AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (14.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

A Survey of Camouflaged Object Detection and Beyond

Fengyang Xiao1,2Sujie Hu1Yuqi Shen1Chengyu Fang1Jinfa Huang3Longxiang Tang1Ziyun Yang2Xiu Li1( )Chunming He1,2( )
Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
School of Electrical and Computer Engineering, Peking University, Shenzhen 518055, China

Fengyang Xiao and Sujie Hu contributed equally to this work.

Show Author Information

Abstract

Camouflaged object detection (COD) refers to the task of identifying and segmenting objects that blend seamlessly into their surroundings, posing a significant challenge for computer vision systems. In recent years, COD has garnered widespread attention due to its potential applications in surveillance, wildlife conservation, autonomous systems, and more. While several surveys on COD exist, they often have limitations in terms of the number and scope of papers covered, particularly regarding the rapid advancements made in the field since mid-2023. To address this void, we present the most comprehensive review of COD to date, encompassing both theoretical frameworks and practical contributions to the field. This paper explores various COD methods across four domains, including both image-level and video-level solutions, from the perspectives of traditional and deep learning approaches. We thoroughly investigate the correlations between COD and other camouflaged scenario methods, thereby laying the theoretical foundation for subsequent analyses. Furthermore, we delve into novel tasks such as referring-based COD and collaborative COD, which have not been fully addressed in previous works. Beyond object-level detection, we also summarize extended methods for instance-level tasks, including camouflaged instance segmentation, counting, and ranking. Additionally, we provide an overview of commonly used benchmarks and evaluation metrics in COD tasks, conducting a comprehensive evaluation of deep learning-based techniques in both image and video domains, considering both qualitative and quantitative performance. Finally, we discuss the limitations of current COD models and propose 9 promising directions for future research, focusing on addressing inherent challenges and exploring novel, meaningful technologies. This comprehensive examination aims to deepen the understanding of COD models and related methods in camouflaged scenarios. For those interested, a curated list of COD-related techniques, datasets, and additional resources can be found at https://github.com/ChunmingHe/awesome-concealed-object-segmentation.

References

[1]

Y. Pu, Y. Han, Y. Wang, J. Feng, C. Deng, and G. Huang, Fine-grained recognition with learnable semantic data augmentation, IEEE Trans. Image Process., vol. 33, pp. 3130–3144, 2024.

[2]
Y. Pu, Y. Wang, Z. Xia, Y. Han, Y. Wang, W. Gan, Z. Wang, S. Song, and G. Huang, Adaptive rotated convolution for rotated object detection, in Proc. 2023 IEEE/CVF Int. Conf. Computer Vision (ICCV), Paris, France, 2023, pp. 6566–6577.
[3]
Y. Pu, W. Liang, Y. Hao, Y. Yuan, Y. Yang, C. Zhang, H. Hu, and G. Huang, Rank-DETR for high quality object detection, in Proc. 37th Conf. Neural Information Processing Systems (NeurIPS 2023), New Orleans, LA, USA, 2023, pp. 16100–16113.
[4]
Y. Wang, Z. Li, J. Mei, Z. Wei, L. Liu, C. Wang, S. Sang, A. L. Yuille, C. Xie, and Y. Zhou, SwinMM: masked multi-view with swin transformers for 3D medical image segmentation, in Proc. 26th Int. Conf. Medical Image Computing and Computer Assisted Intervention (MICCAI 2023), Vancouver, Canada, 2023, pp. 486–496.
[5]
J. Zhao, J. J. Liu, D. P. Fan, Y. Cao, J. Yang, and M. M. Cheng, EGNet: Edge guidance network for salient object detection, in Proc. 2019 IEEE/CVF Int. Conf. Computer Vision (ICCV), Seoul, Republic of Korea, 2019, pp. 8779–8788.
[6]
Z. Wu, L. Su, and Q. Huang, Cascaded partial decoder for fast and accurate salient object detection, in Proc. 2019 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019, pp. 3907–3916.
[7]
D. P. Fan, G. P. Ji, G. Sun, M. M. Cheng, J. Shen, and L. Shao, Camouflaged object detection, in Proc. 2020 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2020, pp. 2777–2787.
[8]
F. Yang, Q. Zhai, X. Li, R. Huang, A. Luo, H. Cheng, and D. P. Fan, Uncertainty-guided transformer reasoning for camouflaged object detection, in Proc. 2021 IEEE/CVF Int. Conf. Computer Vision (ICCV), Montreal, Canada, 2021, pp. 4146–4155.
[9]
C. He, K. Li, Y. Zhang, L. Tang, Y. Zhang, Z. Guo, and X. Li, Camouflaged object detection with feature decomposition and edge reconstruction, in Proc. 2023 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Vancouver, Canada, 2023, pp. 22046–22055.
[10]
T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, Microsoft COCO: Common objects in context, in Proc. 13th European Conf. Computer Vision (ECCV), Zurich, Switzerland, 2014, pp. 740–755.
[11]
L. Wang, H. Lu, Y. Wang, M. Feng, D. Wang, B. Yin, and X. Ruan, Learning to detect salient objects with image-level supervision, in Proc. 2017 IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017, pp. 136–145.
[12]

D. P. Fan, G. P. Ji, M. M. Cheng, and L. Shao, Concealed object detection, IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 10, pp. 6024–6042, 2022.

[13]

A. Kumar, Computer-vision-based fabric defect detection: A survey, IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 348–363, 2008.

[14]
L. Wang, J. Yang, Y. Zhang, F. Wang, and F. Zheng, Depth-aware concealed crop detection in dense agricultural scenes, in Proc. 2024 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2024, pp. 17201–17211.
[15]

D. J. A. Rustia, C. E. Lin, J. Y. Chung, Y. J. Zhuang, J. C. Hsu, and T. T. Lin, Application of an image and environmental sensor network for automated greenhouse insect pest monitoring, J. Asia Pac. Entomol., vol. 23, no. 1, pp. 17–28, 2020.

[16]
D. P. Fan, G. P. Ji, T. Zhou, G. Chen, H. Fu, J. Shen, and L. Shao, PraNet: Parallel reverse attention network for polyp segmentation, in Proc. 23rd Int. Conf. Medical Image Computing and Computer Assisted Intervention (MICCAI 2020), Lima, Peru, 2020, pp. 263–273.
[17]

H. K. Chu, W. H. Hsu, N. J. Mitra, D. Cohen-Or, T. T. Wong, and T. Y. Lee, Camouflage images, ACM Trans. Graph., vol. 29, no. 4, pp. 1–8, 2010.

[18]
X. Suo, Y. Jiang, P. Lin, Y. Zhang, M. Wu, K. Guo, and L. Xu, NeuralHumanFVV: Real-time neural volumetric human performance rendering using RGB cameras, in Proc. 2021 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021, pp. 6226–6237.
[19]
C. He, K. Li, Y. Zhang, Y. Zhang, Z. Guo, X. Li, M. Danelljan, and F. Yu, Strategic preys make acute predators: Enhancing camouflaged object detectors by generating camouflaged objects, in Proc. 12h Int. Conf. Learning Representations (ICLR), Vienna, Austria, 2024.
[20]

S. Li, D. Florencio, W. Li, Y. Zhao, and C. Cook, A fusion framework for camouflaged moving foreground detection in the wavelet domain, IEEE Trans. Image Process., vol. 27, no. 8, pp. 3918–3930, 2018.

[21]
Galun, Sharon, Basri, and Brandt, Texture segmentation by multiscale aggregation of filter responses and shape elements, in Proc. 9th IEEE Int. Conf. Computer Vision, Nice, France, 2003, pp. 716–723.
[22]
A. Tankus and Y. Yeshurun, Detection of regions of interest and camouflage breaking by direct convexity estimation, in Proc. 1998 IEEE Workshop on Visual Surveillance, Bombay, India, 1998, pp. 42–48.
[23]

C. Pulla Rao, A. Guruva Reddy, and C. B. Rama Rao, Camouflaged object detection for machine vision applications, Int. J. Speech Technol., vol. 23, no. 2, pp. 327–335, 2020.

[24]

T. E. Boult, R. J. Micheals, X. Gao, and M. Eckmann, Into the woods: Visual surveillance of noncooperative and camouflaged targets in complex outdoor settings, Proc. IEEE, vol. 89, no. 10, pp. 1382–1402, 2001.

[25]

Y. Beiderman, M. Teicher, J. Garcia, V. Mico, and Z. Zalevsky, Optical technique for classification, recognition and identification of obscured objects, Opt. Commun., vol. 283, no. 21, pp. 4274–4282, 2010.

