[4]
X. Qin, H. Dai, X. Hu, D. P. Fan, L. Shao, and L. Van Gool, Highly accurate dichotomous image segmentation, in Proc. 17th European Conf. Computer Vision (ECCV), Tel Aviv, Israel, 2022, pp. 38–56.
[8]
W. Sun, X. Min, W. Lu, and G. Zhai, A deep learning based No-reference quality assessment model for UGC videos, in Proc. 30th ACM Int. Conf. Multimedia, Lisboa, Portugal, 2022, pp. 856–865.
[9]
Y. Zhou, B. Dong, Y. Wu, W. Zhu, G. Chen, and Y. Zhang, Dichotomous image segmentation with frequency priors, in Proc. 32nd Int. Joint Conf. Artificial Intelligence, Macao, China, 2023, pp. 1822–1830.
[10]
J. Pei, Z. Zhou, Y. Jin, H. Tang, and P. A. Heng, Unite-divide-unite: Joint boosting trunk and structure for high-accuracy dichotomous image segmentation, in Proc. 31st ACM Int. Conf. Multimedia, Ottawa, Canada, 2023, pp. 2139–2147.
[11]
T. Kim, K. Kim, J. Lee, D. Cha, J. Lee, and D. Kim, Revisiting image pyramid structure for high resolution salient object detection, in Proc. 16th Asian Conf. Computer Vision (ACCV), Macao, China, 2022, pp. 257–273,
[12]
X. Li, J. Yang, S. Li, J. Lei, J. Zhang, and D. Chen, Locate, refine and restore: A progressive enhancement network for camouflaged object detection, in Proc. 32nd Int. Joint Conf. Artificial Intelligence, Macao, China, 2023, pp. 1116–1124.
[13]
D. P. Fan, M. M. Cheng, Y. Liu, T. Li, and A. Borji, Structure-measure: A new way to evaluate foreground maps, in in Proc. 2017 IEEE Int. Conf. Computer Vision (ICCV), Venice, Italy, 2017, pp. 4558–4567.
[14]
Y. Zeng, P. Zhang, Z. Lin, J. Zhang, and H. Lu, Towards high-resolution salient object detection, in in Proc. 2019 IEEE/CVF Int. Conf. Computer Vision (ICCV), Seoul, Republic of Korea, 2019, pp. 7233–7242.
[15]
C. Xie, C. Xia, M. Ma, Z. Zhao, X. Chen, and J. Li, Pyramid grafting network for one-stage high resolution saliency detection, in Proc. 2022 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 2022, pp. 11707–11716.
[16]
X. Deng, P. Zhang, W. Liu, and H. Lu, Recurrent multi-scale transformer for high-resolution salient object detection, in Proc. 31st ACM Int. Conf. Multimedia, Ottawa, Canada, 2023, pp. 7413–7423.
[17]
L. Tang, B. Li, Y. Zhong, S. Ding, and M. Song, Disentangled high quality salient object detection, in Proc. 2021 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021, pp. 3560–3570.
[18]
K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, in in Proc. 2016 IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 770–778.
[19]
Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, Swin transformer: Hierarchical vision transformer using shifted windows, in Proc. 2021 IEEE/CVF Int. Conf. Computer Vision (ICCV), Montreal, Canada, 2021, pp. 9992–10002.
[20]
D. P. Fan, G. P. Ji, G. Sun, M. M. Cheng, J. Shen, and L. Shao, Camouflaged object detection, in Proc. 2020 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2020, pp. 2774–2784.
[21]
Y. Zhong, B. Li, L. Tang, S. Kuang, S. Wu, and S. Ding, Detecting camouflaged object in frequency domain, in Proc. 2022 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 2022, 4494–4503.
[22]
Y. Sun, S. Wang, C. Chen, and T. Z. Xiang, Boundary-guided camouflaged object detection, in Proc. 31st Int. Joint Conf. Artificial Intelligence, Vienna, Austria, 2022, pp. 1335–1341.
[24]
Z. Huang, H. Dai, T. Z. Xiang, S. Wang, H. X. Chen, J. Qin, and H. Xiong, Feature shrinkage pyramid for camouflaged object detection with transformers, in Proc. 2023 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Vancouver, Canada, 2023, pp. 5557–5566.
[25]
X. Hu, S. Wang, X. Qin, H. Dai, W. Ren, D. Luo, Y. Tai, and L. Shao, High-resolution iterative feedback network for camouflaged object detection, in Proc. 37 th AAAI Conf. Artificial Intelligence, Washington, DC, USA, 2023, pp. 881–889.
[26]
B. Yin, X. Zhang, Q. Hou, B. Y. Sun, D. P. Fan, and L. Van Gool, CamoFormer: Masked separable attention for camouflaged object detection, arXiv preprint arXiv: 2212.06570, 2022.
[27]
J. Wei, S. Wang, Z. Wu, C. Su, Q. Huang, and Q. Tian, Label decoupling framework for salient object detection, in Proc. 2020 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2020, pp. 13022–13031.
[28]
Q. Yu, X. Zhao, Y. Pang, L. Zhang, and H. Lu, Multi-view aggregation network for dichotomous image segmentation, arXiv preprint arXiv: 2404.07445, 2024.
[30]
N. Xu, B. Price, S. Cohen, and T. Huang, Deep image matting, in Proc. 2017 IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017, pp. 311–320.
