Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Camouflaged object detection (COD) refers to the task of identifying and segmenting objects that blend seamlessly into their surroundings, posing a significant challenge for computer vision systems. In recent years, COD has garnered widespread attention due to its potential applications in surveillance, wildlife conservation, autonomous systems, and more. While several surveys on COD exist, they often have limitations in terms of the number and scope of papers covered, particularly regarding the rapid advancements made in the field since mid-2023. To address this void, we present the most comprehensive review of COD to date, encompassing both theoretical frameworks and practical contributions to the field. This paper explores various COD methods across four domains, including both image-level and video-level solutions, from the perspectives of traditional and deep learning approaches. We thoroughly investigate the correlations between COD and other camouflaged scenario methods, thereby laying the theoretical foundation for subsequent analyses. Furthermore, we delve into novel tasks such as referring-based COD and collaborative COD, which have not been fully addressed in previous works. Beyond object-level detection, we also summarize extended methods for instance-level tasks, including camouflaged instance segmentation, counting, and ranking. Additionally, we provide an overview of commonly used benchmarks and evaluation metrics in COD tasks, conducting a comprehensive evaluation of deep learning-based techniques in both image and video domains, considering both qualitative and quantitative performance. Finally, we discuss the limitations of current COD models and propose 9 promising directions for future research, focusing on addressing inherent challenges and exploring novel, meaningful technologies. This comprehensive examination aims to deepen the understanding of COD models and related methods in camouflaged scenarios. For those interested, a curated list of COD-related techniques, datasets, and additional resources can be found at https://github.com/ChunmingHe/awesome-concealed-object-segmentation.
Y. Pu, Y. Han, Y. Wang, J. Feng, C. Deng, and G. Huang, Fine-grained recognition with learnable semantic data augmentation, IEEE Trans. Image Process., vol. 33, pp. 3130–3144, 2024.
D. P. Fan, G. P. Ji, M. M. Cheng, and L. Shao, Concealed object detection, IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 10, pp. 6024–6042, 2022.
A. Kumar, Computer-vision-based fabric defect detection: A survey, IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 348–363, 2008.
D. J. A. Rustia, C. E. Lin, J. Y. Chung, Y. J. Zhuang, J. C. Hsu, and T. T. Lin, Application of an image and environmental sensor network for automated greenhouse insect pest monitoring, J. Asia Pac. Entomol., vol. 23, no. 1, pp. 17–28, 2020.
H. K. Chu, W. H. Hsu, N. J. Mitra, D. Cohen-Or, T. T. Wong, and T. Y. Lee, Camouflage images, ACM Trans. Graph., vol. 29, no. 4, pp. 1–8, 2010.
S. Li, D. Florencio, W. Li, Y. Zhao, and C. Cook, A fusion framework for camouflaged moving foreground detection in the wavelet domain, IEEE Trans. Image Process., vol. 27, no. 8, pp. 3918–3930, 2018.
C. Pulla Rao, A. Guruva Reddy, and C. B. Rama Rao, Camouflaged object detection for machine vision applications, Int. J. Speech Technol., vol. 23, no. 2, pp. 327–335, 2020.
T. E. Boult, R. J. Micheals, X. Gao, and M. Eckmann, Into the woods: Visual surveillance of noncooperative and camouflaged targets in complex outdoor settings, Proc. IEEE, vol. 89, no. 10, pp. 1382–1402, 2001.
Y. Beiderman, M. Teicher, J. Garcia, V. Mico, and Z. Zalevsky, Optical technique for classification, recognition and identification of obscured objects, Opt. Commun., vol. 283, no. 21, pp. 4274–4282, 2010.
X. Hu, S. Wang, X. Qin, H. Dai, W. Ren, D. Luo, Y. Tai, and L. Shao, High-resolution iterative feedback network for camouflaged object detection, Proc. AAAI Conf. Artif. Intell., vol. 37, no. 1, pp. 881–889, 2023.
T. N. Le, T. V. Nguyen, Z. Nie, M. T. Tran, and A. Sugimoto, Anabranch network for camouflaged object segmentation, Comput. Vis. Image Underst., vol. 184, pp. 45–56, 2019.
T. Zhou, Y. Zhou, C. Gong, J. Yang, and Y. Zhang, Feature aggregation and propagation network for camouflaged object detection, IEEE Trans. Image Process., vol. 31, pp. 7036–7047, 2022.