[26]
A. Mittal and N. Paragios, Motion-based background subtraction using adaptive kernel density estimation, in Proc. 2004 IEEE Computer Society Conf. Computer Vision and Pattern Recognition (CVPR 2004), Washington, DC, USA, 2004.
[27]
Y. Sun, G. Chen, T. Zhou, Y. Zhang, and N. Liu, Context-aware cross-level fusion network for camouflaged object detection, in Proc. 30th Int. Joint Conf. Artificial Intelligence (IJCAI-21), virtual, pp. 1025–1031.
[28]
C. He, K. Li, Y. Zhang, G. Xu, L. Tang, Y. Zhang, Z. Guo, and X. Li, Weakly-supervised concealed object segmentation with SAM-based pseudo labeling and multi-scale feature grouping, in Proc. 37th Conf. Neural Information Processing Systems (NeurIPS 2023), New Orleans, LA, USA, 2023, pp. 30726–30737.
[29]
Z. Chen, Y. Zhang, J. Gu, Y. Zhang, L. Kong, and X. Yuan, Cross aggregation transformer for image restoration, in Proc. 36th Conf. Neural Information Processing Systems (NeurIPS 2022), New Orleans, LA, USA, 2022, pp. 25478–25490.
[30]
Z. Huang, H. Dai, T. Z. Xiang, S. Wang, H. X. Chen, J. Qin, and H. Xiong, Feature shrinkage pyramid for camouflaged object detection with transformers, in Proc. 2023 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Vancouver, Canada, 2023, pp. 5557–5566.
[31]

X. Hu, S. Wang, X. Qin, H. Dai, W. Ren, D. Luo, Y. Tai, and L. Shao, High-resolution iterative feedback network for camouflaged object detection, Proc. AAAI Conf. Artif. Intell., vol. 37, no. 1, pp. 881–889, 2023.

[32]
Y. Lv, J. Zhang, Y. Dai, A. Li, B. Liu, N. Barnes, and D. P. Fan, Simultaneously localize, segment and rank the camouflaged objects, in Proc. 2021 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021, pp. 11586–11596.
[33]
Z. Chen, Y. Zhang, J. Gu, L. Kong, X. Yang, and F. Yu, Dual aggregation transformer for image super-resolution, in Proc. 2023 IEEE/CVF Int. Conf. Computer Vision (ICCV), Paris, France, 2023, 12312–12321.
[34]
H. Mei, G. P. Ji, Z. Wei, X. Yang, X. Wei, and D. P. Fan, Camouflaged object segmentation with distraction mining, in Proc. 2021 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021, pp. 8768–8777.
[35]
Q. Jia, S. Yao, Y. Liu, X. Fan, R. Liu, and Z. Luo, Segment, magnify and reiterate: Detecting camouflaged objects the hard way, in Proc. 2022 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 2022, pp. 4713–4722.
[36]
Y. Pang, X. Zhao, T. Z. Xiang, L. Zhang, and H. Lu, Zoom in and out: A mixed-scale triplet network for camouflaged object detection, in Proc. 2022 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 2022, pp. 2160–2170.
[37]
Y. Zhong, B. Li, L. Tang, S. Kuang, S. Wu, and S. Ding, Detecting camouflaged object in frequency domain, in Proc. 2022 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 2022, pp. 4494–4503.
[38]
Z. Chen, Y. Zhang, D. Liu, B. Xia, J. Gu, L. Kong, and X. Yuan, Hierarchical integration diffusion model for realistic image deblurring, in Proc. 37th Conf. Neural Information Processing Systems (NeurIPS 2023), New Orleans, LA, USA, 2023, pp. 29114–29125.
[39]
Z. Luo, N. Liu, W. Zhao, X. Yang, D. Zhang, D. P. Fan, F. Khan, and J. Han, VSCode: General visual salient and camouflaged object detection with 2D prompt learning, in Proc. 2024 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2024, 17169–17180.
[40]

T. N. Le, T. V. Nguyen, Z. Nie, M. T. Tran, and A. Sugimoto, Anabranch network for camouflaged object segmentation, Comput. Vis. Image Underst., vol. 184, pp. 45–56, 2019.

[41]

T. Zhou, Y. Zhou, C. Gong, J. Yang, and Y. Zhang, Feature aggregation and propagation network for camouflaged object detection, IEEE Trans. Image Process., vol. 31, pp. 7036–7047, 2022.

[42]

Y. Zhang, J. Zhang, W. Hamidouche, and O. Déforges, Predictive uncertainty estimation for camouflaged object detection, IEEE Trans. Image Process., vol. 32, pp. 3580–3591, 2023.

[43]

Q. Zhai, X. Li, F. Yang, Z. Jiao, P. Luo, H. Cheng, and Z. Liu, MGL: mutual graph learning for camouflaged object detection, IEEE Trans. Image Process., vol. 32, pp. 1897–1910, 2023.

[44]
A. Li, J. Zhang, Y. Lv, B. Liu, T. Zhang, and Y. Dai, Uncertainty-aware joint salient object and camouflaged object detection, in Proc. 2021 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021, pp. 10071–10081.
[45]

Y. Yang and Q. Zhang, Finding camouflaged objects along the camouflage mechanisms, IEEE Trans. Circuits Syst. Video Technol., vol. 34, no. 4, pp. 2346–2360, 2024.

[46]
C. Hao, Z. Yu, X. Liu, J. Xu, H. Yue, and J. Yang, A simple yet effective network based on vision transformer for camouflaged object and salient object detection, arXiv preprint arXiv: 2402.18922, 2024.
[47]
S. Cheng, G. P. Ji, P. Qin, D. P. Fan, B. Zhou, and P. Xu, Large model based referring camouflaged object detection, arXiv preprint arXiv: 2311.17122, 2023.
[48]
X. Zhang, B. Yin, Z. Lin, Q. Hou, D. P. Fan, and M. M. Cheng, Referring camouflaged object detection, arXiv preprint arXiv: 2306.07532, 2023.
[49]
Y. Pang, X. Zhao, J. Zuo, L. Zhang, and H. Lu, Open-vocabulary camouflaged object segmentation, presented at 18th European Conf. Computer Vision (ECCV), Milan, Italy, 2024.
[50]

C. Zhang, H. Bi, T. Z. Xiang, R. Wu, J. Tong, and X. Wang, Collaborative camouflaged object detection: A large-scale dataset and benchmark, IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 12, pp. 18470–18484, 2024.

[51]
Y. Zhang and C. Wu, Unsupervised camouflaged object segmentation as domain adaptation, in Proc. 2023 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Vancouver, Canada, 2023, pp. 4334–4344.
[52]

G. P. Ji, L. Zhu, M. Zhuge, and K. Fu, Fast camouflaged object detection via edge-based reversible re-calibration network, Pattern Recognit., vol. 123, pp. 108414, 2022.

[53]

H. Bi, C. Zhang, K. Wang, J. Tong, and F. Zheng, Rethinking camouflaged object detection: Models and datasets, IEEE Trans. Circuits Syst. Video Technol., vol. 32, no. 9, pp. 5708–5724, 2022.

[54]

D. P. Fan, G. P. Ji, P. Xu, M. M. Cheng, C. Sakaridis, and L. Van Gool, Advances in deep concealed scene understanding, Vis. Intell., vol. 1, no. 1, pp. 16, 2023.

[55]

Y. Liang, G. Qin, M. Sun, X. Wang, J. Yan, and Z. Zhang, A systematic review of image-level camouflaged object detection with deep learning, Neurocomputing, vol. 566, pp. 127050, 2024.

[56]

A. Tankus and Y. Yeshurun, Convexity-based visual camouflage breaking, Comput. Vis. Image Underst., vol. 82, no. 3, pp. 208–237, 2001.

[57]

M. B. Neider and G. J. Zelinsky, Searching for camouflaged targets: Effects of target-background similarity on visual search, Vis. Res., vol. 46, no. 14, pp. 2217–2235, 2006.

[58]
N. U. Bhajantri and P. Nagabhushan, Camouflage defect identification: A novel approach, in Proc. 9th Int. Conf. Information Technology (ICIT’06), Bhubaneswar, India, 2006, pp. 145–148.
[59]
P. Sengottuvelan, A. Wahi, and A. Shanmugam, Performance of decamouflaging through exploratory image analysis, in Proc. 1st Int. Conf. Emerging Trends in Engineering and Technology, Nagpur, India, 2008, pp. 6–10.
[60]

W. R. Boot, M. B. Neider, and A. F. Kramer, Training and transfer of training in the search for camouflaged targets, Atten. Percept. Psychophys., vol. 71, no. 4, pp. 950–963, 2009.

