Camouflaged Object Detection (COD) aims to detect objects with camouflaged properties. Although previous studies have focused on natural (animals and insects) and unnatural (artistic and synthetic) camouflage detection, plant camouflage has been neglected. However, plant camouflage plays a vital role in natural camouflage. Therefore, this paper introduces a new challenging problem of Plant Camouflage Detection (PCD). To address this problem, we introduce the PlantCamo dataset, which comprises 1250 images with camouflaged plants representing 58 object categories in various natural scenes. To investigate the current status of plant camouflage detection, we conduct a large-scale benchmark study using 20+ cutting-edge COD models on the proposed dataset. Due to the unique characteristics of plant camouflage, including holes and irregular borders, we develope a new framework, PCNet, dedicated to PCD. Our PCNet surpasses performance thanks to its multi-scale global feature enhancement and refinement. Finally, we discuss the potential applications and insights, hoping this work fills the gap in fine-grained COD research and facilitates further intelligent ecology research. All resources will be available on https://github.com/yjybuaa/PlantCamo.
R. He, Q. Dong, J. Lin, and R. W. H. Lau, Weakly-supervised camouflaged object detection with scribble annotations, Proc. AAAI Conf. Artif. Intell., vol. 37, no. 1, pp. 781–789, 2023.
T. N. Le, T. V. Nguyen, Z. Nie, M. -T. Tran, and A. Sugimoto, Anabranch network for camouflaged object segmentation, Comput. Vis. Image Underst., vol. 184, pp. 45–56, 2019.
Y. Niu, H. Sun, and M. Stevens, Stevens, Plant camouflage: Ecology, evolution, and implications, Trends Ecol. Evol., vol. 33, no. 8, pp. 608–618, 2018.
Y. Niu, M. Stevens, and H. Sun, Commercial harvesting has driven the evolution of camouflage in an alpine plant, Curr. Biol., vol. 31, no. 2, pp. 446–449, 2021.
A. G. Dyer and J. E. Garcia, Plant camouflage: Fade to grey, Curr. Biol., vol. 31, no. 2, pp. R78–R80, 2021.
A. R. Wallace, The colors of animals and plants, Am. Nat., vol. 11, no. 11, pp. 641–662, 1877.
Y. Niu, Z. Chen, M. Stevens, and H. Sun, Divergence in cryptic leaf colour provides local camouflage in an alpine plant, Proc. R. Soc. B., vol. 284, no. 1864, pp. 20171654, 2017.
Y. Niu and H. Sun, Alpine scree plants benefit from cryptic coloration with limited cost, Plant Signal. Behav., vol. 9, no. 9, pp. e29698, 2014.
J. Zhu, X. Zhang, S. Zhang, and J. Liu, Inferring camouflaged objects by texture-aware interactive guidance network, Proc. AAAI Conf. Artif. Intell., vol. 35, no. 4, pp. 3599–3607, 2021.
T. Chen, J. Xiao, X. Hu, G. Zhang, and S. Wang, Boundary-guided network for camouflaged object detection, Knowl. Based Syst., vol. 248, pp. 108901, 2022.
H. Zhu, P. Li, H. Xie, X. Yan, D. Liang, D. Chen, M. Wei, and J. Qin, I can find you! boundary-guided separated attention network for camouflaged object detection, Proc. AAAI Conf. Artif. Intell., vol. 36, no. 3, pp. 3608–3616, 2022.
P. Li, X. Yan, H. Zhu, M. Wei, X. -P. Zhang, and J. Qin, FindNet: can you find me? boundary-and-texture enhancement network for camouflaged object detection, IEEE Trans. Image Process., vol. 31, pp. 6396–6411, 2022.
B. Yin, X. Zhang, D. -P. Fan, S. Jiao, M. M. Cheng, L. Van Gool, and Q. Hou, CamoFormer: Masked separable attention for camouflaged object detection, IEEE Trans. Pattern Anal. Mach. Intell., vol. 46, no. 12, pp. 10362–10374, 2024.