Y. Zhang, J. Zhang, W. Hamidouche, and O. Déforges, Predictive uncertainty estimation for camouflaged object detection, IEEE Trans. Image Process., vol. 32, pp. 3580–3591, 2023.
Q. Zhai, X. Li, F. Yang, Z. Jiao, P. Luo, H. Cheng, and Z. Liu, MGL: mutual graph learning for camouflaged object detection, IEEE Trans. Image Process., vol. 32, pp. 1897–1910, 2023.
Y. Yang and Q. Zhang, Finding camouflaged objects along the camouflage mechanisms, IEEE Trans. Circuits Syst. Video Technol., vol. 34, no. 4, pp. 2346–2360, 2024.
C. Zhang, H. Bi, T. Z. Xiang, R. Wu, J. Tong, and X. Wang, Collaborative camouflaged object detection: A large-scale dataset and benchmark, IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 12, pp. 18470–18484, 2024.
G. P. Ji, L. Zhu, M. Zhuge, and K. Fu, Fast camouflaged object detection via edge-based reversible re-calibration network, Pattern Recognit., vol. 123, pp. 108414, 2022.
H. Bi, C. Zhang, K. Wang, J. Tong, and F. Zheng, Rethinking camouflaged object detection: Models and datasets, IEEE Trans. Circuits Syst. Video Technol., vol. 32, no. 9, pp. 5708–5724, 2022.
D. P. Fan, G. P. Ji, P. Xu, M. M. Cheng, C. Sakaridis, and L. Van Gool, Advances in deep concealed scene understanding, Vis. Intell., vol. 1, no. 1, pp. 16, 2023.
Y. Liang, G. Qin, M. Sun, X. Wang, J. Yan, and Z. Zhang, A systematic review of image-level camouflaged object detection with deep learning, Neurocomputing, vol. 566, pp. 127050, 2024.
A. Tankus and Y. Yeshurun, Convexity-based visual camouflage breaking, Comput. Vis. Image Underst., vol. 82, no. 3, pp. 208–237, 2001.
M. B. Neider and G. J. Zelinsky, Searching for camouflaged targets: Effects of target-background similarity on visual search, Vis. Res., vol. 46, no. 14, pp. 2217–2235, 2006.
W. R. Boot, M. B. Neider, and A. F. Kramer, Training and transfer of training in the search for camouflaged targets, Atten. Percept. Psychophys., vol. 71, no. 4, pp. 950–963, 2009.
Y. Pan, Y. Chen, Q. Fu, P. Zhang, and X. Xu, Study on the camouflaged target detection method based on 3D convexity, Mod. Appl. Sci., vol. 5, no. 4, pp. 152–157, 2011.
F. Xue, G. Cui, R. Hong, and J. Gu, Camouflage texture evaluation using a saliency map, Multimed. Syst., vol. 21, no. 2, pp. 169–175, 2015.
Y. Liu, C. Q. Wang, and Y. J. Zhou, Camouflaged people detection based on a semi-supervised search identification network, Def. Technol., vol. 21, pp. 176–183, 2023.
J. Hu, J. Lin, S. Gong, and W. Cai, Relax image-specific prompt requirement in SAM: A single generic prompt for segmenting camouflaged objects, Proc. AAAI Conf. Artif. Intell., vol. 38, no. 11, pp. 12511–12518, 2024.
J. Zhu, X. Zhang, S. Zhang, and J. Liu, Inferring camouflaged objects by texture-aware interactive guidance network, Proc. AAAI Conf. Artif. Intell., vol. 35, no. 4, pp. 3599–3607, 2021.
J. Yan, T. N. Le, K. D. Nguyen, M. T. Tran, T. T. Do, and T. V. Nguyen, MirrorNet: bio-inspired camouflaged object segmentation, IEEE Access, vol. 9, pp. 43290–43300, 2021.
J. Ren, X. Hu, L. Zhu, X. Xu, Y. Xu, W. Wang, Z. Deng, and P. A. Heng, Deep texture-aware features for camouflaged object detection, IEEE Trans. Circuits Syst. Video Technol., vol. 33, no. 3, pp. 1157–1167, 2023.