[61]
L. Song and W. Geng, A new camouflage texture evaluation method based on WSSIM and nature image features, in Proc. Int. Conf. Multimedia Technology, Ningbo, China, 2010, pp. 1–4.
[62]
P. Siricharoen, S. Aramvith, T. H. Chalidabhongse, and S. Siddhichai, Robust outdoor human segmentation based on color-based statistical approach and edge combination, in Proc. 2010 Int. Conf. Green Circuits and Systems, Shanghai, China, 2010, pp. 463–468.
[63]
K. Chaduvula, B. P. Rao, and A. Govardhan, An efficient content based image retrieval using color and texture of image sub- blocks, https://www.researchgate.net/publication/50392348_An_efficient_content_based_image_retrieval_using_color_and_texture_of_image_sub-blocks, 2011.
[64]

Y. Pan, Y. Chen, Q. Fu, P. Zhang, and X. Xu, Study on the camouflaged target detection method based on 3D convexity, Mod. Appl. Sci., vol. 5, no. 4, pp. 152–157, 2011.

[65]

F. Xue, G. Cui, R. Hong, and J. Gu, Camouflage texture evaluation using a saliency map, Multimed. Syst., vol. 21, no. 2, pp. 169–175, 2015.

[66]
S. Li, D. Florencio, Y. Zhao, C. Cook, and W. Li, Foreground detection in camouflaged scenes, in Proc. IEEE Int. Conf. Image Processing (ICIP), Beijing, China, 2017, pp. 4247–4251.
[67]

Y. Liu, C. Q. Wang, and Y. J. Zhou, Camouflaged people detection based on a semi-supervised search identification network, Def. Technol., vol. 21, pp. 176–183, 2023.

[68]

J. Hu, J. Lin, S. Gong, and W. Cai, Relax image-specific prompt requirement in SAM: A single generic prompt for segmenting camouflaged objects, Proc. AAAI Conf. Artif. Intell., vol. 38, no. 11, pp. 12511–12518, 2024.

[69]

J. Zhu, X. Zhang, S. Zhang, and J. Liu, Inferring camouflaged objects by texture-aware interactive guidance network, Proc. AAAI Conf. Artif. Intell., vol. 35, no. 4, pp. 3599–3607, 2021.

[70]
N. Kajiura, H. Liu, and S. Satoh, Improving camouflaged object detection with the uncertainty of pseudo-edge labels, in Proc. ACM Multimedia Asia, Gold Coast, Australia, 2021, pp. 1–7.
[71]
Q. Zhai, X. Li, F. Yang, C. Chen, H. Cheng, and D. P. Fan, Mutual graph learning for camouflaged object detection, in Proc. 2021 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021, 12997– 13007.
[72]

J. Yan, T. N. Le, K. D. Nguyen, M. T. Tran, T. T. Do, and T. V. Nguyen, MirrorNet: bio-inspired camouflaged object segmentation, IEEE Access, vol. 9, pp. 43290–43300, 2021.

[73]

J. Ren, X. Hu, L. Zhu, X. Xu, Y. Xu, W. Wang, Z. Deng, and P. A. Heng, Deep texture-aware features for camouflaged object detection, IEEE Trans. Circuits Syst. Video Technol., vol. 33, no. 3, pp. 1157–1167, 2023.

[74]

K. Wang, H. Bi, Y. Zhang, C. Zhang, Z. Liu, and S. Zheng, D2C-net: A dual-branch, dual-guidance and cross-refine network for camouflaged object detection, IEEE Trans. Ind. Electron., vol. 69, no. 5, pp. 5364–5374, 2022.

[75]

Y. Liu, D. Zhang, Q. Zhang, and J. Han, Integrating part-object relationship and contrast for camouflaged object detection, IEEE Trans. Inf. Forensics Secur., vol. 16, pp. 5154–5166, 2021.

[76]
M. Xiang, J. Zhang, Y. Lv, A. Li, Y. Zhong, and Y. Dai, Exploring depth contribution for camouflaged object detection, arXiv preprint arXiv: 2106.13217, 2021.
[77]
X. Qin, D. P. Fan, C. Huang, C. Diagne, Z. Zhang, A. C. Sant’Anna, A. Suàrez, M. Jagersand, and L. Shao, Boundary-aware segmentation network for mobile and web applications, arXiv preprint arXiv: 2101.04704, 2021.
[78]
G. Chen, X. Chen, B. Dong, M. Zhuge, Y. Wang, H. Bi, J. Chen, P. Wang, and Y. Zhang, Towards accurate camouflaged object detection with mixture convolution and interactive fusion, arXiv preprint arXiv: 2101.05687, 2021.
[79]

H. Zhu, P. Li, H. Xie, X. Yan, D. Liang, D. Chen, M. Wei, and J. Qin, I can find you! boundary-guided separated attention network for camouflaged object detection, Proc. AAAI Conf. Artif. Intell., vol. 36, no. 3, pp. 3608–3616, 2022.

[80]
M. Zhang, S. Xu, Y. Piao, D. Shi, S. Lin, and H. Lu, PreyNet: Preying on camouflaged objects, in Proc. 30th ACM Int. Conf. Multimedia, Lisboa, Portugal, 2022, pp. 5323–5332.
[81]

C. Zhang, K. Wang, H. Bi, Z. Liu, and L. Yang, Camouflaged object detection via neighbor connection and hierarchical information transfer, Comput. Vis. Image Underst., vol. 221, pp. 103450, 2022.

[82]
M. C. Chou, H. J. Chen, and H. H. Shuai, Finding the Achilles heel: Progressive identification network for camouflaged object detection, in Proc. IEEE Int. Conf. Multimedia and Expo (ICME), Taipei, China, 2022, pp. 1–6.
[83]

K. B. Park and J. Y. Lee, TCU-Net: Transformer and convolutional neural network-based advanced U-net for concealed object detection, IEEE Access, vol. 10, pp. 122347–122360, 2022.

[84]
Y. Sun, S. Wang, C. Chen, and T. Z. Xiang, Boundary-guided camouflaged object detection, in Proc. 31st Int. Joint Conf. Artificial Intelligence (IJCAI-22), Vienna, Austria, pp. 1335–1341.
[85]

M. Zhuge, X. Lu, Y. Guo, Z. Cai, and S. Chen, CubeNet: X-shape connection for camouflaged object detection, Pattern Recognit., vol. 127, pp. 108644, 2022.

[86]

G. Chen, S. J. Liu, Y. J. Sun, G. P. Ji, Y. F. Wu, and T. Zhou, Camouflaged object detection via context-aware cross-level fusion, IEEE Trans. Circuits Syst. Video Technol., vol. 32, no. 10, pp. 6981–6993, 2022.

[87]

P. Li, X. Yan, H. Zhu, M. Wei, X. P. Zhang, and J. Qin, FindNet: can you find me? boundary-and-texture enhancement network for camouflaged object detection, IEEE Trans. Image Process., vol. 31, pp. 6396–6411, 2022.

[88]

W. Zhai, Y. Cao, H. Xie, and Z. J. Zha, Deep texton-coherence network for camouflaged object detection, IEEE Trans. Multimedia, vol. 25, pp. 5155–5165, 2023.

[89]

J. Lin, X. Tan, K. Xu, L. Ma, and R. W. H. Lau, Frequency-aware camouflaged object detection, ACM Trans. Multimedia Comput. Commun. Appl., vol. 19, no. 2, pp. 1–16, 2023.

[90]
J. Liu, J. Zhang, and N. Barnes, Modeling aleatoric uncertainty for camouflaged object detection, in Proc. IEEE/CVF Winter Conf. Applications of Computer Vision (WACV), Waikoloa, HI, USA, 2022, pp. 1445–1454.
[91]
W. Sun, C. Liu, L. Zhang, Y. Li, P. Wei, C. Liu, J. Zou, J. Jiao, and Q. Ye, DQnet: cross-model detail querying for camouflaged object detection, arXiv preprint arXiv: 2212.08296, 2022.
[92]

R. He, Q. Dong, J. Lin, and R. W. H. Lau, Weakly-supervised camouflaged object detection with scribble annotations, Proc. AAAI Conf. Artif. Intell., vol. 37, no. 1, pp. 781–789, 2023.