R. He, Q. Dong, J. Lin, and R. W. H. Lau, Weakly-supervised camouflaged object detection with scribble annotations, Proc. AAAI Conf. Artif. Intell., vol. 37, no. 1, pp. 781–789, 2023.
D. P. Fan, G. P. Ji, M. M. Cheng, and L. Shao, Concealed object detection, IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 10, pp. 6024–6042, 2022.
S. H. Gao, M. M. Cheng, K. Zhao, X. Y. Zhang, M. H. Yang, and P. Torr, Res2Net: A new multi-scale backbone architecture, IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 2, pp. 652–662, 2021.
G. Chen, S. J. Liu, Y. J. Sun, G. P. Ji, Y. F. Wu, and T. Zhou, Camouflaged object detection via context-aware cross-level fusion, IEEE Trans. Circuits Syst. Video Technol., vol. 32, no. 10, pp. 6981–6993, 2022.
Q. Zhang, Y. Ge, C. Zhang, and H. Bi, TPRNet: camouflaged object detection via transformer-induced progressive refinement network, Vis. Comput., vol. 39, no. 10, pp. 4593–4607, 2023.
T. Zhou, Y. Zhou, C. Gong, J. Yang, and Y. Zhang, Feature aggregation and propagation network for camouflaged object detection, IEEE Trans. Image Process., vol. 31, pp. 7036–7047, 2022.
G. -P. Ji, L. Zhu, M. Zhuge, and K. Fu, Fast camouflaged object detection via edge-based reversible re-calibration network, Pattern Recognit., vol. 123, pp. 108414, 2022.
G. P. Ji, D. P. Fan, Y. C. Chou, D. Dai, A. Liniger, and L. Van Gool, Deep gradient learning for efficient camouflaged object detection, Mach. Intell. Res., vol. 20, no. 1, pp. 92–108, 2023.
X. Hu, S. Wang, X. Qin, H. Dai, W. Ren, D. Luo, Y. Tai, and L. Shao, High-resolution iterative feedback network for camouflaged object detection, Proc. AAAI Conf. Artif. Intell., vol. 37, no. 1, pp. 881–889, 2023.
W. Wang, E. Xie, X. Li, D. -P. Fan, K. Song, D. Liang, T. Lu, P. Luo, and L. Shao, PVT v2: Improved baselines with Pyramid Vision Transformer, Computational Visual Media, vol. 8, no. 3, pp. 415–424, 2022.
Z. Chen, K. Sun, and X. Lin, CamoDiffusion: camouflaged object detection via conditional diffusion models, Proc. AAAI Conf. Artif. Intell., vol. 38, no. 2, pp. 1272–1280, 2024.
X. Hu, X. Zhang, F. Wang, J. Sun, and F. Sun, Efficient camouflaged object detection network based on global localization perception and local guidance refinement, IEEE Trans. Circuits Syst. Video Technol., vol. 34, no. 7, pp. 5452–5465, 2024.
S. Yao, H. Sun, T. -Z. Xiang, X. Wang, and X. Cao, Hierarchical graph interaction transformer with dynamic token clustering for camouflaged object detection, IEEE Trans. Image Process., vol. 33, pp. 5936–5948, 2024.
Y. Lyu, H. Zhang, Y. Li, H. Liu, Y. Yang, and D. Yuan, UEDG: uncertainty-edge dual guided camouflage object detection, IEEE Trans. Multimed., vol. 26, pp. 4050–4060, 2024.
D. P. Fan, G. P. Ji, X. Qin, and M. M. Cheng, Cognitive vision inspired object segmentation metric and loss function, (in Chinese), SCI. SIN. Inf., vol. 51, no. 9, pp. 1475–1489, 2021.
D. P. Fan, G. P. Ji, P. Xu, M. M. Cheng, C. Sakaridis, and L. Van Gool, Advances in deep concealed scene understanding, Vis. Intell., vol. 1, no. 1, pp. 16, 2023.
L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs, IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 4, pp. 834–848, 2018.