Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Integrating artificial intelligence (AI) into photovoltaic (PV) systems has become a revolutionary approach to improving the efficiency, reliability, and predictability of solar power generation. In this paper, we explore the impact of AI technology on PV power generation systems and its applications from a global perspective. Central to the discussion are the pivotal applications of AI in maximum power point tracking (MPPT), power forecasting, and fault detection within the PV system. On the one hand, the integration with AI technology enables the optimization and improvement of the operational efficiency of PV systems. On the other hand, new challenges have been observed, mainly in the areas of data processing and model management. Moreover, advances in AI technology and hardware upgrades will lead to the rapid global popularization of new energy sources such as solar energy, which is expected to replace traditional energy sources. Finally, we describe forward-looking solutions including transfer learning, few-shot learning, and edge computing, as well as the state of the art.
B. Dubey, S. Agrawal, and A. K. Sharma, India’s renewable energy portfolio: An investigation of the untapped potential of RE, policies, and incentives favoring energy security in the country, Energies, vol. 16, no. 14, p. 5491, 2023.
Y. Guo, Y. Yang, M. Bradshaw, C. Wang, and M. Blondeel, Globalization and decarbonization: Changing strategies of global oil and gas companies, Wires Clim. Change, vol. 14, no. 6, pp. e849, 2023.
Y. Wang, R. Wang, K. Tanaka, P. Ciais, J. Penuelas, Y. Balkanski, J. Sardans, D. Hauglustaine, W. Liu, X. Xing, et al., Accelerating the energy transition towards photovoltaic and wind in China, Nature, vol. 619, no. 7971, pp. 761–767, 2023.
Y. Hua, M. Oliphant, and E. J. Hu, Development of renewable energy in Australia and China: A comparison of policies and status, Renew. Energy, vol. 85, pp. 1044–1051, 2016.
J. Liu and D. Goldstein, Understanding China’s renewable energy technology exports, Energy Policy, vol. 52, pp. 417–428, 2013.
D. S. Painter, Oil and geopolitics: The oil crises of the 1970s and the cold war, Hist. Soc. Res., vol. 39, no. 4, pp. 186–203, 2014.
F. Tuna, A political assessment of the effect of Russian-Ukrainian war on the energy markets, J. Financ. Econ. Bank., vol. 3, no. 2, pp. 73–76, 2022.
A. Harrag and S. Messalti, Variable step size modified P&O MPPT algorithm using GA-based hybrid offline/online PID controller, Renew. Sustain. Energy Rev., vol. 49, pp. 1247–1260, 2015.
A. Borni, T. Abdelkrim, N. Bouarroudj, A. Bouchakour, L. Zaghba, A. Lakhdari, and L. Zarour, Optimized MPPT controllers using GA for grid connected photovoltaic systems, comparative study, Energy Procedia, vol. 119, pp. 278–296, 2017.
A. Feroz Mirza, M. Mansoor, Q. Ling, M. I. Khan, and O. M. Aldossary, Advanced variable step size incremental conductance MPPT for a standalone PV system utilizing a GA-tuned PID controller, Energies, vol. 13, no. 16, p. 4153, 2020.
M. Lasheen, A. K. Abdel Rahman, M. Abdel-Salam, and S. Ookawara, Performance enhancement of constant voltage based MPPT for photovoltaic applications using genetic algorithm, Energy Procedia, vol. 100, pp. 217–222, 2016.
R. Ramaprabha and B. L. Mathur, Intelligent Controller based Maximum Power Point Tracking for Solar PV System, Int. J. Comput. Appl., vol. 12, no. 10, pp. 37–42, 2011.
Z. Salam, J. Ahmed, and B. S. Merugu, The application of soft computing methods for MPPT of PV system: A technological and status review, Appl. Energy, vol. 107, pp. 135–148, 2013.
K. Sundareswaran, S. Peddapati and S. Palani, MPPT of PV systems under partial shaded conditions through a colony of flashing fireflies, IEEE Trans. Energy Convers., vol. 29, no. 2, pp. 463–472, 2014.