[93]
C. Xie, C. Xia, T. Yu, and J. Li, Frequency representation integration for camouflaged object detection, in Proc. 31st ACM Int. Conf. Multimedia, Ottawa, Canada, 2023, pp. 1789–1797.
[94]
Q. Wang, J. Yang, X. Yu, F. Wang, P. Chen, and F. Zheng, Depth-aided camouflaged object detection, in Proc. 31st ACM Int. Conf. Multimedia, Ottawa, Canada, 2023, pp. 3297–3306.
[95]
R. Cong, M. Sun, S. Zhang, X. Zhou, W. Zhang, and Y. Zhao, Frequency perception network for camouflaged object detection, in Proc. 31st ACM Int. Conf. Multimedia, Ottawa, Canada, 2023, pp. 1179–1189.
[96]
Z. Wu, J. Wang, Z. Zhou, Z. An, Q. Jiang, C. Demonceaux, G. Sun, and R. Timofte, Object segmentation by mining cross-modal semantics, in Proc. 31st ACM Int. Conf. Multimedia, Ottawa, Canada, 2023, pp. 3455–3464.
[97]
F. Xiao, P. Zhang, C. He, R. Hu, and Y. Liu, Concealed object segmentation with Hierarchical coherence modeling, in Proc. 3rd CAAI Int. Conf. Artificial Intelligence, Fuzhou, China, 2024, pp. 16–27.
[98]

Q. Zhang, X. Sun, Y. Chen, Y. Ge, and H. Bi, Attention-induced semantic and boundary interaction network for camouflaged object detection, Comput. Vis. Image Underst., vol. 233, pp. 103719, 2023.

[99]
Z. Chen, R. Gao, T. Z. Xiang, and F. Lin, Diffusion model for camouflaged object detection, in Proc. 26th European Conf. Artificial Intelligence, Kraków, Poland, 2023, pp. 445–452.
[100]
H. Xing, S. Gao, H. Tang, T. Q. Mok, Y. Kang, and W. Zhang, TINYCOD: Tiny and effective model for camouflaged object detection, in Proc. ICASSP 2023 - 2023 IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 2023, pp. 1–5.
[101]
Z. Wu, D. P. Paudel, D. P. Fan, J. Wang, S. Wang, C. Demonceaux, R. Timofte, and L. Van Gool, Source-free depth for object pop-out, in Proc. 2023 IEEE/CVF Int. Conf. Computer Vision (ICCV), Paris, France, 2023, pp. 1032–1042.
[102]
D. Sun, S. Jiang, and L. Qi, Edge-aware mirror network for camouflaged object detection, in Proc. IEEE Int. Conf. Multimedia and Expo (ICME), Brisbane, Australia, 2023, pp. 2465–2470.
[103]
Y. Song, X. Li, and L. Qi, Camouflaged object detection with feature grafting and distractor aware, in Proc. IEEE Int. Conf. Multimedia and Expo (ICME), Brisbane, Australia, 2023, pp. 2459–2464.
[104]
Q. Zhang and W. Yan, CFANet: A cross-layer feature aggregation network for camouflaged object detection, in Proc. IEEE Int. Conf. Multimedia and Expo (ICME), Brisbane, Australia, 2023, pp. 2441–2446.
[105]
X. Yang, H. Zhu, G. Mao, and S. Xing, OAFormer: Occlusion aware transformer for camouflaged object detection, in Proc. IEEE Int. Conf. Multimedia and Expo (ICME), Brisbane, Australia, 2023, pp. 1421–1426.
[106]
X. Li, J. Yang, S. Li, J. Lei, J. Zhang, and D. Chen, Locate, refine and restore: A progressive enhancement network for camouflaged object detection, in Proc. 32nd Int. Joint Conf. Artificial Intelligence, Macau, China, 2023, pp. 1116–1124.
[107]

H. Mei, K. Xu, Y. Zhou, Y. Wang, H. Piao, X. Wei, and X. Yang, Camouflaged object segmentation with omni perception, Int. J. Comput. Vis., vol. 131, no. 11, pp. 3019–3034, 2023.

[108]

G. P. Ji, D. P. Fan, Y. C. Chou, D. Dai, A. Liniger, and L. Van Gool, Deep gradient learning for efficient camouflaged object detection, Mach. Intell. Res., vol. 20, no. 1, pp. 92–108, 2023.

[109]
V. Asnani, A. Kumar, S. You, and X. Liu, PrObeD: Proactive object detection wrapper, in Proc. 37th Conf. Neural Information Processing Systems (NeurIPS 2023), New Orleans, LA, USA, 2023, pp. 77993–78005.
[110]

Y. Liu, K. Zhang, Y. Zhao, H. Chen, and Q. Liu, Bi-RRNet: bi-level recurrent refinement network for camouflaged object detection, Pattern Recognit., vol. 139, pp. 109514, 2023.

[111]

X. Jiang, W. Cai, Y. Ding, X. Wang, Z. Yang, X. Di, and W. Gao, Camouflaged object detection based on ternary cascade perception, Remote. Sens., vol. 15, no. 5, pp. 1188, 2023.

[112]

J. Xiang, Q. Pan, Z. Zhang, S. Fu, and Y. Qin, Double-branch fusion network with a parallel attention selection mechanism for camouflaged object detection, Sci. China Inf. Sci., vol. 66, no. 6, pp. 162403, 2023.

[113]

X. Hu, X. Zhang, F. Wang, J. Sun, and F. Sun, Efficient camouflaged object detection network based on global localization perception and local guidance refinement, IEEE Trans. Circuits Syst. Video Technol., vol. 34, no. 7, pp. 5452–5465, 2024.

[114]

G. Yue, H. Xiao, H. Xie, T. Zhou, W. Zhou, W. Yan, B. Zhao, T. Wang, and Q. Jiang, Dual-constraint coarse-to-fine network for camouflaged object detection, IEEE Trans. Circuits Syst. Video Technol., vol. 34, no. 5, pp. 3286–3298, 2024.

[115]

H. Xing, S. Gao, Y. Wang, X. Wei, H. Tang, and W. Zhang, Go closer to see better: Camouflaged object detection via object area amplification and figure-ground conversion, IEEE Trans. Circuits Syst. Video Technol., vol. 33, no. 10, pp. 5444–5457, 2023.

[116]

Y. Liu, H. Li, J. Cheng, and X. Chen, MSCAF-net: A general framework for camouflaged object detection via learning multi-scale context-aware features, IEEE Trans. Circuits Syst. Video Technol., vol. 33, no. 9, pp. 4934–4947, 2023.

[117]

Y. Lv, J. Zhang, Y. Dai, A. Li, N. Barnes, and D. P. Fan, Toward deeper understanding of camouflaged object detection, IEEE Trans. Circuits Syst. Video Technol., vol. 33, no. 7, pp. 3462–3476, 2023.

[118]

X. Jiang, W. Cai, Y. Ding, X. Wang, D. Hong, Z. Yang, and W. Gao, Camouflaged object segmentation based on joint salient object for contrastive learning, IEEE Trans. Instrum. Meas., vol. 72, pp. 1–16, 2023.

[119]

H. Li, C. M. Feng, Y. Xu, T. Zhou, L. Yao, and X. Chang, Zero-shot camouflaged object detection, IEEE Trans. Image Process., vol. 32, pp. 5126–5137, 2023.

[120]

Z. Song, X. Kang, X. Wei, H. Liu, R. Dian, and S. Li, FSNet: focus scanning network for camouflaged object detection, IEEE Trans. Image Process., vol. 32, pp. 2267–2278, 2023.

[121]

Y. Lyu, H. Zhang, Y. Li, H. Liu, Y. Yang, and D. Yuan, UEDG: uncertainty-edge dual guided camouflage object detection, IEEE Trans. Multimed., vol. 26, pp. 4050–4060, 2024.

[122]

X. Yan, M. Sun, Y. Han, and Z. Wang, Camouflaged object segmentation based on matching–recognition–refinement network, IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 11, pp. 15993–16007, 2024.