K. Wang, H. Bi, Y. Zhang, C. Zhang, Z. Liu, and S. Zheng, D2C-net: A dual-branch, dual-guidance and cross-refine network for camouflaged object detection, IEEE Trans. Ind. Electron., vol. 69, no. 5, pp. 5364–5374, 2022.
Y. Liu, D. Zhang, Q. Zhang, and J. Han, Integrating part-object relationship and contrast for camouflaged object detection, IEEE Trans. Inf. Forensics Secur., vol. 16, pp. 5154–5166, 2021.
H. Zhu, P. Li, H. Xie, X. Yan, D. Liang, D. Chen, M. Wei, and J. Qin, I can find you! boundary-guided separated attention network for camouflaged object detection, Proc. AAAI Conf. Artif. Intell., vol. 36, no. 3, pp. 3608–3616, 2022.
C. Zhang, K. Wang, H. Bi, Z. Liu, and L. Yang, Camouflaged object detection via neighbor connection and hierarchical information transfer, Comput. Vis. Image Underst., vol. 221, pp. 103450, 2022.
K. B. Park and J. Y. Lee, TCU-Net: Transformer and convolutional neural network-based advanced U-net for concealed object detection, IEEE Access, vol. 10, pp. 122347–122360, 2022.
M. Zhuge, X. Lu, Y. Guo, Z. Cai, and S. Chen, CubeNet: X-shape connection for camouflaged object detection, Pattern Recognit., vol. 127, pp. 108644, 2022.
G. Chen, S. J. Liu, Y. J. Sun, G. P. Ji, Y. F. Wu, and T. Zhou, Camouflaged object detection via context-aware cross-level fusion, IEEE Trans. Circuits Syst. Video Technol., vol. 32, no. 10, pp. 6981–6993, 2022.
P. Li, X. Yan, H. Zhu, M. Wei, X. P. Zhang, and J. Qin, FindNet: can you find me? boundary-and-texture enhancement network for camouflaged object detection, IEEE Trans. Image Process., vol. 31, pp. 6396–6411, 2022.
W. Zhai, Y. Cao, H. Xie, and Z. J. Zha, Deep texton-coherence network for camouflaged object detection, IEEE Trans. Multimedia, vol. 25, pp. 5155–5165, 2023.
J. Lin, X. Tan, K. Xu, L. Ma, and R. W. H. Lau, Frequency-aware camouflaged object detection, ACM Trans. Multimedia Comput. Commun. Appl., vol. 19, no. 2, pp. 1–16, 2023.
R. He, Q. Dong, J. Lin, and R. W. H. Lau, Weakly-supervised camouflaged object detection with scribble annotations, Proc. AAAI Conf. Artif. Intell., vol. 37, no. 1, pp. 781–789, 2023.
Q. Zhang, X. Sun, Y. Chen, Y. Ge, and H. Bi, Attention-induced semantic and boundary interaction network for camouflaged object detection, Comput. Vis. Image Underst., vol. 233, pp. 103719, 2023.
H. Mei, K. Xu, Y. Zhou, Y. Wang, H. Piao, X. Wei, and X. Yang, Camouflaged object segmentation with omni perception, Int. J. Comput. Vis., vol. 131, no. 11, pp. 3019–3034, 2023.
G. P. Ji, D. P. Fan, Y. C. Chou, D. Dai, A. Liniger, and L. Van Gool, Deep gradient learning for efficient camouflaged object detection, Mach. Intell. Res., vol. 20, no. 1, pp. 92–108, 2023.
Y. Liu, K. Zhang, Y. Zhao, H. Chen, and Q. Liu, Bi-RRNet: bi-level recurrent refinement network for camouflaged object detection, Pattern Recognit., vol. 139, pp. 109514, 2023.
X. Jiang, W. Cai, Y. Ding, X. Wang, Z. Yang, X. Di, and W. Gao, Camouflaged object detection based on ternary cascade perception, Remote. Sens., vol. 15, no. 5, pp. 1188, 2023.
J. Xiang, Q. Pan, Z. Zhang, S. Fu, and Y. Qin, Double-branch fusion network with a parallel attention selection mechanism for camouflaged object detection, Sci. China Inf. Sci., vol. 66, no. 6, pp. 162403, 2023.
X. Hu, X. Zhang, F. Wang, J. Sun, and F. Sun, Efficient camouflaged object detection network based on global localization perception and local guidance refinement, IEEE Trans. Circuits Syst. Video Technol., vol. 34, no. 7, pp. 5452–5465, 2024.