C. Hemalatha, Rajkumar M. V., and G. V. Krishnan. Simulation and analysis of MPPT control with modified firefly algorithm for photovoltaic system, Int. J. Innov. Stud. Sci. Eng. Technol., vol. 2, no. 11, pp. 48–52, 2016.
R. B. Watanabe, O. H. Ando Jr, P. G. M. Leandro, F. Salvadori, M. F. Beck, K. Pereira, M. H. M. Brandt, and F. M. de Oliveira, Implementation of the bio-inspired metaheuristic firefly algorithm (FA) applied to maximum power point tracking of photovoltaic systems, Energies, vol. 15, no. 15, p. 5338, 2022.
C. González-Castaño, C. Restrepo, S. Kouro, and J. Rodriguez, MPPT algorithm based on artificial bee colony for PV system, IEEE Access, vol. 9, pp. 43121–43133, 2021.
F. Salem, M. A. Moteleb, and H. T. Dorrah, An enhanced fuzzy-PI controller applied to the MPPT problem, J. Sci. Eng., vol. 8, no. 2, pp. 147–153, 2005.
K. Ishaque, Z. Salam, M. Amjad, and S. Mekhilef, An improved particle swarm optimization (PSO)–based MPPT for PV with reduced steady-state oscillation, IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3627–3638, 2012.
E. S. Wirateruna, M. J. Afroni, and A. F. Ayu, Implementation of PSO algorithm on MPPT PV system using Arduino Uno under PSC, Int. J. Artif. Intell. Robot., vol. 5, no. 1, pp. 13–20, 2023.
P. S. Gavhane, S. Krishnamurthy, R. Dixit, J. P. Ram, and N. Rajasekar, EL-PSO based MPPT for Solar PV under Partial Shaded Condition, Energy Procedia, vol. 117, pp. 1047–1053, 2017.
W. Hayder, E. Ogliari, A. Dolara, A. Abid, M. Ben Hamed, and L. Sbita, Improved PSO: A comparative study in MPPT algorithm for PV system control under partial shading conditions, Energies, vol. 13, no. 8, p. 2035, 2020.
S. Titri, C. Larbes, K. Y. Toumi, and K. Benatchba, A new MPPT controller based on the Ant colony optimization algorithm for Photovoltaic systems under partial shading conditions, Appl. Soft Comput., vol. 58, pp. 465–479, 2017.
M. Abd Kadir and S. Sharifah, Development of artificial neural network based MPPT for photovoltaic system during shading condition, Appl. Mech. Mater., vol. 448-453, pp. 1573–1578, 2013.
C. Jaiswal and D. K. Singh, Simulation & modelling of standalone PV system using feed forward neural network, Int. J. Sci. Eng. Technol. Res., vol. 6, no. 19, pp. 3765–3768, 2017.
A. Mellit and S. A. Kalogirou, Artificial intelligence techniques for photovoltaic applications: A review, Prog. Energy Combust. Sci., vol. 34, no. 5, pp. 574–632, 2008.
M. Derbeli, C. Napole, O. Barambones, J. Sanchez, I. Calvo, and P. Fernández-Bustamante, Maximum power point tracking techniques for photovoltaic panel: A review and experimental applications, Energies, vol. 14, no. 22, p. 7806, 2021.
L. Avila, M. De Paula, I. Carlucho, and C. Sanchez Reinoso, MPPT for PV systems using deep reinforcement learning algorithms, IEEE Lat. Am. Trans., vol. 17, no. 12, pp. 2020–2027, 2019.
L. Avila, M. De Paula, M. Trimboli, and I. Carlucho, Deep reinforcement learning approach for MPPT control of partially shaded PV systems in Smart Grids, Appl. Soft Comput., vol. 97, p. 106711, 2020.
R. T. Moyo, P. Y. Tabakov, and S. Moyo, Design and modeling of the ANFIS-based MPPT controller for a solar photovoltaic system, J. Sol. Energy Eng., vol. 143, no. 4, p. 041002, 2021.