[123]
D. Zheng, X. Zheng, L. T. Yang, Y. Gao, C. Zhu, and Y. Ruan, MFFN: Multi-view feature fusion network for camouflaged object detection, in Proc. IEEE/CVF Winter Conf. Applications of Computer Vision (WACV), Waikoloa, HI, USA, 2023, pp. 6232–6242.
[124]
J. Li, F. Lu, N. Xue, Z. Li, H. Zhang, and W. He, Cross-level attention with overlapped windows for camouflaged object detection, arXiv preprint arXiv: 2311.16618, 2023.
[125]
T. Chen, J. Xiao, X. Hu, G. Zhang, and S. Wang, A bioinspired three-stage model for camouflaged object detection, arXiv preprint arXiv: 2305.12635, 2023.
[126]
T. Chen, L. Zhu, C. Ding, R. Cao, Y. Wang, Z. Li, L. Sun, P. Mao, Y. Zang, T. Chen, et al., SAM fails to segment anything? -- SAM-Adapter: Adapting SAM in underperformed scenes: Camouflage, shadow, medical image segmentation, and more, arXiv preprint arXiv: 2304.09148, 2023.
[127]
Y. Dong, H. Zhou, C. Li, J. Xie, Y. Xie, and Z. Li, You do not need additional priors in camouflage object detection, arXiv preprint arXiv: 2310.00702, 2023.
[128]
M. Q. Le, M. T. Tran, T. N. Le, T. V. Nguyen, and T. T. Do, CamoFA: A learnable Fourier-based augmentation for camouflage segmentation, arXiv preprint arXiv: 2308.15660, 2023.
[129]
A. Li, J. Zhang, Y. Lv, T. Zhang, Y. Zhong, M. He, and Y. Dai, Joint salient object detection and camouflaged object detection via uncertainty-aware learning, arXiv preprint arXiv: 2307.04651, 2023.
[130]
Y. Xing, D. Kong, S. Zhang, G. Chen, L. Ran, P. Wang, and Y. Zhang, Pre-train, adapt and detect: Multi-task adapter tuning for camouflaged object detection, arXiv preprint arXiv: 2307.10685, 2023.
[131]

Z. Chen, K. Sun, and X. Lin, CamoDiffusion: camouflaged object detection via conditional diffusion models, Proc. AAAI Conf. Artif. Intell., vol. 38, no. 2, pp. 1272–1280, 2024.

[132]
L. Tang, P. T. Jiang, Z. H. Shen, H. Zhang, J. W. Chen, and B. Li, Chain of visual perception: Harnessing multimodal large language models for zero-shot camouflaged object detection, in Proc. 32nd ACM Int. Conf. Multimedia, Melbourne, Australia, 2024, pp. 8805–8814.
[133]
Z. Liu, P. Jiang, L. Lin, and X. Deng, Edge attention learning for efficient camouflaged object detection, in Proc. 2024 IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP 2024). Seoul, Republic of Korea, 2024, pp. 5230–5234.
[134]

T. D. Nguyen, A. K N. Vu, N. D. Nguyen, V. T. Nguyen, T. D. Ngo, T. T. Do, M. T. Tran, and T. V. Nguyen, The art of camouflage: Few-shot learning for animal detection and segmentation, IEEE Access, vol. 12, pp. 103488–103503, 2024.

[135]

X. Zhou, Z. Wu, and R. Cong, Decoupling and integration network for camouflaged object detection, IEEE Trans. Multimedia, vol. 26, pp. 7114–7129, 2024.

[136]

B. Yin, X. Zhang, D. P. Fan, S. Jiao, M. M. Cheng, L. Van Gool, and Q. Hou, CamoFormer: masked separable attention for camouflaged object detection, IEEE Trans. Pattern Anal. Mach. Intell., vol. 46, no. 12, pp. 10362–10374, 2024.

[137]

A. Khan, M. Khan, W. Gueaieb, A. El Saddik, G. De Masi, and F. Karray, CamoFocus: Enhancing camouflage object detection with split-feature focal modulation and context refinement, in Proc. IEEE/CVF Winter Conf. Applications of Computer Vision, no. WACV, pp. 1423, 1432.

[138]
H. S. Chen, Y. Zhu, S. You, A. M. Madni, and C. C. Jay Kuo, GreenCOD: A green camouflaged object detection method, arXiv preprint arXiv: 2405.16144, 2024.
[139]
Z. Chen, X. Zhang, T. Z. Xiang, and Y. Tai, Adaptive guidance learning for camouflaged object detection, arXiv preprint arXiv: 2405.02824, 2024.
[140]
C. Guo and H. Huang, CoFiNet: unveiling camouflaged objects with multi-scale finesse, arXiv preprint arXiv: 2402.02217, 2024.
[141]
Z. Yang, K. Choy, and S. Farsiu, Spatial coherence loss: All objects matter in salient and camouflaged object detection, arXiv preprint arXiv: 402.18698, 2024.
[142]
C. He, X. Wang, L. Deng, and G. Xu, Image threshold segmentation based on GLLE histogram. In CPSCom, in Proc. 2019 Int. Conf. Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Atlanta, GA, USA, 2019, pp. 410–415.
[143]

Y. Zhang, Y. Xie, C. Li, Z. Wu, and Y. Qu, Learn. all-in collaborative multiview binary representation for clustering, IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 3, pp. 4260–4273, 2024.

[144]

L. Xu, H. Wu, C. He, J. Wang, C. Zhang, F. Nie, and L. Chen, Multi-modal sequence learning for Alzheimer’s disease progression prediction with incomplete variable-length longitudinal data, Med. Image Anal., vol. 82, pp. 102643, 2022.

[145]
Z. Chen, Y. Zhang, J. Gu, L. Kong, and X. Yang, Recursive generalization transformer for image super-resolution, arXiv preprint arXiv: 2303.06373, 2023.
[146]

G. Xu, C. He, H. Wang, H. Zhu, and W. Ding, DM-fusion: Deep model-driven network for heterogeneous image fusion, IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 7, pp. 10071–10085, 2024.

[147]
C. He, C. Fang, Y. Zhang, T. Ye, K. Li, L. Tang, Z. Guo, X. Li, and S. Farsiu, Reti-diff: Illumination degradation image restoration with retinex-based latent diffusion model, arXiv preprint arXiv: 2311.11638, 2023.
[148]

Y. Zhang, R. Hu, R. Li, Y. Qu, Y. Xie, and X. Li, Cross-modal match for language conditioned 3D object grounding, Proc. AAAI Conf. Artif. Intell., vol. 38, no. 7, pp. 7359–7367, 2024.

[149]

Y. Pang, X. Zhao, T. Z. Xiang, L. Zhang, and H. Lu, ZoomNeXt: A unified collaborative pyramid network for camouflaged object detection, IEEE Trans. Pattern Anal. Mach. Intell., vol. 46, no. 12, pp. 9205–9220, 2024.

[150]
C. He, K. Li, G. Xu, Y. Zhang, R. Hu, Z. Guo, and X. Li, Degradation-resistant unfolding network for heterogeneous image fusion, in Proc. 2023 IEEE/CVF Int. Conf. Computer Vision (ICCV), Paris, France, 2023, 12611–12621.
[151]
Y. Zhang, Y. Qu, Y. Xie, Z. Li, S. Zheng, and C. Li, Perturbed self-distillation: Weakly supervised large-scale point cloud semantic segmentation, in Proc. 2021 IEEE/CVF Int. Conf. Computer Vision (ICCV), Montreal, Canada, 2021, pp. 15520–15528.
[152]

M. Ju, C. He, J. Liu, B. Kang, J. Su, and D. Zhang, IVF-net: An infrared and visible data fusion deep network for traffic object enhancement in intelligent transportation systems, IEEE Trans. Intell. Transport. Syst., vol. 24, no. 1, pp. 1220–1234, 2023.

[153]

Y. Lu, C. He, Y. F. Yu, G. Xu, H. Zhu, and L. Deng, Vector co-occurrence morphological edge detection for colour image, IET Image Process., vol. 15, no. 13, pp. 3063–3070, 2021.

[154]

C. He, K. Li, G. Xu, J. Yan, L. Tang, Y. Zhang, Y. Wang, and X. Li, HQG-net: Unpaired medical image enhancement with high-quality guidance, IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 12, pp. 18404–18418, 2024.

[155]

L. Deng, C. He, G. Xu, H. Zhu, and H. Wang, PcGAN: A noise robust conditional generative adversarial network for one shot learning, IEEE Trans. Intell. Transport. Syst., vol. 23, no. 12, pp. 25249–25258, 2022.

[156]
L. Tang, K. Li, C. He, Y. Zhang, and X. Li, Source-free domain adaptive fundus image segmentation with Class-balanced mean teacher, in Proc. 26th Int. Conf. Medical Image Computing and Computer Assisted Intervention (MICCAI 2023), Vancouver, Canada, 2023, pp. 684–694.
[157]
L. Tang, K. Li, C. He, Y. Zhang, and X. Li, Consistency regularization for generalizable source-free domain adaptation, in Proc. 2023 IEEE/CVF Int. Conf. Computer Vision (ICCV), Paris, France, 2023, pp. 23–33.
[158]
L. Tang, Z. Tian, K. Li, C. He, H. Zhou, H. Zhao, X. Li, and J. Jia, Mind the interference: Retaining pre-trained knowledge in parameter efficient continual learning of vision-language models, arXiv preprint arXiv: 2407.05342, 2024.
[159]
J. Huang, J. Pan, Z. Wan, H. Lyu, and J. Luo, Evolver: chain-of-evolution prompting to boost large multimodal models for hateful meme detection, arXiv preprint arXiv: 2407.21004, 2024.
[160]

C. He, L. Xu, G. Lu, and L. Deng, GLLE entropic threshold segmentation based on fuzzy entropy, J. Nanjing Univ. Sci. Technol., vol. 11, no. 6, pp. 757–763, 2019.

