PDF (27.3 MB)
Collect
Submit Manuscript
Open Access

PlantCamo: Plant Camouflage Detection

Jinyu Yang1Qingwei Wang2Feng Zheng3()Peng Chen2Aleš Leonardis4Deng-Ping Fan5,6
Tapall.ai, Shenzhen 518055, China
College of Computer and Information Technology, China Three Gorges University, Yichang 410073, China
Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
School of Computer Science, University of Birmingham, Birmingham, B15 2TT, UK
Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Shenzhen 518045, China
Tianjin Key Laboratory of Visual Computing and Intelligence Perception (VCIP), Nankai University, Tianjin 300350, China

Jinyu Yang and Qingwei Wang contributed equally to this work.

Show Author Information

Abstract

Camouflaged Object Detection (COD) aims to detect objects with camouflaged properties. Although previous studies have focused on natural (animals and insects) and unnatural (artistic and synthetic) camouflage detection, plant camouflage has been neglected. However, plant camouflage plays a vital role in natural camouflage. Therefore, this paper introduces a new challenging problem of Plant Camouflage Detection (PCD). To address this problem, we introduce the PlantCamo dataset, which comprises 1250 images with camouflaged plants representing 58 object categories in various natural scenes. To investigate the current status of plant camouflage detection, we conduct a large-scale benchmark study using 20+ cutting-edge COD models on the proposed dataset. Due to the unique characteristics of plant camouflage, including holes and irregular borders, we develope a new framework, PCNet, dedicated to PCD. Our PCNet surpasses performance thanks to its multi-scale global feature enhancement and refinement. Finally, we discuss the potential applications and insights, hoping this work fills the gap in fine-grained COD research and facilitates further intelligent ecology research. All resources will be available on https://github.com/yjybuaa/PlantCamo.

References

[1]
H. Lamdouar, W. Xie, and A. Zisserman, The making and breaking of camouflage, in Proc. 2023 IEEE/CVF Int. Conf. Computer Vision (ICCV), Paris, France, 2023, pp. 832–842.
[2]
X. Li, J. Yang, S. Li, J. Lei, J. Zhang, and D. Chen, Locate, refine and restore: A progressive enhancement network for camouflaged object detection, in Proc. 32nd Int. Joint Conf. Artificial Intelligence, Macao, China, 2023, pp. 1116–1124.
[3]
B. Dong, J. Pei, R. Gao, T. Z. Xiang, S. Wang, and H. Xiong, A unified query-based paradigm for camouflaged instance segmentation, in Proc. 31st ACM Int. Conf. Multimedia, Ottawa, Canada, 2023, pp. 2131–2138.
[4]
C. He, K. Li, Y. Zhang, L. Tang, Y. Zhang, Z. Guo, and X. Li, Camouflaged object detection with feature decomposition and edge reconstruction, in Proc. 2023 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Vancouver, Canada, 2023, pp. 22046–22055.
[5]
W. Liu, X. Shen, C. -M. Pun, and X. Cun, Explicit visual prompting for low-level structure segmentations, in Proc. 2023 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Vancouver, Canada, 2023, pp. 19434–19445.
[6]

R. He, Q. Dong, J. Lin, and R. W. H. Lau, Weakly-supervised camouflaged object detection with scribble annotations, Proc. AAAI Conf. Artif. Intell., vol. 37, no. 1, pp. 781–789, 2023.

[7]
D. Zheng, X. Zheng, L. T. Yang, Y. Gao, C. Zhu, and Y. Ruan, MFFN: Multi-view feature fusion network for camouflaged object detection, in Proc. IEEE/CVF Winter Conf. Applications of Computer Vision (WACV), Waikoloa, HI, USA, 2023, pp. 6221–6231.
[8]

T. N. Le, T. V. Nguyen, Z. Nie, M. -T. Tran, and A. Sugimoto, Anabranch network for camouflaged object segmentation, Comput. Vis. Image Underst., vol. 184, pp. 45–56, 2019.