M. S. Aït Cheikh, C. Larbes, G. F. Tchoketch Kebir, and A. Zerguerras, Maximum power point tracking using a fuzzy logic control scheme, J. Ren. Energies, vol. 10, no. 3, pp. 387–395, 2007.
K. W. Nasser, S. J. Yaqoob, and Z. A. Hassoun, Improved dynamic performance of photovoltaic panel using fuzzy Logic-MPPT algorithm, Indones. J. Electr. Eng. Comput. Sci., vol. 21, no. 2, p. 617, 2021.
S. Makhloufi and R. Abdessemed, Type-2 fuzzy logic optimum PV/inverter sizing ratio for grid-connected PV systems: Application to selected Algerian locations, J. Electr. Eng. Technol., vol. 6, no. 6, pp. 731–741, 2011.
B. Meryem, Photovoltaic power control using fuzzy logic and fuzzy logic type 2 MPPT algorithms and buck converter, Adv. Technol. Innov., vol. 4, no. 3, pp. 125–139, 2019.
C. S. Chiu, T-S fuzzy maximum power point tracking control of solar power generation systems, IEEE Trans. Energy Convers., vol. 25, no. 4, pp. 1123–1132, 2010.
H. Abid, A. Toumi, and M. Chaabane, MPPT algorithm for photovoltaic panel based on augmented takagi-sugeno fuzzy model, ISRN Renew. Energy, vol. 2014, p. 253146, 2014.
H. Khabou, M. Souissi, and A. Aitouche, MPPT implementation on boost converter by using T–S fuzzy method, Math. Comput. Simul., vol. 167, pp. 119–134, 2020.
A. Rezvani, M. Izadbakhsh, M. Gandomkar, and S. Vafaei, Implementing GA-ANFIS for maximum power point tracking in PV system, Indian J. Sci. Technol., vol. 8, no. 10, p. 982, 2015.
N. Priyadarshi, S. Padmanaban, J. B. Holm-Nielsen, F. Blaabjerg, and M. S. Bhaskar, An experimental estimation of hybrid ANFIS–PSO-based MPPT for PV grid integration under fluctuating Sun irradiance, IEEE Syst. J., vol. 14, no. 1, pp. 1218–1229, 2020.
S. S. Mohammed, D. Devaraj, and T. P. Imthias Ahamed, GA-optimized fuzzy-based MPPT technique for abruptly varying environmental conditions, J. Inst. Eng. Ind. Ser. B, vol. 102, no. 3, pp. 497–508, 2021.
K. H. Chao and M. N. Rizal, A hybrid MPPT controller based on the genetic algorithm and ant colony optimization for photovoltaic systems under partially shaded conditions, Energies, vol. 14, no. 10, p. 2902, 2021.
A. V. Prathaban and D. Karthikeyan, Grey wolf optimization-recurrent neural network based maximum power point tracking for photovoltaic application, Indones. J. Electr. Eng. Comput. Sci., vol. 26, no. 2, p. 629, 2022.
B. Babes, A. Boutaghane, and N. Hamouda, A novel nature-inspired maximum power point tracking (MPPT) controller based on ACO-ANN algorithm for photovoltaic (PV) system fed arc welding machines, Neural Comput. Appl., vol. 34, no. 1, pp. 299–317, 2022.
A. A. Firdaus, R. T. Yunardi, E. I. Agustin, S. D. N. Nahdliyah, and T. A. Nugroho, An improved control for MPPT based on FL-PSo to minimize oscillation in photovoltaic system, Int. J. Power Electron. Drive Syst. IJPEDS, vol. 11, no. 2, p. 1082, 2020.
Y. K. Semero, D. Zheng, and J. Zhang, A PSO-ANFIS based Hybrid Approach for Short Term PV Power Prediction in Microgrids, Electr. Power Compon. Syst., vol. 46, no. 1, pp. 95–103, 2018.