G. Yue, H. Xiao, H. Xie, T. Zhou, W. Zhou, W. Yan, B. Zhao, T. Wang, and Q. Jiang, Dual-constraint coarse-to-fine network for camouflaged object detection, IEEE Trans. Circuits Syst. Video Technol., vol. 34, no. 5, pp. 3286–3298, 2024.
H. Xing, S. Gao, Y. Wang, X. Wei, H. Tang, and W. Zhang, Go closer to see better: Camouflaged object detection via object area amplification and figure-ground conversion, IEEE Trans. Circuits Syst. Video Technol., vol. 33, no. 10, pp. 5444–5457, 2023.
Y. Liu, H. Li, J. Cheng, and X. Chen, MSCAF-net: A general framework for camouflaged object detection via learning multi-scale context-aware features, IEEE Trans. Circuits Syst. Video Technol., vol. 33, no. 9, pp. 4934–4947, 2023.
Y. Lv, J. Zhang, Y. Dai, A. Li, N. Barnes, and D. P. Fan, Toward deeper understanding of camouflaged object detection, IEEE Trans. Circuits Syst. Video Technol., vol. 33, no. 7, pp. 3462–3476, 2023.
X. Jiang, W. Cai, Y. Ding, X. Wang, D. Hong, Z. Yang, and W. Gao, Camouflaged object segmentation based on joint salient object for contrastive learning, IEEE Trans. Instrum. Meas., vol. 72, pp. 1–16, 2023.
H. Li, C. M. Feng, Y. Xu, T. Zhou, L. Yao, and X. Chang, Zero-shot camouflaged object detection, IEEE Trans. Image Process., vol. 32, pp. 5126–5137, 2023.
Z. Song, X. Kang, X. Wei, H. Liu, R. Dian, and S. Li, FSNet: focus scanning network for camouflaged object detection, IEEE Trans. Image Process., vol. 32, pp. 2267–2278, 2023.
Y. Lyu, H. Zhang, Y. Li, H. Liu, Y. Yang, and D. Yuan, UEDG: uncertainty-edge dual guided camouflage object detection, IEEE Trans. Multimed., vol. 26, pp. 4050–4060, 2024.
X. Yan, M. Sun, Y. Han, and Z. Wang, Camouflaged object segmentation based on matching–recognition–refinement network, IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 11, pp. 15993–16007, 2024.
Z. Chen, K. Sun, and X. Lin, CamoDiffusion: camouflaged object detection via conditional diffusion models, Proc. AAAI Conf. Artif. Intell., vol. 38, no. 2, pp. 1272–1280, 2024.
T. D. Nguyen, A. K N. Vu, N. D. Nguyen, V. T. Nguyen, T. D. Ngo, T. T. Do, M. T. Tran, and T. V. Nguyen, The art of camouflage: Few-shot learning for animal detection and segmentation, IEEE Access, vol. 12, pp. 103488–103503, 2024.
X. Zhou, Z. Wu, and R. Cong, Decoupling and integration network for camouflaged object detection, IEEE Trans. Multimedia, vol. 26, pp. 7114–7129, 2024.
B. Yin, X. Zhang, D. P. Fan, S. Jiao, M. M. Cheng, L. Van Gool, and Q. Hou, CamoFormer: masked separable attention for camouflaged object detection, IEEE Trans. Pattern Anal. Mach. Intell., vol. 46, no. 12, pp. 10362–10374, 2024.
A. Khan, M. Khan, W. Gueaieb, A. El Saddik, G. De Masi, and F. Karray, CamoFocus: Enhancing camouflage object detection with split-feature focal modulation and context refinement, in Proc. IEEE/CVF Winter Conf. Applications of Computer Vision, no. WACV, pp. 1423, 1432.
Y. Zhang, Y. Xie, C. Li, Z. Wu, and Y. Qu, Learn. all-in collaborative multiview binary representation for clustering, IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 3, pp. 4260–4273, 2024.
L. Xu, H. Wu, C. He, J. Wang, C. Zhang, F. Nie, and L. Chen, Multi-modal sequence learning for Alzheimer’s disease progression prediction with incomplete variable-length longitudinal data, Med. Image Anal., vol. 82, pp. 102643, 2022.