[161]

M. Ju, C. He, C. Ding, W. Ren, L. Zhang, and K. K. Ma, All-inclusive image enhancement for degraded images exhibiting low-frequency corruption, IEEE Trans. Circuits Syst. Video Technol., vol. 45, no. 4, pp. 4462–4473, 2023.

[162]
C. He, Y. Shen, C. Fang, F. Xiao, L. Tang, Y. Zhang, W. Zuo, Z. Guo, and X. Li, Diffusion models in low-level vision: A survey, arXiv preprint arXiv: 2406.11138, 2024.
[163]
K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv: 1409.1556, 2014.
[164]
K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, in Proc. 2016 IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 770–778.
[165]

S. H. Gao, M. M. Cheng, K. Zhao, X. Y. Zhang, M. H. Yang, and P. Torr, Res2Net: A new multi-scale backbone architecture, IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 2, pp. 652–662, 2021.

[166]
M. Tan and Q. V. Le, EfficientNet: rethinking model scaling for convolutional neural networks, in Proc. 36th Int. Conf. Machine Learning, Long Beach, CA, USA, 2019, pp. 6105–6114.
[167]
A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., An image is worth 16x16 words: Transformers for image recognition at scale, in Proc. 9th Int. Conf. Learning Representations (ICLR), virtual, 2021.
[168]
A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark et al., Learning transferable visual models from natural language supervision, in Proc. 38th Int. Conf. Machine Learning, virtual, 2021, pp. 8748–8763.
[169]
J. Li, D. Li, S. Savarese, and S. C. H. Hoi, BLIP-2: Bootstrapping language-image pre-training with frozen image encoders and large language models, in Proc. 40th Int. Conf. Machine Learning, Honolulu, HI, USA, 2023, pp. 19730–19742.
[170]
W. Wang, E. Xie, X. Li, D. P. Fan, K. Song, D. Liang, T. Lu, P. Luo, and L. Shao, Pyramid vision transformer: A versatile backbone for dense prediction without convolutions, in Proc. 2021 IEEE/CVF Int. Conf. Computer Vision (ICCV), Montreal, Canada, 2021, pp. 568–578.
[171]
Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, Swin transformer: Hierarchical vision transformer using shifted windows, in Proc. 2021 IEEE/CVF Int. Conf. Computer Vision (ICCV), Montreal, Canada, 2021, pp. 10012–10022.
[172]
C. Fang, C. He, F. Xiao, Y. Zhang, L. Tang, Y. Zhang, K. Li, and X. Li, Real-world image dehazing with coherence-based label generator and cooperative unfolding network, arXiv preprint arXiv: 2406.07966, 2024.
[173]
A. Vaswani, N. M. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, Attention is all you need, in Proc. 31st Int. Conf. Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 2017, pp. 6000–6010.
[174]
A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W. Y. Lo, et al., Segment anything, in Proc. 2023 IEEE/CVF Int. Conf. Computer Vision (ICCV), Paris, France, 2023, pp. 4015–4026.
[175]
J. Wang, Y. Pu, Y. Han, J. Guo, Y. Wang, X. Li, and G. Huang, GRA: detecting oriented objects through group-wise rotating and attention, arXiv preprint arXiv: 2403.11127, 2024.
[176]
J. Wang, J. Pu, Z. Qi, J. Guo, Y. Ma, N. Huang, Y. Chen, X. Li, and Y. Shan, Taming rectified flow for inversion and editing, arXiv preprint arXiv: 2411.04746, 2024.
[177]
J. Wang, Y. Ma, J. Guo, Y. Xiao, G. Huang, and X. Li, COVE: unleashing the diffusion feature correspondence for consistent video editing, arXiv preprint arXiv: 2406.08850, 2024.
[178]
I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, Generative adversarial networks, in Proc. 28th Int. Conf. Neural Information Processing Systems (NIPS 2014), Montréal, Canada, 2014, pp. 2672–2680.
[179]
Y. Xiao, Z. Luo, Y. Liu, Y. Ma, H. Bian, Y. Ji, Y. Yang, and X. Li, Bridging the gap: A unified video comprehension framework for moment retrieval and highlight detection, in Proc. 2024 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2024, pp. 18709–18719.
[180]
I. Huerta, D. Rowe, M. Mozerov, and J. Gonzàlez, Improving background subtraction based on a casuistry of colour-motion segmentation problems, in Proc. 3rd Iberian Conf. Pattern Recognition and Image Analysis (IbPRIA 2007), Girona, Spain, 2007, pp. 475–482.
[181]
H. Guo, Y. Dou, T. Tian, J. Zhou, and S. Yu, A robust foreground segmentation method by temporal averaging multiple video frames, in Proc. Int. Conf. Audio, Language and Image Processing, Shanghai, China, 2008, pp. 878–882.
[182]
D. Conte, P. Foggia, G. Percannella, F. Tufano, and M. Vento, An algorithm for detection of partially camouflaged people, in Proc. 6th IEEE Int. Conf. Advanced Video and Signal Based Surveillance, Genova, Italy, 2009, pp. 340–345.
[183]

J. Yin, Y. Han, W. Hou, and J. Li, Detection of the mobile object with camouflage color under dynamic background based on optical flow, Procedia Eng., vol. 15, pp. 2201–2205, 2011.

[184]
T. Malathi and M. K. Bhuyan, Foreground object detection under camouflage using multiple camera-based codebooks, in Proc. Annual IEEE India Conf. (INDICON), Mumbai, India, 2013, pp. 1–6.
[185]

J. R. Hall, I. C. Cuthill, R. Baddeley, A. J. Shohet, and N. E. Scott-Samuel, Camouflage, detection and identification of moving targets, Proc. R. Soc. B., vol. 280, no. 1758, pp. 20130064, 2013.

[186]

S. Kim, Unsupervised spectral-spatial feature selection-based camouflaged object detection using VNIR hyperspectral camera, Sci. World J., vol. 2015, no. 1, pp. 834635, 2015.

[187]
Y. Xiao, L. Song, S. Huang, J. Wang, S. Song, Y. Ge, X. Li, and Y. Shan, GrootVL: tree topology is all you need in state space model, arXiv preprint arXiv: 2406.02395, 2024.
[188]

X. Zhang, C. Zhu, S. Wang, Y. Liu, and M. Ye, A Bayesian approach to camouflaged moving object detection, IEEE Trans. Circuits Syst. Video Technol., vol. 27, no. 9, pp. 2001–2013, 2017.

[189]
W. Hui, Z. Zhu, S. Zheng, and Y. Zhao, Endow SAM with keen eyes: Temporal-spatial prompt learning for video camouflaged object detection, in Proc. 2024 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2024, pp. 19058–19067.
[190]
C. Xie, Y. Xiang, Z. Harchaoui, and D. Fox, Object discovery in videos as foreground motion clustering, in Proc. 2019 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019, pp. 9994–10003.
[191]
H. Lamdouar, C. Yang, W. Xie, and A. Zisserman, Betrayed by motion: Camouflaged object discovery via motion segmentation, in Proc. 15th Asian Conference on Computer Vision (ACCV 2020), Kyoto, Japan, 2020, pp. 488–503.
[192]
C. Yang, H. Lamdouar, E. Lu, A. Zisserman, and W. Xie, Self-supervised video object segmentation by motion grouping, in Proc. 2021 IEEE/CVF Int. Conf. Computer Vision (ICCV), Montreal, Canada, 2021, pp. 7177– 7188.
[193]
H. Lamdouar, W. Xie, and A. Zisserman, Segmenting invisible moving objects, in Proc. 32nd British Machine Vision Conf. (BMVC 2021), virtual, 2021, pp. 1–14.
[194]
X. Cheng, H. Xiong, D. P. Fan, Y. Zhong, M. Harandi, T. Drummond, and Z. Ge, Implicit motion handling for video camouflaged object detection, in Proc. 2022 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 2022, pp. 13854–13863.
[195]

E. Meunier, A. Badoual, and P. Bouthemy, EM-driven unsupervised learning for efficient motion segmentation, IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 4, pp. 4462–4473, 2023.