S. C. Lim, J. H. Huh, S. H. Hong, C. Y. Park, and J. C. Kim, Solar power forecasting using CNN-LSTM hybrid model, Energies, vol. 15, no. 21, p. 8233, 2022.
W. Van Deventer, E. Jamei, G. S. Thirunavukkarasu, M. Seyedmahmoudian, T. K. Soon, B. Horan, S. Mekhilef, and A. Stojcevski, Short-term PV power forecasting using hybrid GASVM technique, Renew. Energy, vol. 140, pp. 367–379, 2019.
Y. K. Semero, J. Zhang, and D. Zheng, PV power forecasting using an integrated GA-PSO-ANFIS approach and Gaussian process regression based feature selection strategy, CSEE J. Power Energy Syst., vol. 4, no. 2, pp. 210–218, 2018.
F. Wang, Z. Zhen, B. Wang, and Z. Mi, Comparative study on KNN and SVM based weather classification models for day ahead short term solar PV power forecasting, Appl. Sci., vol. 8, no. 1, p. 28, 2017.
L. Wang, Y. Liu, T. Li, X. Xie, and C. Chang. The short term forecasting of asymmetry photovoltaic power based on the feature extraction of PV power and SVM algorithm, Symmetry, vol. 12, no. 11, p. 1777, 2020.
M. K. Park, J. M. Lee, W. H. Kang, J. M. Choi, and K. H. Lee, Predictive model for PV power generation using RNN (LSTM), J. Mech. Sci. Technol., vol. 35, no. 2, pp. 795–803, 2021.
D. Lee and K. Kim, Recurrent neural network-based hourly prediction of photovoltaic power output using meteorological information, Energies, vol. 12, no. 2, p. 215, 2019.
Y. Jung, J. Jung, B. Kim, and S. Han, Long short-term memory recurrent neural network for modeling temporal patterns in long-term power forecasting for solar PV facilities, J. Clean. Prod., vol. 250, p. 119476, 2020.
H. K. Ahn and N. Park, Deep RNN-based photovoltaic power short-term forecast using power IoT sensors, Energies, vol. 14, no. 2, p. 436, 2021.
P. Gupta and R. Singh, PV power forecasting based on data-driven models: A review, Int. J. Sustain. Eng., vol. 14, no. 6, pp. 1733–1755, 2021.
M. Abdel-Nasser and K. Mahmoud, Accurate photovoltaic power forecasting models using deep LSTM-RNN, Neural Comput. Appl., vol. 31, no. 7, pp. 2727–2740, 2019.
C. Huang, A. Bensoussan, M. Edesess, and K. L. Tsui, Improvement in artificial neural network-based estimation of grid connected photovoltaic power output, Renew. Energy, vol. 97, pp. 838–848, 2016.
H. Sheng, J. Xiao, Y. Cheng, Q. Ni, and S. Wang, Short-term solar power forecasting based on weighted Gaussian process regression, IEEE Trans. Ind. Electron., vol. 65, no. 1, pp. 300–308, 2018.
F. Lubbe, J. Maritz, and T. Harms, Evaluating the potential of Gaussian process regression for solar radiation forecasting: A case study, Energies, vol. 13, no. 20, p. 5509, 2020.
A. Chaouachi, R. M. Kamel, and K. Nagasaka, Neural network ensemble-based solar power generation short-term forecasting, J. Adv. Comput. Intell. Intell. Inform., vol. 14, no. 1, pp. 69–75, 2010.
F. Tian, X. Fan, R. Wang, H. Qin, and Y. Fan, A power forecasting method for ultra-short-term photovoltaic power generation using transformer model, Math. Probl. Eng., vol. 2022, p. 9421400, 2022.
X. Li, Q. Yang, Z. Lou, and W. Yan, Deep learning based module defect analysis for large-scale photovoltaic farms, IEEE Trans. Energy Convers., vol. 34, no. 1, pp. 520–529, 2019.