G. Xu, C. He, H. Wang, H. Zhu, and W. Ding, DM-fusion: Deep model-driven network for heterogeneous image fusion, IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 7, pp. 10071–10085, 2024.
Y. Zhang, R. Hu, R. Li, Y. Qu, Y. Xie, and X. Li, Cross-modal match for language conditioned 3D object grounding, Proc. AAAI Conf. Artif. Intell., vol. 38, no. 7, pp. 7359–7367, 2024.
Y. Pang, X. Zhao, T. Z. Xiang, L. Zhang, and H. Lu, ZoomNeXt: A unified collaborative pyramid network for camouflaged object detection, IEEE Trans. Pattern Anal. Mach. Intell., vol. 46, no. 12, pp. 9205–9220, 2024.
M. Ju, C. He, J. Liu, B. Kang, J. Su, and D. Zhang, IVF-net: An infrared and visible data fusion deep network for traffic object enhancement in intelligent transportation systems, IEEE Trans. Intell. Transport. Syst., vol. 24, no. 1, pp. 1220–1234, 2023.
Y. Lu, C. He, Y. F. Yu, G. Xu, H. Zhu, and L. Deng, Vector co-occurrence morphological edge detection for colour image, IET Image Process., vol. 15, no. 13, pp. 3063–3070, 2021.
C. He, K. Li, G. Xu, J. Yan, L. Tang, Y. Zhang, Y. Wang, and X. Li, HQG-net: Unpaired medical image enhancement with high-quality guidance, IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 12, pp. 18404–18418, 2024.
L. Deng, C. He, G. Xu, H. Zhu, and H. Wang, PcGAN: A noise robust conditional generative adversarial network for one shot learning, IEEE Trans. Intell. Transport. Syst., vol. 23, no. 12, pp. 25249–25258, 2022.
C. He, L. Xu, G. Lu, and L. Deng, GLLE entropic threshold segmentation based on fuzzy entropy, J. Nanjing Univ. Sci. Technol., vol. 11, no. 6, pp. 757–763, 2019.
M. Ju, C. He, C. Ding, W. Ren, L. Zhang, and K. K. Ma, All-inclusive image enhancement for degraded images exhibiting low-frequency corruption, IEEE Trans. Circuits Syst. Video Technol., vol. 45, no. 4, pp. 4462–4473, 2023.
S. H. Gao, M. M. Cheng, K. Zhao, X. Y. Zhang, M. H. Yang, and P. Torr, Res2Net: A new multi-scale backbone architecture, IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 2, pp. 652–662, 2021.
J. Yin, Y. Han, W. Hou, and J. Li, Detection of the mobile object with camouflage color under dynamic background based on optical flow, Procedia Eng., vol. 15, pp. 2201–2205, 2011.
J. R. Hall, I. C. Cuthill, R. Baddeley, A. J. Shohet, and N. E. Scott-Samuel, Camouflage, detection and identification of moving targets, Proc. R. Soc. B., vol. 280, no. 1758, pp. 20130064, 2013.
S. Kim, Unsupervised spectral-spatial feature selection-based camouflaged object detection using VNIR hyperspectral camera, Sci. World J., vol. 2015, no. 1, pp. 834635, 2015.
X. Zhang, C. Zhu, S. Wang, Y. Liu, and M. Ye, A Bayesian approach to camouflaged moving object detection, IEEE Trans. Circuits Syst. Video Technol., vol. 27, no. 9, pp. 2001–2013, 2017.
E. Meunier, A. Badoual, and P. Bouthemy, EM-driven unsupervised learning for efficient motion segmentation, IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 4, pp. 4462–4473, 2023.
P. Bideau, E. Learned-Miller, C. Schmid, and K. Alahari, The right spin: Learning object motion from rotation-compensated flow fields, Int. J. Comput. Vis., vol. 132, no. 1, pp. 40–55, 2024.
W. Hui, Z. Zhu, G. Gu, M. Liu, and Y. Zhao, Implicit-explicit motion learning for video camouflaged object detection, IEEE Trans. Multimedia, vol. 26, pp. 7188–7196, 2024.
T. N. Le, Y. Cao, T. C. Nguyen, M. Q. Le, K. D. Nguyen, T. T. Do, M. T. Tran, and T. V. Nguyen, Camouflaged instance segmentation in-the-wild: Dataset, method, and benchmark suite, IEEE Trans. Image Process., vol. 31, pp. 287–300, 2022.