[196]
M. Kowal, M. Siam, M. A. Islam, N. D. B. Bruce, R. P. Wildes, and K. G. Derpanis, A deeper dive into what deep spatiotemporal networks encode: Quantifying static vs. dynamic information, in Proc. 2022 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 2022, pp. 3999–14009.
[197]
J. Xie, W. Xie, and A. Zisserman, Segmenting moving objects via an object-centric layered representation, in Proc. 36th Conf. Neural Information Processing Systems (NeurIPS 2022), New Orleans, LA, USA, 2022, pp. 28023–28036.
[198]

P. Bideau, E. Learned-Miller, C. Schmid, and K. Alahari, The right spin: Learning object motion from rotation-compensated flow fields, Int. J. Comput. Vis., vol. 132, no. 1, pp. 40–55, 2024.

[199]
H. Lamdouar, W. Xie, and A. Zisserman, The making and breaking of camouflage, in Proc. 2023 IEEE/CVF Int. Conf. Computer Vision (ICCV), Paris, France, 2023, pp. 832–842.
[200]
Z. Yu, E. B. Tavakoli, M. Chen, S. You, R. Rao, S. Agarwal, and F. Ren, Tokenmotion: Motion-guided vision transformer for video camouflaged object detection VIA learnable token selection, in Proc. 2024 IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP 2024), Seoul, Republic of Korea, 2024, pp. 2875–2879.
[201]

W. Hui, Z. Zhu, G. Gu, M. Liu, and Y. Zhao, Implicit-explicit motion learning for video camouflaged object detection, IEEE Trans. Multimedia, vol. 26, pp. 7188–7196, 2024.

[202]
M. N. Meeran, G. Adethya T, and B. P. Mantha, SAM-PM: Enhancing Video Camouflaged Object Detection using Spatio-Temporal Attention, in Proc. 2024 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2024, pp. 1857–1866.
[203]
X. Zhang, T. Xiao, G. Ji, X. Wu, K. Fu, and Q. Zhao, Explicit motion handling and interactive prompting for video camouflaged object detection, arXiv preprint arXiv: 2403.01968, 2024.
[204]
H. Guo, Y. Guo, Y. Zha, Y. Zhang, W. Li, T. Dai, S. T. Xia, and Y. Li, MambaIRv2: attentive state space restoration, arXiv preprint arXiv: 2411.15269, 2024.
[205]
G. Sun, Z. An, Y. Liu, C. Liu, C. Sakaridis, D. P. Fan, and L. Gool, Indiscernible object counting in underwater scenes, in Proc. 2023 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Vancouver, Canada, 2023, pp. 13791–13801.
[206]
B. Wang, H. Liu, D. Samaras, and M. H. Nguyen, Distribution matching for crowd counting, in Proc. 34th Conf. Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada, 2020, pp. 1595–1607.
[207]
D. Liang, W. Xu, and X. Bai, An end-to-end transformer model for Crowd localization, in Proc. 17th European Conf. Computer Vision (ECCV), Tel Aviv, Israel, 2022, pp. 38–54.
[208]

T. N. Le, Y. Cao, T. C. Nguyen, M. Q. Le, K. D. Nguyen, T. T. Do, M. T. Tran, and T. V. Nguyen, Camouflaged instance segmentation in-the-wild: Dataset, method, and benchmark suite, IEEE Trans. Image Process., vol. 31, pp. 287–300, 2022.

[209]
Z. Cai and N. Vasconcelos, Cascade R-CNN: Delving into high quality object detection, in Proc. 2018 IEEE/CVF Conf. Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 6154–6162.
[210]
N. Luo, Y. Pan, R. Sun, T. Zhang, Z. Xiong, and F. Wu, Camouflaged instance segmentation via explicit de-camouflaging, in Proc. 2023 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Vancouver, Canada, 2023, pp. 17918–17927.
[211]
J. Pei, T. Cheng, D. P. Fan, H. Tang, C. Chen, and L. Van Gool, OSFormer: one-stage camouflaged instance segmentation with Transformers, in Proc. 17th European Conf. Computer Vision (ECCV), Tel Aviv, Israel, 2022, pp. 19–37.
[212]
T. A. Vu, D. T. Nguyen, Q. Guo, B. S. Hua, N. M. Chung, I. W. Tsang, and S. K. Yeung, Leveraging open-vocabulary diffusion to camouflaged instance segmentation, arXiv preprint arXiv: 2312.17505, 2023.
[213]
R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, High-resolution image synthesis with latent diffusion models, in Proc. 2022 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 2022, pp. 10684–10695.
[214]
P. Bideau and E. Learned-Miller, It’s moving! A probabilistic model for causal motion segmentation in moving camera videos, in Proc. 14th European Conf. Computer Vision (ECCV), Amsterdam, The Netherlands, 2016, pp. 433–449.
[215]
P. Skurowski, H. Abdulameer, J. Błaszczyk, T. Depta, A. Kornacki, and P. Kozieł, Animal camouflage analysis: Chameleon database https://www.polsl.pl/rau6/chameleon-database-animal-camouflage-analysis/, 2018.
[216]

Y. Zheng, X. Zhang, F. Wang, T. Cao, M. Sun, and X. Wang, Detection of people with camouflage pattern via dense deconvolution network, IEEE Signal Process. Lett., vol. 26, no. 1, pp. 29–33, 2019.

[217]
J. Yang, Q. Wang, F. Zheng, P. Chen, A. Leonardis, and D. P. Fan, PlantCamo dataset, https://github.com/yjybuaa/PlantCamo, 2023.
[218]

M. M. Cheng and D. P. Fan, Structure-measure: A new way to evaluate foreground maps, Int. J. Comput. Vis., vol. 129, no. 9, pp. 2622–2638, 2021.

[219]
R. Margolin, L. Zelnik-Manor, and A. Tal, How to evaluate foreground maps, in Proc. 2014 IEEE Conf. Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014, pp. 248–255.
[220]
F. Perazzi, P. Krahenbuhl, Y. Pritch, and A. Hornung, Saliency filters: Contrast based filtering for salient region detection, in Proc. 2012 IEEE Conf. Computer Vision and Pattern Recognition, Providence, RI, USA, 2012, pp. 733–740.
[221]
D. P. Fan, C. Gong, Y. Cao, B. Ren, and A. Borji, Enhanced-alignment measure for binary foreground map evaluation, in Proc. 27th Int. Joint Conf. Artificial Intelligence (IJCAI’18), Stockholm, Sweden, 2018, pp. 698–704.
[222]
P. Yan, G. Li, Y. Xie, Z. Li, C. Wang, T. Chen, and L. Lin, Semi-supervised video salient object detection using pseudo-labels, in Proc. 7th Int. Conf. Learning Representations (ICLR), New Orleans, LA, USA, 2019, pp. 7284–7293.
[223]
G. P. Ji, Y. C. Chou, D. P. Fan, G. Chen, H. Fu, D. Jha, and L. Shao, Progressively normalized self-attention network for video polyp segmentation, in Proc. 24th Int. Conf. Medical Image Computing and Computer Assisted Intervention (MICCAI 2021), Strasbourg, France, 2021, pp. 142–152.
[224]

Y. Ma, Y. He, X. Cun, X. Wang, S. Chen, X. Li, and Q. Chen, Follow your pose: Pose-guided text-to-video generation using pose-free videos, Proc. AAAI Conf. Artif. Intell., vol. 38, no. 5, pp. 4117–4125, 2024.

[225]

X. J. Luo, S. Wang, Z. Wu, C. Sakaridis, Y. Cheng, D. P. Fan, and L. Van Gool, CamDiff: camouflage image augmentation via diffusion, CAAI Artif. Intell. Res., vol. 2, p. 9150021, 2023.

[226]
P. Zhao, P. Xu, P. Qin, D. P. Fan, Z. Zhang, G. Jia, B. Zhou, and J. Yang, LAKE-RED: Camouflaged images generation by latent background knowledge retrieval-augmented diffusion, in Proc. 2024 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2024, pp. 4092–4101.
[227]

R. Hu, Y. Liu, K. Gu, X. Min, and G. Zhai, Toward a No-reference quality metric for camera-captured images, IEEE Trans. Cybern., vol. 53, no. 6, pp. 3651–3664, 2023.