[9]
D. P. Fan, G. P. Ji, G. Sun, M. M. Cheng, J. Shen, and L. Shao, Camouflaged object detection, in Proc. 2020 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2020, pp. 2774–2784.
[10]
Y. Lv, J. Zhang, Y. Dai, A. Li, B. Liu, N. Barnes, and D. -P. Fan, Simultaneously localize, segment and rank the camouflaged objects, in Proc. 2021 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021, pp. 11586–11596.
[11]

Y. Niu, H. Sun, and M. Stevens, Stevens, Plant camouflage: Ecology, evolution, and implications, Trends Ecol. Evol., vol. 33, no. 8, pp. 608–618, 2018.

[12]

Y. Niu, M. Stevens, and H. Sun, Commercial harvesting has driven the evolution of camouflage in an alpine plant, Curr. Biol., vol. 31, no. 2, pp. 446–449, 2021.

[13]

A. G. Dyer and J. E. Garcia, Plant camouflage: Fade to grey, Curr. Biol., vol. 31, no. 2, pp. R78–R80, 2021.

[14]
P. Skurowski, H. Abdulameer, J. Błaszczyk, T. Depta, A. Kornacki, and P. Kozieł, Animal camouflage analysis: Chameleon database, https://www.polsl.pl/rau6/chameleon-database-animal-camouflage-analysis/, 2017.
[15]

A. R. Wallace, The colors of animals and plants, Am. Nat., vol. 11, no. 11, pp. 641–662, 1877.

[16]

Y. Niu, Z. Chen, M. Stevens, and H. Sun, Divergence in cryptic leaf colour provides local camouflage in an alpine plant, Proc. R. Soc. B., vol. 284, no. 1864, pp. 20171654, 2017.

[17]

Y. Niu and H. Sun, Alpine scree plants benefit from cryptic coloration with limited cost, Plant Signal. Behav., vol. 9, no. 9, pp. e29698, 2014.

[18]
A. Li, J. Zhang, Y. Lv, B. Liu, T. Zhang, and Y. Dai, Uncertainty-aware joint salient object and camouflaged object detection, in Proc. 2021 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021, pp. 10066–10076.
[19]

J. Zhu, X. Zhang, S. Zhang, and J. Liu, Inferring camouflaged objects by texture-aware interactive guidance network, Proc. AAAI Conf. Artif. Intell., vol. 35, no. 4, pp. 3599–3607, 2021.

[20]
Y. Zhong, B. Li, L. Tang, S. Kuang, S. Wu, and S. Ding, Detecting camouflaged object in frequency domain, in Proc. 2022 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 2022, pp. 4494–4503.
[21]
C. Xie, C. Xia, T. Yu, and J. Li, Frequency representation integration for camouflaged object detection, in Proc. 31st ACM Int. Conf. Multimedia, Ottawa, Canada, 2023, pp. 1789–1797.
[22]
R. Cong, M. Sun, S. Zhang, X. Zhou, W. Zhang, and Y. Zhao, Frequency perception network for camouflaged object detection, in Proc. 31st ACM Int. Conf. Multimedia, Ottawa, Canada, 2023, pp. 1179–1189.
[23]
M. Xiang, J. Zhang, Y. Lv, A. Li, Y. Zhong, and Y. Dai, Exploring depth contribution for camouflaged object detection, arXiv preprint arXiv: 106.13217.
[24]
Z. Wu, D. P. Paudel, D. -P. Fan, J. Wang, S. Wang, C. Demonceaux, R. Timofte, and L. Van Gool, Source-free depth for object pop-out, in Proc. 2023 IEEE/CVF Int. Conf. Computer Vision (ICCV), Paris, France, 2023, pp. 1032–1042.
[25]
Q. Wang, J. Yang, X. Yu, F. Wang, P. Chen, and F. Zheng, Depth-aided camouflaged object detection, in Proc. 31st ACM Int. Conf. Multimedia, Ottawa, Canada, 2023, pp. 3297–3306.
[26]

T. Chen, J. Xiao, X. Hu, G. Zhang, and S. Wang, Boundary-guided network for camouflaged object detection, Knowl. Based Syst., vol. 248, pp. 108901, 2022.

[27]

H. Zhu, P. Li, H. Xie, X. Yan, D. Liang, D. Chen, M. Wei, and J. Qin, I can find you! boundary-guided separated attention network for camouflaged object detection, Proc. AAAI Conf. Artif. Intell., vol. 36, no. 3, pp. 3608–3616, 2022.