C. Bu, T. Liu, T. Wang, H. Zhang, and S. Sfarra, A CNN-architecture-based photovoltaic cell fault classification method using thermographic images, Energies, vol. 16, no. 9, p. 3749, 2023.
A. Y. Appiah, X. Zhang, B. B. K. Ayawli, and F. Kyeremeh, Long short-term memory networks based automatic feature extraction for photovoltaic array fault diagnosis, IEEE Access, vol. 7, pp. 30089–30101, 2019.
V. Veerasamy, N. I. A. Wahab, M. L. Othman, S. Padmanaban, K. Sekar, R. Ramachandran, H. Hizam, A. Vinayagam, and M. Z. Islam, LSTM recurrent neural network classifier for high impedance fault detection in solar PV integrated power system, IEEE Access, vol. 9, pp. 32672–32687, 2021.
Z. Mustafa, A. S. A. Awad, M. Azzouz, and A. Azab, Fault identification for photovoltaic systems using a multi-output deep learning approach, Expert Syst. Appl., vol. 211, p. 118551, 2023.
Z. Chen, F. Han, L. Wu, J. Yu, S. Cheng, P. Lin, and H. Chen, Random forest based intelligent fault diagnosis for PV arrays using array voltage and string currents, Energy Convers. Manag., vol. 178, pp. 250–264, 2018.
M. Louzazni and E. Aroudam, An intelligent fault diagnosis method based on neural networks for photovoltaic system, Int. J. Mechatron., Electr. Comput. Technol., vol. 4, no. 4, pp. 602–609, 2014.
S. Voutsinas, D. Karolidis, I. Voyiatzis, and M. Samarakou, Development of a multi-output feed-forward neural network for fault detection in photovoltaic systems, Energy Rep., vol. 8, pp. 33–42, 2022.
R. Hariharan, M. Chakkarapani, G. Saravana Ilango, and C. Nagamani, A method to detect photovoltaic array faults and partial shading in PV systems, IEEE J. Photovoltaics, vol. 6, no. 5, pp. 1278–1285, 2016.
J. Huang, K. Zeng, Z. Zhang, and W. Zhong, Solar panel defect detection design based on YOLO v5 algorithm, Heliyon, vol. 9, no. 8, pp. e18826, 2023.
Y. Wang, L. Shen, M. Li, Q. Sun, and X. Li, PV-YOLO: Lightweight YOLO for photovoltaic panel fault detection, IEEE Access, vol. 11, pp. 10966–10976, 2023.
A. Hichri, M. Hajji, M. Mansouri, K. Abodayeh, K. Bouzrara, H. Nounou, and M. Nounou, Genetic-algorithm-based neural network for fault detection and diagnosis: Application to grid-connected photovoltaic systems, Sustainability, vol. 14, no. 17, p. 10518, 2022.
G. S. Eldeghady, H. A. Kamal, and M. A. M. Hassan, Fault diagnosis for PV system using a deep learning optimized via PSO heuristic combination technique, Electr. Eng., vol. 105, no. 4, pp. 2287–2301, 2023.
H. Belmili, S. M. Ait Cheikh, M. Haddadi, and C. Larbes, Design and development of a data acquisition system for photovoltaic modules characterization, Renew. Energy, vol. 35, no. 7, pp. 1484–1492, 2010.
M. Fan, V. Vittal, G. T. Heydt, and R. Ayyanar, Preprocessing uncertain photovoltaic data, IEEE Trans. Sustain. Energy, vol. 5, no. 1, pp. 351–352, 2014.
M. G. De Giorgi, P. M. Congedo, and M. Malvoni, Photovoltaic power forecasting using statistical methods: Impact of weather data, IET Sci. Meas. Technol., vol. 8, no. 3, pp. 90–97, 2014.
M. Malvoni, M. G. De Giorgi, and P. M. Congedo, Data on Support Vector Machines (SVM) model to forecast photovoltaic power, Data Brief, vol. 9, pp. 13–16, 2016.