[228]

R. Hu, Y. Liu, Z. Wang, and X. Li, Blind quality assessment of night-time image, Displays, vol. 69, pp. 102045, 2021.

[229]
H. Guo, J. Li, T. Dai, Z. Ouyang, X. Ren, and S. T. Xia, MambaIR: A Simple Baseline for Image Restoration with State-Space Model, in Proc. 18th European Conf. Computer Vision (ECCV), Milan, Italy, 2024, pp. 222–241.
[230]
Z. Yang and S. Farsiu, Directional connectivity-based segmentation of medical images, in Proc. 2023 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Vancouver, Canada, 2023, pp. 11525–11535.
[231]

Z. Yang, S. Soltanian-Zadeh, and S. Farsiu, BiconNet: An edge-preserved connectivity-based approach for salient object detection, Pattern Recognit., vol. 121, pp. 108231, 2022.

[232]
X. Zhao, Y. Pang, W. Ji, B. Sheng, J. Zuo, L. Zhang, and H. Lu, Spider: A unified framework for context-dependent concept segmentation, in Proc. 41st Int. Conf. Machine Learning, Vienna, Austria, 2024.
[233]
G. Lu, C. He, L. Xu, J. Ren, G. Xu, and H. Zhao, Infrared and visible image fusion based on local gradient constraints, in Proc. IEEE Cyber, Physical and Social Computing (CPSCom), Rhodes, Greece, 2020, pp. 571–575.
[234]
L. Tang and B. Li, Evaluating SAM2’s role in camouflaged object detection: From SAM to SAM2, arXiv preprint arXiv: 2407.21596, 2024.
[235]

G. P. Ji, D. P. Fan, P. Xu, B. Zhou, M. M. Cheng, and L. Van Gool, SAM struggles in concealed scenes—Empirical study on “segment anything”, Sci. China Inf. Sci., vol. 66, no. 12, p. 226101, 2023.

[236]

W. Ji, J. Li, Q. Bi, T. Liu, W. Li, and L. Cheng, Segment anything is not always perfect: An investigation of SAM on different real-world applications, Mach. Intell. Res., vol. 21, no. 4, pp. 617–630, 2024.

[237]
N. Ravi, V. Gabeur, Y. T. Hu, R. Hu, C. Ryali, T. Ma, H. Khedr, R. Rädle, C. Rolland, L. Gustafson, et al., SAM 2: Segment anything in images and videos, arXiv preprint arXiv: 2408.00714, 2024.
[238]
G. Hinton, O. Vinyals, and J. Dean, Distilling the knowledge in a neural network, arXiv preprint arXiv: 1503.02531, 2015.
[239]
C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, A survey on deep transfer learning, in Proc. 27th Int. Conf. Artificial Neural Networks (ICANN), Rhodes, Greece, 2018, pp. 270–279.
[240]
C. Buciluǎ, R. Caruana, and A. Niculescu-Mizil, Model compression, in Proc. 12th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, Philadelphia, PA, USA, 2006, pp. 535–541.
[241]
T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey, Meta-learning in neural networks: A survey, arXiv preprint 2004.05439, 2020.
[242]
D. Jha, P. H. Smedsrud, M. A. Riegler, P. Halvorsen, T. de Lange, D. Johansen, and H. D. Johansen, Kvasir-SEG: A segmented polyp dataset, in Proc. 26th Int. Conf. Multimedia Modeling, Daejeon, Republic of Korea, 2020, pp. 451–462.
[243]
H. B. Jenssen and T. Sakinis, MedSeg Covid Dataset 1, https://doi.org/10.6084/m9.figshare.13521488.v2, 2021.
[244]

P. Bergmann, K. Batzner, M. Fauser, D. Sattlegger, and C. Steger, The MVTec anomaly detection dataset: A comprehensive real-world dataset for unsupervised anomaly detection, Int. J. Comput. Vis., vol. 129, no. 4, pp. 1038–1059, 2021.

[245]
H. Mei, X. Yang, Y. Wang, Y. A. Liu, S. He, Q. Zhang, X. Wei, and R. W. H. Lau, Don’t hit me! glass detection in real-world scenes, in Proc. 2020 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2020, pp. 3684–3693.
[246]
J. Lin, G. Wang, and R. W. H. Lau, Progressive mirror detection, in Proc. 2020 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2020, pp. 3694–3702.
[247]

B. Dong, W. Wang, D. P. Fan, J. Li, H. Fu, and L. Shao, Polyp-PVT: Polyp segmentation with pyramid vision transformers, CAAI Artif. Intell. Res., vol. 2, p. 9150015, 2023.

[248]

D. P. Fan, T. Zhou, G. P. Ji, Y. Zhou, G. Chen, H. Fu, J. Shen, and L. Shao, Inf-net: Automatic COVID-19 lung infection segmentation from CT images, IEEE Trans. Med. Imaging, vol. 39, no. 8, pp. 2626–2637, 2020.

[249]

H. Dong, K. Song, Y. He, J. Xu, Y. Yan, and Q. Meng, PGA-net: Pyramid feature fusion and global context attention network for automated surface defect detection, IEEE Trans. Ind. Inf., vol. 16, no. 12, pp. 7448–7458, 2020.

[250]

H. Zhou, R. Yang, R. Hu, C. Shu, X. Tang, and X. Li, ETDNet: Efficient transformer-based detection network for surface defect detection, IEEE Trans. Instrum. Meas., vol. 72, pp. 1–14, 2023.

[251]
D. Han, C. Zhang, Y. Qiao, M. Qamar, Y. Jung, S. Lee, S. H. Bae, and C. S. Hong, Segment anything model (SAM) meets glass: Mirror and transparent objects cannot be easily detected, arXiv preprint arXiv: 2305.00278, 2023.
[252]

H. Zhou, R. Yang, Y. Zhang, H. Duan, Y. Huang, R. Hu, X. Li, and Y. Zheng, UniHead: unifying multi-perception for detection heads, IEEE Trans. Neural Netw. Learn. Syst., DOI: https://doi.org/10.1109/TNNLS.2024.3412947.

[253]
J. Shi, A. Yong, Y. Jin, D. Li, H. Niu, Z. Jin, and H. Wang, ASGrasp: Generalizable transparent object reconstruction and grasping from RGB-D active stereo camera, in Proc. 2024 IEEE Int. Conf. Robotics and Automation (ICRA), Yokohama, Japan, 2024.
[254]
H. Zhou, L. Tang, R. Yang, G. Qin, Y. Zhang, R. Hu, and X. Li, UniQA: unified vision-language pre-training for image quality and aesthetic assessment, arXiv preprint arXiv: 2406.01069, 2024.
[255]
X. Wu, C. Zhan, Y. K. Lai, M. M. Cheng, and J. Yang, IP102: A large-scale benchmark dataset for insect pest recognition, in Proc. 2019 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019, pp. 8787–8796.
[256]
A. C. C. Viodor, MangroveLens: A smart solution for mangrove species identification through MobileNetV3 network architecture and biodiversity monitoring, in Proc. IEEE Open Conf. Electrical, Electronic and Information Sciences (eStream), Vilnius, Lithuania, 2024, pp. 1–6.
[257]

J. Wäldchen and P. Mäder, Plant species identification using computer vision techniques: A systematic literature review, Arch. Comput. Meth. Eng., vol. 25, no. 2, pp. 507–543, 2018.

[258]
B. Jin, Y. Zheng, P. Li, W. Li, Y. Zheng, S. Hu, X. Liu, J. Zhu, Z. Yan, H. Sun et al., TOD3Cap: Towards 3D dense captioning in outdoor scenes, in Proc. 18th European Conf. Computer Vision (ECCV), Milan, Italy, 2024, pp. 367–384.
[259]
C. Zhu, K. Li, Y. Ma, L. Tang, C. Fang, C. Chen, Q. Chen, and X. Li, InstantSwap: fast customized concept swapping across sharp shape differences, arXiv preprint arXiv: 2412.01197, 2024.
[260]
C. Zhu, K. Li, Y. Ma, C. He, and L. Xiu, MultiBooth: towards generating all your concepts in an image from text, arXiv preprint arXiv: 2404.14239, 2024.
[261]

Q. Zhang, G. Yin, Y. Nie, and W. S. Zheng, Deep camouflage images, Proc. AAAI Conf. Artif. Intell., vol. 34, no. 7, pp. 12845–12852, 2020.

CAAI Artificial Intelligence Research
Article number: 9150044
Cite this article:
Xiao F, Hu S, Shen Y, et al. A Survey of Camouflaged Object Detection and Beyond. CAAI Artificial Intelligence Research, 2024, 3: 9150044. https://doi.org/10.26599/AIR.2024.9150044

269

Views

34

Downloads

0

Crossref

Altmetrics

Published: 31 December 2024
© The author(s) 2024.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return