Y. Zheng, X. Zhang, F. Wang, T. Cao, M. Sun, and X. Wang, Detection of people with camouflage pattern via dense deconvolution network, IEEE Signal Process. Lett., vol. 26, no. 1, pp. 29–33, 2019.
M. M. Cheng and D. P. Fan, Structure-measure: A new way to evaluate foreground maps, Int. J. Comput. Vis., vol. 129, no. 9, pp. 2622–2638, 2021.
Y. Ma, Y. He, X. Cun, X. Wang, S. Chen, X. Li, and Q. Chen, Follow your pose: Pose-guided text-to-video generation using pose-free videos, Proc. AAAI Conf. Artif. Intell., vol. 38, no. 5, pp. 4117–4125, 2024.
X. J. Luo, S. Wang, Z. Wu, C. Sakaridis, Y. Cheng, D. P. Fan, and L. Van Gool, CamDiff: camouflage image augmentation via diffusion, CAAI Artif. Intell. Res., vol. 2, p. 9150021, 2023.
R. Hu, Y. Liu, K. Gu, X. Min, and G. Zhai, Toward a No-reference quality metric for camera-captured images, IEEE Trans. Cybern., vol. 53, no. 6, pp. 3651–3664, 2023.
R. Hu, Y. Liu, Z. Wang, and X. Li, Blind quality assessment of night-time image, Displays, vol. 69, pp. 102045, 2021.
Z. Yang, S. Soltanian-Zadeh, and S. Farsiu, BiconNet: An edge-preserved connectivity-based approach for salient object detection, Pattern Recognit., vol. 121, pp. 108231, 2022.
G. P. Ji, D. P. Fan, P. Xu, B. Zhou, M. M. Cheng, and L. Van Gool, SAM struggles in concealed scenes—Empirical study on “segment anything”, Sci. China Inf. Sci., vol. 66, no. 12, p. 226101, 2023.
W. Ji, J. Li, Q. Bi, T. Liu, W. Li, and L. Cheng, Segment anything is not always perfect: An investigation of SAM on different real-world applications, Mach. Intell. Res., vol. 21, no. 4, pp. 617–630, 2024.
P. Bergmann, K. Batzner, M. Fauser, D. Sattlegger, and C. Steger, The MVTec anomaly detection dataset: A comprehensive real-world dataset for unsupervised anomaly detection, Int. J. Comput. Vis., vol. 129, no. 4, pp. 1038–1059, 2021.
B. Dong, W. Wang, D. P. Fan, J. Li, H. Fu, and L. Shao, Polyp-PVT: Polyp segmentation with pyramid vision transformers, CAAI Artif. Intell. Res., vol. 2, p. 9150015, 2023.
D. P. Fan, T. Zhou, G. P. Ji, Y. Zhou, G. Chen, H. Fu, J. Shen, and L. Shao, Inf-net: Automatic COVID-19 lung infection segmentation from CT images, IEEE Trans. Med. Imaging, vol. 39, no. 8, pp. 2626–2637, 2020.
H. Dong, K. Song, Y. He, J. Xu, Y. Yan, and Q. Meng, PGA-net: Pyramid feature fusion and global context attention network for automated surface defect detection, IEEE Trans. Ind. Inf., vol. 16, no. 12, pp. 7448–7458, 2020.
H. Zhou, R. Yang, R. Hu, C. Shu, X. Tang, and X. Li, ETDNet: Efficient transformer-based detection network for surface defect detection, IEEE Trans. Instrum. Meas., vol. 72, pp. 1–14, 2023.
H. Zhou, R. Yang, Y. Zhang, H. Duan, Y. Huang, R. Hu, X. Li, and Y. Zheng, UniHead: unifying multi-perception for detection heads, IEEE Trans. Neural Netw. Learn. Syst., DOI: https://doi.org/10.1109/TNNLS.2024.3412947.
J. Wäldchen and P. Mäder, Plant species identification using computer vision techniques: A systematic literature review, Arch. Comput. Meth. Eng., vol. 25, no. 2, pp. 507–543, 2018.
Q. Zhang, G. Yin, Y. Nie, and W. S. Zheng, Deep camouflage images, Proc. AAAI Conf. Artif. Intell., vol. 34, no. 7, pp. 12845–12852, 2020.
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).