[28]

P. Li, X. Yan, H. Zhu, M. Wei, X. -P. Zhang, and J. Qin, FindNet: can you find me? boundary-and-texture enhancement network for camouflaged object detection, IEEE Trans. Image Process., vol. 31, pp. 6396–6411, 2022.

[29]
Q. Jia, S. Yao, Y. Liu, X. Fan, R. Liu, and Z. Luo, Segment, magnify and reiterate: Detecting camouflaged objects the hard way, in Proc. 2022 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 2022, pp. 4703–4712.
[30]
F. Xiao, P. Zhang, C. He, R. Hu, and Y. Liu, Concealed object segmentation with Hierarchical coherence modeling, in Proc. 3rd CAAI International Conference on Artificial Intelligence (CICAI 2023), Fuzhou, China, 2023, pp. 16–27.
[31]
Y. Sun, G. Chen, T. Zhou, Y. Zhang, and N. Liu, Context-aware cross-level fusion network for camouflaged object detection, in Proc. 30th Int. Joint Conf. Artificial Intelligence, virtual, 2023, pp. 1025–1031.
[32]
Y. Pang, X. Zhao, T. -Z. Xiang, L. Zhang, and H. Lu, Zoom in and out: A mixed-scale triplet network for camouflaged object detection, in Proc. 2022 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 2022, pp. 2150–2160.
[33]
C. He, K. Li, Y. Zhang, Y. Zhang, Z. Guo, X. Li, M. Danelljan, and F. Yu, Strategic preys make acute predators: Enhancing camouflaged object detectors by generating camouflaged objects, in Proc. 12h Int. Conf. Learning Representations (ICLR), Vienna, Austria, 2024.
[34]

B. Yin, X. Zhang, D. -P. Fan, S. Jiao, M. M. Cheng, L. Van Gool, and Q. Hou, CamoFormer: Masked separable attention for camouflaged object detection, IEEE Trans. Pattern Anal. Mach. Intell., vol. 46, no. 12, pp. 10362–10374, 2024.

[35]
C. He, K. Li, Y. Zhang, G. Xu, L. Tang, Y. Zhang, Z. Guo, and X. Li, Weakly-supervised concealed object segmentation with SAM-based pseudo labeling and multi-scale feature grouping, in Proc. 37th Conf. Neural Information Processing Systems (NeurIPS 2023), New Orleans, LA, USA, 2023, pp. 30726–30737.
[36]

R. He, Q. Dong, J. Lin, and R. W. H. Lau, Weakly-supervised camouflaged object detection with scribble annotations, Proc. AAAI Conf. Artif. Intell., vol. 37, no. 1, pp. 781–789, 2023.

[37]

D. P. Fan, G. P. Ji, M. M. Cheng, and L. Shao, Concealed object detection, IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 10, pp. 6024–6042, 2022.

[38]
Y. Zeng, P. Zhang, Z. L. Lin, J. Zhang, and H. Lu, Towards high-resolution salient object detection. in Proc. 2019 IEEE/CVF Int. Conf. Computer Vision (ICCV), Seoul, Republic of Korea, 2019, pp. 7233–7242.
[39]
K. He, X. Zhang, S. Ren, J. Sun, N. Singh, N. Singh, A. Dhall, K. Kolodiazhnyi, Q. Tian, and J. C. Franchitti, Deep residual learning for image recognition, in Proc. 2016 IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 770–778.
[40]
Q. Zhai, X. Li, F. Yang, C. Chen, H. Cheng, and D. P. Fan, Mutual graph learning for camouflaged object detection, in Proc. 2021 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021, pp. 12997–13007.
[41]
H. Mei, G. P. Ji, Z. Wei, X. Yang, X. Wei, and D. P. Fan, Camouflaged object segmentation with distraction mining, in Proc. 2021 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021, pp. 8768–8777.
[42]
F. Yang, Q. Zhai, X. Li, R. Huang, A. Luo, H. Cheng, and D. -P. Fan, Uncertainty-guided transformer reasoning for camouflaged object detection, in Proc. 2021 IEEE/CVF Int. Conf. Computer Vision (ICCV), Montreal, Canada, 2021, pp. 4126–4135.
[43]

S. H. Gao, M. M. Cheng, K. Zhao, X. Y. Zhang, M. H. Yang, and P. Torr, Res2Net: A new multi-scale backbone architecture, IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 2, pp. 652–662, 2021.