B. Wolff, J. Kühnert, E. Lorenz, O. Kramer, and D. Heinemann, Comparing support vector regression for PV power forecasting to a physical modeling approach using measurement, numerical weather prediction, and cloud motion data, Sol. Energy, vol. 135, pp. 197–208, 2016.
L. Ge, T. Du, C. Li, Y. Li, J. Yan, and M. Rafiq, Virtual collection for distributed photovoltaic data: Challenges, methodologies, and applications, Energies, vol. 15, no. 23, p. 8783, 2022.
M. H. Ali, A. Rabhi, A. El Hajjaji, and G. M. Tina, Real time fault detection in photovoltaic systems, Energy Procedia, vol. 111, pp. 914–923, 2017.
A. K. Rohit, A. Tomar, A. Kumar, and S. Rangnekar, Virtual lab based real-time data acquisition, measurement and monitoring platform for solar photovoltaic module, Resour. Effic. Technol., vol. 3, no. 4, pp. 446–451, 2017.
M. Cubukcu and A. Akanalci, Real-time inspection and determination methods of faults on photovoltaic power systems by thermal imaging in Turkey, Renew. Energy, vol. 147, pp. 1231–1238, 2020.
I. M. Moreno-Garcia, E. J. Palacios-Garcia, V. Pallares-Lopez, I. Santiago, M. J. Gonzalez-Redondo, M. Varo-Martinez, and R. J. Real-Calvo, Real-time monitoring system for a utility-scale photovoltaic power plant, Sensors, vol. 16, no. 6, p. 770, 2016.
S. Samara and E. Natsheh, Intelligent real-time photovoltaic panel monitoring system using artificial neural networks, IEEE Access, vol. 7, pp. 50287–50299, 2019.
M. K. Behera, I. Majumder, and N. Nayak, Solar photovoltaic power forecasting using optimized modified extreme learning machine technique, Eng. Sci. Technol. Int. J., vol. 21, no. 3, pp. 428–438, 2018.
K. Wang, X. Qi, and H. Liu, A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network, Appl. Energy, vol. 251, p. 113315, 2019.
L. Liang, T. Su, Y. Gao, F. Qin, and M. Pan, FCDT-IWBOA-LSSVR: An innovative hybrid machine learning approach for efficient prediction of short-to-mid-term photovoltaic generation, J. Clean. Prod., vol. 385, p. 135716, 2023.
A. Mellit and S. Kalogirou, Artificial intelligence and Internet of Things to improve efficacy of diagnosis and remote sensing of solar photovoltaic systems: Challenges, recommendations and future directions, Renew. Sustain. Energy Rev., vol. 143, p. 110889, 2021.
Z. Yahya, S. Imane, H. Hicham, A. Ghassane, and E. Bouchini-Idrissi Safia, Applied imagery pattern recognition for photovoltaic modules’ inspection: A review on methods, challenges and future development, Sustain. Energy Technol. Assess., vol. 52, p. 102071, 2022.
Q. Chen, X. Li, Z. Zhang, C. Zhou, Z. Guo, Z. Liu, and H. Zhang, Remote sensing of photovoltaic scenarios: Techniques, applications and future directions, Appl. Energy, vol. 333, p. 120579, 2023.
Y. Tang, K. Yang, S. Zhang, and Z. Zhang, Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy, Renew. Sustain. Energy Rev., vol. 162, p. 112473, 2022.
J. Schreiber and B. Sick, Model selection, adaptation, and combination for transfer learning in wind and photovoltaic power forecasts, Energy AI, vol. 14, p. 100249, 2023.
X. Chang, W. Li, and A. Y. Zomaya, A lightweight short-term photovoltaic power prediction for edge computing, IEEE Trans. Green Commun. Netw., vol. 4, no. 4, pp. 946–955, 2020.
W. Tang, Q. Yang, X. Hu, and W. Yan, Deep learning-based linear defects detection system for large-scale photovoltaic plants based on an edge-cloud computing infrastructure, Sol. Energy, vol. 231, pp. 527–535, 2022.
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).