1, p. 43, 2020.

[22]

T. Husch, J. Sun, L. Cheng, S. J. R. Lee, and T. F. Miller Ⅲ, Improved accuracy and transferability of molecular-orbital-based machine learning: Organics, transition-metal complexes, non-covalent interactions, and transition states, J. Chem. Phys., vol. 154, no. 6, p. 064108, 2021.

[23]

J. S. Smith, O. Isayev, and A. E. Roitberg, ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost, Chem. Sci., vol. 8, no. 4, pp. 3192–3203, 2017.

[24]

K. T. Schütt, H. E. Sauceda, P. J. Kindermans, A. Tkatchenko, and K. R. Müller, SchNet-A deep learning architecture for molecules and materials, J. Chem. Phys., vol. 148, no. 24, p. 241722, 2018.

[25]

R. Zubatyuk, J. S. Smith, J. Leszczynski, and O. Isayev, Accurate and transferable multitask prediction of chemical properties with an atoms-in-molecules neural network, Sci. Adv., vol. 5, no. 8, p. eaav6490, 2019.

[26]

Z. Qiao, M. Welborn, A. Anandkumar, F. R. Manby, and T. F. Miller Ⅲ, OrbNet: Deep learning for quantum chemistry using symmetry-adapted atomic-orbital features, J. Chem. Phys., vol. 153, no. 12, p. 124111, 2020.

[27]

A. S. Christensen, S. K. Sirumalla, Z. Qiao, M. B. O’Connor, D. G. A. Smith, F. Ding, P. J. Bygrave, A. Anandkumar, M. Welborn, F. R. Manby, et al, OrbNet Denali: A machine learning potential for biological and organic chemistry with semi-empirical cost and DFT accuracy, J. Chem. Phys., vol. 155, no. 20, p. 204103, 2021.

[28]

R. Ramakrishnan, P. O. Dral, M. Rupp, and O. A. von Lilienfeld, Big data meets quantum chemistry approximations: The Δ-machine learning approach, J. Chem. Theory Comput., vol. 11, no. 5, pp. 2087–2096, 2015.

[29]
J. Klicpera, J. Gro, and S. Günnemann, Directional message passing for molecular graphs. arXiv preprint arXiv: 2003.03123, 2020.
[30]

O. T. Unke, S. Chmiela, M. Gastegger, K. T. Schütt, H. E. Sauceda, and K. R. Müller, SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects, Nat. Commun., vol. 12, no. 1, p. 7273, 2021.

[31]
M. Born and W. Heisenberg, Zur quantentheorie der molekeln (in German), in Original Scientific Papers Wissenschaftliche Originalarbeiten, W. Blum, H. Rechenberg, and H. P. Dürr Eds. Berlin, Heidelberg, Germany: Springer, 1985, pp. 216–246.
[32]
M. H. Kalos, Monte Carlo Methods in Quantum Problems. Dordrecht, the Netherlands: Springer, 2012.
[33]

S. Sorella, Wave function optimization in the variational Monte Carlo method, Phys. Rev. B, vol. 71, no. 24, p. 241103, 2005.

[34]

T. Kato, On the eigenfunctions of many-particle systems in quantum mechanics, Commun. Pure Appl. Math., vol. 10, no. 2, pp. 151–177, 1957.

[35]

Q. Sun, T. C. Berkelbach, N. S. Blunt, G. H. Booth, S. Guo, Z. Li, J. Liu, J. D. McClain, E. R. Sayfutyarova, S. Sharma, et al, PySCF: the Python-based simulations of chemistry framework, Wires Comput. Mol. Sci., vol. 8, no. 1, p. e1340, 2018.

[36]

A. Ma, M. D. Towler, N. D. Drummond, and R. J. Needs, Scheme for adding electron-nucleus cusps to Gaussian orbitals, J. Chem. Phys., vol. 122, no. 22, p. 224322, 2005.

[37]
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, Attention is all you need, in Proc. 31st Conf. Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 2017.
[38]

M. D. Brown, J. R. Trail, P. López Ríos, and R. J. Needs, Energies of the first row atoms from quantum Monte Carlo, J. Chem. Phys., vol. 126, no. 22, p. 224110, 2007.

[39]

P. Seth, P. L. Ríos, and R. J. Needs, Quantum Monte Carlo study of the first-row atoms and ions, J. Chem. Phys., vol. 134, no. 8, p. 084105, 2011.

[40]

C. Filippi and C. J. Umrigar, Multiconfiguration wave functions for quantum Monte Carlo calculations of first-row diatomic molecules, J. Chem. Phys., vol. 105, no. 1, pp. 213–226, 1996.

[41]

G. H. Booth, A. J. W. Thom, and A. Alavi, Fermion Monte Carlo without fixed nodes: A game of life, death, and annihilation in Slater determinant space, J. Chem. Phys., vol. 131, no. 5, p. 054106, 2009.

[42]

K. Choo, A. Mezzacapo, and G. Carleo, Fermionic neural-network states for ab-initio electronic structure, Nat. Commun., vol. 11, no. 1, p. 2368, 2020.

[43]

S. J. Chakravorty, S. R. Gwaltney, E. R. Davidson, F. A. Parpia, and C. F. p Fischer, Groundstate correlation energies for atomic ions with 3 to 18 electrons, Phys. Rev. A, vol. 47, no. 5, pp. 3649–3670, 1993.

CAAI Artificial Intelligence Research
Article number: 9150030
Cite this article:
Su H, Gao H, Wang X, et al. Variational Quantum Monte Carlo Solution of the Many-Electron Schrödinger Equation Based on Deep Neural Networks. CAAI Artificial Intelligence Research, 2024, 3: 9150030. https://doi.org/10.26599/AIR.2024.9150030

788

Views

161

Downloads

0

Crossref

Altmetrics

Received: 24 April 2023
Revised: 15 December 2023
Accepted: 06 February 2024
Published: 21 June 2024
© The author(s) 2024.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return