[44]

G. Chen, S. J. Liu, Y. J. Sun, G. P. Ji, Y. F. Wu, and T. Zhou, Camouflaged object detection via context-aware cross-level fusion, IEEE Trans. Circuits Syst. Video Technol., vol. 32, no. 10, pp. 6981–6993, 2022.

[45]

Q. Zhang, Y. Ge, C. Zhang, and H. Bi, TPRNet: camouflaged object detection via transformer-induced progressive refinement network, Vis. Comput., vol. 39, no. 10, pp. 4593–4607, 2023.

[46]

T. Zhou, Y. Zhou, C. Gong, J. Yang, and Y. Zhang, Feature aggregation and propagation network for camouflaged object detection, IEEE Trans. Image Process., vol. 31, pp. 7036–7047, 2022.

[47]
Y. Sun, S. Wang, C. Chen, and T. Z. Xiang, Boundary-guided camouflaged object detection, in Proc. 31st Int. Joint Conf. Artificial Intelligence, Vienna, Austria, pp. 1335–1341.
[48]

G. -P. Ji, L. Zhu, M. Zhuge, and K. Fu, Fast camouflaged object detection via edge-based reversible re-calibration network, Pattern Recognit., vol. 123, pp. 108414, 2022.

[49]
J. Liu, J. Zhang, and N. Barnes, Modeling aleatoric uncertainty for camouflaged object detection, in Proc. IEEE/CVF Winter Conf. Applications of Computer Vision (WACV), Waikoloa, HI, USA, 2022, pp. 2613–2622.
[50]
M. Zhang, S. Xu, Y. Piao, D. Shi, S. Lin, and H. Lu, PreyNet: Preying on camouflaged objects, in Proc. 30th ACM Int. Conf. Multimedia, Lisboa, Portugal, 2022, pp. 5323–5332.
[51]

G. P. Ji, D. P. Fan, Y. C. Chou, D. Dai, A. Liniger, and L. Van Gool, Deep gradient learning for efficient camouflaged object detection, Mach. Intell. Res., vol. 20, no. 1, pp. 92–108, 2023.

[52]
M. Tan and Q. V. Le, EfficientNet: Rethinking model scaling for convolutional neural networks, in Proc. 36th Int. Conf. Machine Learning, Long Beach, CA, USA, 2019, pp. 6105–6114.
[53]
Z. Liu, Z. Zhang, Y. Tan, and W. Wu, Boosting camouflaged object detection with dual-task interactive transformer, in Proc. 26th Int. Conf. Pattern Recognition (ICPR), Montreal, Canada, 2022, pp. 140–146.
[54]
E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Álvarez, and P. Luo, SegFormer: Simple and efficient design for semantic segmentation with transformers, in Proc. 35th Conf. Neural Information Processing Systems (NeurIPS 2021), virtual, 2021, pp. 12077–12090.
[55]
Z. Huang, H. Dai, T. Z. Xiang, S. Wang, H. -X. Chen, J. Qin, and H. Xiong, Feature shrinkage pyramid for camouflaged object detection with transformers, in Proc. 2023 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Vancouver, Canada, 2023, pp. 5557–5566.
[56]
A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., An image is worth 16x16 words: Transformers for image recognition at scale, in Proc. 9th Int. Conf. Learning Representations (ICLR), virtual, 2021.
[57]
Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, Swin transformer: Hierarchical vision transformer using shifted windows, in Proc. 2021 IEEE/CVF Int. Conf. Computer Vision (ICCV), Montreal, Canada, 2021, pp. 9992–10002.
[58]

X. Hu, S. Wang, X. Qin, H. Dai, W. Ren, D. Luo, Y. Tai, and L. Shao, High-resolution iterative feedback network for camouflaged object detection, Proc. AAAI Conf. Artif. Intell., vol. 37, no. 1, pp. 881–889, 2023.