[31]
O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional networks for biomedical image segmentation, in Proc. 18 th Int. Conf. Medical Image Computing and Computer Assisted Intervention (MICCAI 2015), Munich, Germany, 2015, pp. 234–241.
[32]
H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia, ICNet for real-time semantic segmentation on high-resolution images, arXiv preprint arXiv: 1704.08545, 2017.
[34]
H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, Pyramid scene parsing network, in Proc. 2017 IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017, pp. 6230–6239.
[35]
Q. Yu, J. Zhang, H. Zhang, Y. Wang, Z. Lin, N. Xu, Y. Bai, and A. Yuille, Mask guided matting via progressive refinement network, in Proc. 2021 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021, pp. 1154–1163.
[36]
X. Qin, Z. Zhang, C. Huang, C. Gao, M. Dehghan, and M. Jagersand, BASNet: Boundary-aware salient object detection, in Proc. 2019 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019, pp. 7471–7481.
[37]
T. Shen, Y. Zhang, L. Qi, J. Kuen, X. Xie, J. Wu, Z. Lin, and J. Jia, High quality segmentation for ultra high-resolution images, in Proc. 2022 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 2022, pp. 1300–1309.
[38]
C. He, K. Li, Y. Zhang, Y. Zhang, Z. Guo, X. Li, M. Danelljan, and F. Yu, Strategic preys make acute predators: Enhancing camouflaged object detectors by generating camouflaged objects, in Proc. 12th Int. Conf. Learning Representations (ICLR), Vienna, Austria, 2024.
[39]
C. Tang, H. Chen, X. Li, J. Li, Z. Zhang, and X. Hu, Look closer to segment better: Boundary patch refinement for instance segmentation, in Proc. 2021 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021, pp. 13921–13930.
[40]
W. S. Lai, J. B. Huang, N. Ahuja, and M. H. Yang, Deep Laplacian pyramid networks for fast and accurate super-resolution, in Proc. 2017 IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017, pp. 5835–5843.
[42]
M. Yang, K. Yu, C. Zhang, Z. Li, and K. Yang, DenseASPP for semantic segmentation in street scenes, in Proc. 2018 IEEE/CVF Conf. Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 3684–3692.
[43]
L. C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, Encoder-decoder with atrous separable convolution for semantic image segmentation, in Proc. 15th European Conf. Computer Vision (ECCV), Munich, Germany, 2018, pp. 833–851.
[44]
J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei, Deformable convolutional networks, in Proc. 2017 IEEE Int. Conf. Computer Vision (ICCV), Venice, Italy, 2017, pp. 764–773.
[45]
T. Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie, Feature pyramid networks for object detection, in Proc. 2017 IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017, pp. 936–944.
[46]
R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk, Frequency-tuned salient region detection, in Proc. 2009 IEEE Conf. Computer Vision and Pattern Recognition, Miami, FL, USA, 2009, pp. 1597–1604.
[47]
Z. Zhang, W. Jin, J. Xu, and M. M. Cheng, Gradient-induced co-saliency detection, in Proc. 16th European Conf. Computer Vision (ECCV), Glasgow, UK, 2020, pp. 455–472.
[49]
Y. Lv, J. Zhang, Y. Dai, A. Li, B. Liu, N. Barnes, and D. P. Fan, Simultaneously localize, segment and rank the camouflaged objects, in Proc. 2021 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021, pp. 11586–11596.
[50]
L. Wang, H. Lu, Y. Wang, M. Feng, D. Wang, B. Yin, and X. Ruan, Learning to detect salient objects with image-level supervision, in Proc. 2017 IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017, pp. 11586–11596.
[51]
C. Yang, L. Zhang, H. Lu, X. Ruan, and M. H. Yang, Saliency detection via graph-based manifold ranking, in Proc. 2023 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Vancouver, Canada, 2023, pp. 3166–3173.
[52]
D. P. Fan, C. Gong, Y. Cao, B. Ren, M. M. Cheng, and A. Borji, Enhanced-alignment measure for binary foreground map evaluation, in Proc. 27th Int. Joint Conf. Artificial Intelligence, Stockholm, Sweden, 2018, pp. 698–704.
[54]
D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, in Proc. 3rd Int. Conf. Learning Representations (ICLR), San Diego, CA, USA, 2015.
[55]
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al. , PyTorch: An imperative style, high-performance deep learning library, in Proc. 33rd Conf. Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada, 2019, pp. 8026–8037.
[58]
Q. Jia, S. Yao, Y. Liu, X. Fan, R. Liu, and Z. Luo, Segment, magnify and reiterate: Detecting camouflaged objects the hard way, in Proc. 2022 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 2022, pp. 4703–4712.
[59]
Y. Pang, X. Zhao, T. -Z. Xiang, L. Zhang, and H. Lu, Zoom in and out: A mixed-scale triplet network for camouflaged object detection, in Proc. 2022 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 2022, pp. 2150–2160.
[60]
C. He, K. Li, Y. Zhang, L. Tang, Y. Zhang, Z. Guo, and X. Li, Camouflaged object detection with feature decomposition and edge reconstruction, in Proc. 2023 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Vancouver, Canada, 2023, pp. 22046–22055.
[62]
T. Y. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, Microsoft COCO: Common objects in context, in Proc. 13th European Conf. Computer Vision (ECCV), Zurich, Switzerland, 2016, pp. 740–755.