[59]

W. Wang, E. Xie, X. Li, D. -P. Fan, K. Song, D. Liang, T. Lu, P. Luo, and L. Shao, PVT v2: Improved baselines with Pyramid Vision Transformer, Computational Visual Media, vol. 8, no. 3, pp. 415–424, 2022.

[60]
Z. Luo, N. Liu, W. Zhao, X. Yang, D. Zhang, D. -P. Fan, F. Khan, and J. Han, VSCode: General visual salient and camouflaged object detection with 2D prompt learning, in Proc. 2024 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2024, pp. 17169–17180.
[61]

Z. Chen, K. Sun, and X. Lin, CamoDiffusion: camouflaged object detection via conditional diffusion models, Proc. AAAI Conf. Artif. Intell., vol. 38, no. 2, pp. 1272–1280, 2024.

[62]

X. Hu, X. Zhang, F. Wang, J. Sun, and F. Sun, Efficient camouflaged object detection network based on global localization perception and local guidance refinement, IEEE Trans. Circuits Syst. Video Technol., vol. 34, no. 7, pp. 5452–5465, 2024.

[63]
W. Lin, Z. Wu, J. Chen, J. Huang, and L. Jin, Scale-aware modulation meet transformer, in Proc. 2023 IEEE/CVF Int. Conf. Computer Vision (ICCV), Paris, France, 2023, pp. 5992–6003.
[64]

S. Yao, H. Sun, T. -Z. Xiang, X. Wang, and X. Cao, Hierarchical graph interaction transformer with dynamic token clustering for camouflaged object detection, IEEE Trans. Image Process., vol. 33, pp. 5936–5948, 2024.

[65]
L. Zhu, X. Wang, Z. Ke, W. Zhang, and R. Lau, BiFormer: Vision transformer with bi-level routing attention, in Proc. 2023 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Vancouver, Canada, 2023, pp. 10323–10333.
[66]
Y. Sun, C. Xu, J. Yang, H. Xuan, and L. Luo, Frequency-spatial entanglement learning for Camouflaged object detection, in Proc. 18th European Conf. Computer Vision (ECCV), Milan, Italy, 2024, pp. 343–360.
[67]

Y. Lyu, H. Zhang, Y. Li, H. Liu, Y. Yang, and D. Yuan, UEDG: uncertainty-edge dual guided camouflage object detection, IEEE Trans. Multimed., vol. 26, pp. 4050–4060, 2024.

[68]
D. P. Fan, M. -M. Cheng, Y. Liu, T. Li, and A. Borji, Structure-measure: A new way to evaluate foreground maps, in Proc. 2017 IEEE Int. Conf. Computer Vision (ICCV), Venice, Italy, 2017, pp. 4558–4567.
[69]

D. P. Fan, G. P. Ji, X. Qin, and M. M. Cheng, Cognitive vision inspired object segmentation metric and loss function, (in Chinese), SCI. SIN. Inf., vol. 51, no. 9, pp. 1475–1489, 2021.

[70]
R. Achanta, S. Hemami, F. Estrada, and S. Süsstrunk, in Proc. 2009 IEEE Conf. Computer Vision and Pattern Recognition, Miami, FL, USA, 2009, pp. 1597–1604.
[71]
R. Margolin, L. Zelnik-Manor, and A. Tal, How to evaluate foreground maps, in Proc. 2014 IEEE Conf. Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014, pp. 248–255.
[72]

D. P. Fan, G. P. Ji, P. Xu, M. M. Cheng, C. Sakaridis, and L. Van Gool, Advances in deep concealed scene understanding, Vis. Intell., vol. 1, no. 1, pp. 16, 2023.

[73]
Y. Wang, R. Wang, X. Fan, T. Wang, and X. He, Pixels, regions, and objects: Multiple enhancement for salient object detection, in Proc. 2023 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Vancouver, Canada, 2023, pp. 10031–10040.
[74]

L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs, IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 4, pp. 834–848, 2018.

CAAI Artificial Intelligence Research
Article number: 9150045
Cite this article:
Yang J, Wang Q, Zheng F, et al. PlantCamo: Plant Camouflage Detection. CAAI Artificial Intelligence Research, 2025, 4: 9150045. https://doi.org/10.26599/AIR.2025.9150045
Part of a topical collection:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return